Leveraging Aircraft Avionics for Fleet and Airport Management

Margaret McNamara, John Mott, Darcy Bullock
Purdue University

Abstract
Airport operations count data are used for a variety of purposes ranging from allocation of Airport Improvement Program (AIP) funding to environmental assessments and budget justification. Operations counts are hard to obtain at small, non-towered airports, which constitute the majority of airports in the United States, and are frequently estimated unscientifically by airport managers. Current acoustic and video counting technology is limited, but with the FAA NextGen mandate for installation of ADS-B Out transponders by Jan. 1, 2020, transponder data is rapidly emerging as a viable data source beyond traditional NextGen applications. To date, the NextGen literature has focused on the use of this technology for navigation, safety, and airspace management. This paper introduces a method of applying ADS-B data to fleet management and airport operations. With a 1090 MHz receiver and appropriate signal processing hardware and software, Mode S and Mode S Extended data can be used to track runway operations and fleet usage in an accurate and cost-effective manner.

Data Collection
Data for this analysis were collected with a Raspberry Pi, a small computer that runs Linux, using a USB software-defined radio with a vertically-polarized, half-wave dipole antenna. The assembly can be battery powered and portable (left) or permanently installed (below). The data received is dependent on antenna size as well as attenuation due to buildings.

Indianapolis International Airport (KIND) Purdue University Airport (KLAF)

Coverage is a function of antenna strength and attenuation. The KIND site has a larger antenna placed outside, whereas the KLAF antenna is attenuated by the building and gets most positions from the southwest.

Cirrus Fleet Utilization at Purdue University Airport (KLAF)
Purdue University maintains a fleet of 16 Cirrus aircraft to support its flight training program, including a bachelor’s degree program in professional flight. Performance metrics include:
• Dispatch hours for each plane
• Planes used in a day
• Flight slots being used
• Flight time using Visual vs. Instrumented Flight Rules (VFR/IFR)
• Days an aircraft isn’t used
• Number of turns
• Unutilized turn time
• Ground departure/arrival time

Low visibility (< 3 mi) by hour of day, Apr. 19 – Jun. 30 2015

Airport Operations
N586PU, takeoff and touch-and-go on Runway 28, Sept. 3

Transponder data can be used to count takeoffs and landings, an important airport performance metric. Latitude and longitude can be used with heading to match those to runways. Runways are numbered by heading, as shown in the two airport diagrams.

ADS-B Penetration
The analysis that can be done with aircraft transponder data is greatly augmented by ADS-B (Mode S Extended) data. The graphs below compare ADS-B to Mode S transmissions for three airports:
• LAF – Purdue University Airport
• IND – Indianapolis International Airport
• CDG – Charles de Gaulle International Airport, Paris, France

Fall semester increase in usage, Aug. 23 – Nov. 4 2015
Purdue increased enrollment in the incoming class from 55 to 71 students, and aircraft dispatch hours have increased in the fall semester as compared to the spring semester. The cumulative frequency distributions below show aircraft operations are generally beginning earlier and ending later in the day: