Setting Asphalt Content
For Hot Mix Asphalt

How Much Is Enough?
How Much Is Too Little?

Gerry Huber
Heritage Research Group
Composite Material
Rut Resistance
Proportions of Material
Asphalt Content / Imposed Strain
Durability
Environmental Cracking
High Permeability
Leading Cause of Death??

- Rutting
 - ✗
- Cracking
 - ✔
Current Durability Concerns

- Mostly Cracking
 - Random and Block Cracking
 - Top Down Cracking
- Some raveling
- Some moisture damage
- Longitudinal Joints continue to be Concern
1960s Age of Cracking

* Strong Emphasis on Cracking

 * Related to Structural Design
 * AASHO Road Test

 * Development of Beam Fatigue Test
1980s Age of Rutting

* National Catastrophe

* Blamed on Asphalt Quality
 * “Taken all the goodies out of asphalt.”

* Led to Strategic Highway Research Program

Superpave
1990s – 2000s

* Implementation of Superpave

* Higher Stiffness Asphalt Binder
 * AC20 (PG64ish)
 * AC10 (PG58ish)
 * PG 70 and PG 76 become more common

* Improved Aggregate Requirements
1990s – 2000s cont’d

* Improved Density Specification
 * “End Result Specifications”
 * 10 to 12% voids moved to 7 to 9% voids

* Volumetric Acceptance
 * Instead of asphalt content and gradation
Rutting became Non-Issue (less of an issue)

Cracking has become the ISSUE
What’s Changed?
Changes since 1990s

- Shift from Agency to Industry
 - Design, Production and Control shifted to Industry
 - Contractor Mix Design
 - Plant Settings done by Contractor
Changes since 1990s cont’d

* Increased Use of RAP

* Introduction of Shingles
 * Very limited in 1990s
 * Today
 * Commonly used in many States
Asphalt Binder Additives

- Recycled Engine Oil Bottoms
 - Mostly used for Lower Temperature Grades
- Reported to cause cracking
 - Investigations continue
Changes since 1990s cont’d

* Asphalt Binder Additives
 * Polyphosphoric Acid
 * Common in early 2000s
 * Polymer Modified Become More Common
 * SBS was most common (only) polymer used
 * Modified Asphalt was relatively new
What Caused Cracking?

What are people saying?
“Causes of Cracking”

- Too much RAP
- Need to limit (ban) RAS
- REOB is cause
- Asphalt mixes are “Too Dry”
Reduce design gyrations

Wrong

- True only IF gradation is held constant AND gyrations are reduced
 - VMA will increase
 - 25 gyrations ≈ 1.0% VMA
- BUT gradation is not a design criteria
Common “Solutions” to Increase Asphalt Content

* Reduce design air voids
 * i.e. 3.0% air voids would increase asphalt content 0.4%

Maybe

* BUT
 * Make sure controls are in place to hold VMA at the previous design levels.
 * Otherwise change gradation and reduce air voids without increasing asphalt content.
Common “Solutions” to Increase Asphalt Content

* Increase design VMA criteria
 * 1.0% VMA ≈ 0.4% asphalt content

* The only real way to increase asphalt content.
* Increasing VMA will increase
 * Total asphalt content
 * Effective asphalt content
Common “Solutions” to Increase Asphalt Content

* Require use of fine-graded mixes
 * “Contractors are designing their mixes on coarse side to reduce the amount of asphalt they need.”

* Asphalt content is set on basis of VMA minus air voids plus absorbed asphalt.
Use deduct factor for RAP and RAS
 * i.e. for RAS set binder content at 70% of RAS binder
 * “Reduces the amount of RAS binder”

Wrong

* i.e. 12% asphalt binder replacement desired from RAS
* With 100% contribution
 * 3% RAS with 20% asphalt binder
 * RAS binder is 0.6%
 * Total Binder is 5.0%
With 70% contribution

- Percent RAS increased
 - 4.3% RAS added
 - $0.7 \times 0.86\%$ RAS binder $= 0.6\%$
 - Virgin binder 4.4%
 - “Total” binder $= 5.0\%$

- Perceived ABR $= 12\%$

- Actual ABR $= \frac{0.86}{5.26} = 16.3\%$
How Much Asphalt is Enough?

* Two Part Answer
 * Asphalt on Outside of Aggregate
 * Asphalt Absorbed into Aggregate
How Much Asphalt is Enough?

* Asphalt Outside of Rock
 * Based on Volume

<table>
<thead>
<tr>
<th></th>
<th>9.5-mm</th>
<th>12.5-mm</th>
<th>19.0-mm</th>
<th>25.0-mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent by Volume</td>
<td>11.0%</td>
<td>10.0%</td>
<td>9.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Percent by Weight</td>
<td>4.4%</td>
<td>4.0%</td>
<td>3.6%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>
How Much Asphalt is Enough?

Asphalt Inside of Rock
- Depends on Absorption

<table>
<thead>
<tr>
<th>Aggregate Water Absorption</th>
<th>1.0%</th>
<th>2.0%</th>
<th>3.0%</th>
<th>4.0%</th>
<th>5.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Percent by Weight</td>
<td>0.5%</td>
<td>1.2%</td>
<td>1.9%</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>
How Much Asphalt is Enough?

* Total Asphalt Content
 * Inside Rock
 * Outside Rock

These values are approximate and will vary depending upon specific gravity of aggregates and actual absorption

<table>
<thead>
<tr>
<th>Water Absorption</th>
<th>9.5-mm</th>
<th>12.5-mm</th>
<th>19.0-mm</th>
<th>25.0-mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>4.9%</td>
<td>4.5%</td>
<td>4.1%</td>
<td>3.7%</td>
</tr>
<tr>
<td>2%</td>
<td>5.6%</td>
<td>5.2%</td>
<td>4.8%</td>
<td>4.4%</td>
</tr>
<tr>
<td>3%</td>
<td>6.3%</td>
<td>5.9%</td>
<td>5.5%</td>
<td>5.1%</td>
</tr>
<tr>
<td>4%</td>
<td>7.4%</td>
<td>7.0%</td>
<td>6.6%</td>
<td>6.2%</td>
</tr>
<tr>
<td>5%</td>
<td>8.4%</td>
<td>8.0%</td>
<td>7.6%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>
THANK YOU