Stress and Deformation Analyses of Twin-Spirals Scroll Plates Based on CAE

Bin Peng
Lanzhou University of Technology

Hongsheng Zhang
Lanzhou University of Technology

Li Zhang
Lanzhou University of Technology

Zhenquan Liu
Lanzhou University of Technology

Follow this and additional works at: https://docs.lib.purdue.edu/icec

Peng, Bin; Zhang, Hongsheng; Zhang, Li; and Liu, Zhenquan, "Stress and Deformation Analyses of Twin-Spirals Scroll Plates Based on CAE" (2008). International Compressor Engineering Conference. Paper 1924.
https://docs.lib.purdue.edu/icec/1924
Stress and Deformation Analyses of Twin-Spirals Scroll Plates Based on CAE

BIN PENG1 2*, HONGSHENG ZHANG1 2, LI ZHANG1 2, ZHENQUAN LIU3

1 Key Laboratory of Digital Manufacturing Technology and Application, The Ministry of Education, Lanzhou Univ. of Tech. Lanzhou 730050, China
Phone: +86(931)2973330 E-mail: pengb2000@163.com
2 College of Mechano-Electronic Engineering, Lanzhou Univ. of Tech., Lanzhou 730050
3 College of Petrochemical Tech., Lanzhou Univ. of Tech. Lanzhou 730050

ABSTRACT

On the basis of the elastic mechanics theories, heat transfer theories, and CAE, the non-uniform temperature distribution was studied, Mises stress and deformation distribution of 3D twin-spirals scroll plates was presented. The Mises stress and deformation of scroll plates induced by non-uniform temperature field and gas pressure was investigated. Orbiting and fixed scrolls were engaged with each other and the Maximum Mises stress and deformation of scroll plates analyses were performed under different axial and radial gap at the crank angle that the Maximum compression ratio happens. On the basis of calculated results using CAE, the suitable gap value for twin-spirals scroll plates design was presented, which provided useful data for developing the high-performance twin-spirals scroll compressor.

1 INTRODUCTION

In recent years, protecting environment and reducing energy consumption become two big problems for the human being. In order to economize energy sources, many researchers concentrate on lessening machinery energy consumption, cutting down driving force spoilage, and gaining better power characteristic. As a kind of new efficient positive replacement, scroll compressor has many advantages such as simple structure, high-efficiency, low noise, high reliability, low vibration, light weight, and small size compared with other types of compressors. It is becoming popular and widely used in refrigeration, air-conditioning, various kinds of gas compression, and pressurized pump products, etc. At present with the wide application of the scroll compressor, its outstanding advantages have attracted the attention of a lot of countries. With the development of scroll compressor to bigger displacement and power, the advantages of scroll compressor employing twin-spirals, such as increasing the displacement and reducing the diameter of scroll plate, have gotten increasingly approbation, at the same time it requires higher quality products, superior reliability, optimization structure, and better performance in an even shorter delivery time. However it is not easy as their key parts-orbiting and fixed scroll have complex shape, high precision, and the appropriate axial and radial gap requirement. For twin-spirals scroll compressor, compressed gas will inevitably produce heat and pressure. It causes stress and deformation of the scroll wrap and influences the scrolls gap. The stress, deformation, and gap significantly affect efficiency of twin-spirals scroll compressor. So an accurate pressure and temperature distribution on twin-spirals plates must be obtained. The stress and deformation analyses results after scrolls engage with each other can help us get the suitable gap value.

2 PRESSURE AND TEMPERATURE DISTRIBUTION

2.1 The Working Principle of Twin-Spirals Scroll Compressor

The working principle of twin-spirals scroll compressor is shown in Figure 1. There both have two scroll wraps at orbiting and fixed plate. One of the scroll plates is fixed and the other orbiting scroll around the centre of the fixed scroll wrap. The orbiting scroll is driven by a simple short-throw crank mechanism. The contact points between the twin-spirals wraps are shifted along the spiral curve. The relative angle of the two scroll plates are maintained by
means of an anti-rotation coupling mechanism located between the back of orbiting scroll plate and the frame. When the angle reached suction angle θ_s, suction chamber closed, then reached the Maximum, crescent-shaped suction chamber $\bar{1}$ in Figure 1 (a) formed. Volume of crescent-shaped suction chamber decreased when it moved to the centre with the clockwise, thus it realized gas compression as illustrated in Figure 1 (b), (c), (d), (e) and (f). In twin-spirals scroll compressor, four suction chambers - $\bar{1}$, $\bar{2}$, $\bar{3}$ and $\bar{4}$ formed every crank rotating 2π. Each suction chamber volume is same. Closed time interval of two adjacent chambers is $\pi / 2$. There have two kinds of compression process. The one kind of compression process is $\bar{1}$ and $\bar{3}$ formed between the inner orbiting scroll wrap and the outer fixed scroll wrap. The other kind of compression process is $\bar{2}$ and $\bar{4}$ formed between the outer orbiting scroll wrap and the inner fixed scroll wrap. Four exhaust chambers formed at the same time in each round (2π), and the beginning exhaust time interval of two adjacent exhaust chambers is also $\pi / 2$. Although the compression process and the formation time are different for four suction chambers, the pressure change process is same, phase difference of two adjacent chambers pressure change is $\pi / 2$. So it is different from single-spiral scroll compressor. For single-spiral scroll compressor, two symmetry working chambers realize suction, compression and exhaust at the same time. But for twin-spirals scroll compressor, four working chambers realize suction, compression and exhaust one by one, so it has lower exhaust losses and the flow pulsation.

2.2 The Basic Parameters of Twin-Spirals Wrap

Table 1 is the basic parameters of twin-spirals wrap. Figure 2 is 3D analyses model construction of orbiting and fixed plate. In order to increase the exhaust space, reduce exhaust pulsation and resistance, the centre part of scrolls wrap was directly cut.

<table>
<thead>
<tr>
<th>The Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scroll Wrap Type</td>
<td>Twin-Spirals Evolutes</td>
</tr>
<tr>
<td>Media</td>
<td>Air</td>
</tr>
<tr>
<td>The Radius of Basic Circle</td>
<td>$7.63944mm$</td>
</tr>
<tr>
<td>Orbit Radius</td>
<td>$7.5mm$</td>
</tr>
<tr>
<td>The Thickness of Scroll Wrap</td>
<td>$4.5mm$</td>
</tr>
<tr>
<td>The Height of Scroll Wrap</td>
<td>$50mm$</td>
</tr>
<tr>
<td>Suction Pressure</td>
<td>$0.086MPa(Absolute Pressure)$</td>
</tr>
<tr>
<td>Suction Temperature</td>
<td>$20^\circ C$</td>
</tr>
</tbody>
</table>

2.3 Pressure and Temperature

The working condition of twin-spirals scroll compressor is divided into suction, compression and exhaust process. The working chambers are also divided into suction, compression and exhaust chamber, as shown in Figure 3. 1, 6, 7 and 10 are suction chamber, 2, 3, 4, 5 and 9 are compression chamber, 8 is exhaust chamber. Meanwhile, in order to balance the axial gas pressure, the back pressure chamber is set, reasonable back pressure chamber can reduce the axial wear and improve stability of twin-spirals scroll compressor.

The temperature distribution of chambers gradually reduces from the center of scrolls to the outer circle. The temperature of working chambers and back pressure chamber are not same, showing non-uniform state. The pressure and temperature distribution are gotten through theory analyses and experiment test. The force of twin-spirals scroll plates changes with the crank angle. The most adverse circumstance is the beginning exhaust moment. The Maximum Mises stress and deformation can be gotten. In imposing the load, scroll wrap is divided into different parts according to different pressure, it guarantees the independence of different parts. The loading value and position are decided by the dynamics model. According to testing results and heat analyses, the temperature distribution is gotten. The software analyses and practical test are used to ensure the validity of temperature field. 5 radial points and 6 ring points, total 30 points temperature are tested, and the test results and generated results by the software are compared, the deviation of two kinds of methods is under $1.5^\circ C$, so the results(Figure 6-a) generated by the software fully can used for CAE.
3 STRESS AND DEFORMATION ANALYSES

3.1 Meshed Twin-Spirals Scroll Plates
Meshed twin-spirals scroll plates are shown in Figure 4 (orbiting scroll plate nodes: 15911, fixed scroll plate nodes: 21627). Through analyses, the node number of scroll plates is suitable for CAE.

3.2 Material Properties of Scroll Plates
In designing twin-spirals scroll compressor, considering the large displacement, structural characteristics, and machine quality, Aluminum Alloy is applied to replace Ductile Cast Iron. The detailed material properties are shown in Table 2. Expansion coefficient of Aluminum Alloy is 2 times than Ductile Cast Iron, it will lead to greater deformation under the same temperature field. It greatly affects the engaging gap of orbiting and fixed scroll. Interference is also easy to happen, but the quality reduces almost 2/3, which helps big displacement of twin-spirals scroll plate, but glue is more likely to happen for Aluminum Alloy in the high temperature. It should be considered in scroll plates design and analyses.

Table 2: Material Properties

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Ductile Cast Iron</th>
<th>Aluminum Alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity Modulus E</td>
<td>173 GPa</td>
<td>70 GPa</td>
</tr>
<tr>
<td>Poisson Ratio μ</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Density ρ</td>
<td>7.8×10^{-4} kg/mm3</td>
<td>2.7×10^{-4} kg/mm3</td>
</tr>
<tr>
<td>Expansion Coefficient α</td>
<td>1.33×10^{-5}/°C</td>
<td>2.36×10^{-5}/°C</td>
</tr>
<tr>
<td>Heat Transfer Coefficient λ</td>
<td>$0.0526 W/mm \cdot °C$</td>
<td>$0.1325 W/mm \cdot °C$</td>
</tr>
<tr>
<td>Specific Heat c</td>
<td>500 J/kg · °C</td>
<td>126 J/kg · °C</td>
</tr>
<tr>
<td>Tensile Strength δ'</td>
<td>400 MPa</td>
<td>340 MPa</td>
</tr>
<tr>
<td>Fatigue Strength δ''</td>
<td>270 MPa</td>
<td>275 MPa</td>
</tr>
</tbody>
</table>

3.3 Boundary Conditions and Constraints
3.3.1 Boundary Conditions
The following boundary conditions are assumed before CAE.
- Under a steady state, the parameters of scroll plates at any given point are constant. No heat is transferred between orbiting and fixed scroll. No heat is transferred between the scrolls and the external environment, so the scrolls are adiabatic.
- Pressure is constant in vertical direction of scroll plates (Z axis). Everywhere pressure is constant in the same chamber. Pressure changes in X-Y plate according to changed crank angle.

3.3.2 Constraints
Some constrains are applied to the Mises stress and deformation analyses according to the operation situation of real twin-spirals scroll compressor.
For fixed scroll: The freedoms in the X, Y and Z axis in the surface connected with frame are completely constrained.
For orbiting scroll:
- The freedom in the Z axis in the surface contacted with frame is constrained.
- The self-rotation of Z axis in the orbiting scroll connected with anti-rotation cranks is constrained.
- The freedoms in the X and Y axis in the inner bearing contacted with crank are constrained.

3.4 Mises Stress and Deformation Analyses of Orbiting Scroll
3.4.1 Gas Pressure Action
Figure 5 is Mises stress and deformation distribution of orbiting scroll induced by gas pressure. The analyses results indicate that the Maximum Mises stress and deformation are small under gas pressure action. The Maximum Mises...
stress 5.575 Mpa appears at the end of the second circle of scroll wrap. It is caused by different pressure between inner and outer of scroll wrap. Because the back pressure of Z axis, the Z axis deformation is smaller than radial. The Maximum deformation 0.0105 mm also appears at the second circle scroll wrap. So the deformation caused by gas pressure has a little effect for axis and radial gap leakage.

3.4.2 Temperature Field Action
Figure 6 is Mises stress and deformation distribution of orbiting scroll induced by temperature field. Temperature field reduced from the inside to outside of scroll plate. The Maximum temperature appears at the center wrap of exhaust chamber. The Maximum temperature difference is 50°C. Mises stress and deformation caused by temperature field are larger a magnitude than the gas pressure. The Maximum total deformation reaches 0.0792 mm happened at scroll wrap roof of exhaust chamber, which is mainly due to the Z axis deformation results. The Maximum Mises stress is 94.677 MPa happened at under floor of exhaust chamber near the wrap root, which is caused by thermal stress. As a result of high stress and large deformation induced by temperature field, axial and radial deformation become the biggest factors for axial and radial leakage, especially high-pressure gas leakage in exhaust chamber, but it can improve leakage through the top wrap modify.

3.4.3 Coupling Action of Gas Pressure and Temperature Field
Figure 7 is Mises stress and deformation distribution of orbiting scroll under coupling action of gas pressure and temperature field. Mises Stress and deformation distribution are similar to the simple temperature field action. It just has a little increase, which also shows the absolute advantage impact of temperature field, so controlling exhaust temperature is the most critical and most direct route to control the Maximum Mises stress and deformation.

3.5 Mises Stress and Deformation Analyses of Fixed Scroll
Figure 8 is Mises stress and deformation distribution of fixed scroll under coupling action of gas pressure and temperature field. Z axis deformation of fixed scroll has a large difference compared with orbiting scroll. The deformation directions of orbiting scroll caused by gas pressure and temperature field are opposite, but for the fixed scroll, they are same. Because no back pressure acts on fixed scroll, Z axis the Maximum deformation 0.0876 mm of fixed scroll is larger than the Maximum deformation 0.0791 mm of orbiting scroll. Same with orbiting scroll, the Maximum deformation appears at scroll wrap top of exhaust chamber. It has the near same Mises stress distribution with the orbiting scroll, the Maximum Mises stress appears at exhaust vent, in part because of high temperature and the stress concentration of exhaust vent.

3.6 The Axial Gap and Radial Gap Analyses
3.6.1 Mises Stress and Deformation Distribution of Scrolls Engaged with Each Other in the Minimum Gap Situation
Figure 9 is Mises stress and deformation distribution of scrolls engaged with each other in the Minimum gap situation under coupling action of gas pressure and temperature field. The deformation distribution of X, Y and Z are similar to the results of single fixed scroll. The Maximum total deformation is 0.0943 mm, also appears at scroll wrap top of exhaust chamber. But the Maximum Mises stress reaches 299 MPa, appears at scrolls engaging surface of exhaust chamber, and is more than Fatigue strength, which is due to scrolls wrap interference caused by the inconsistence of deformation direction and value.

3.6.2 Mises Stress and Deformation Distribution of Scrolls Engaged with Each Other in the Critical Gap Situation
Figure 10 is Mises stress and deformation distribution of scrolls engaged with each other in the critical gap situation under coupling action of gas pressure and temperature field. The deformation and Mises stress distribution are similar to the results of single fixed and orbiting scroll. Safety factor is 2.8; it can meet the design requirement.

3.6.3 Axial and Radial Gap VS the Maximum Mises Stress and Deformation of Scrolls Engaged with Each Other
Figure 11 is axial and radial gap vs. the Maximum Mises stress and deformation of scrolls engaged with each other. For fixed axial gap \(\delta_a = 0.025 \text{ mm} \), when radial gap increases from 0, Mises stress and deformation gradually reduce. Small radial gap causes mutual interference and big Mises stress of scrolls, but deformation has a little change in the whole process. When radial gap reaches 0.03 mm, if continue to increase, Mises stress and deformation have very
small change, nearly keep constant. It is because scrolls interference disappeared. For fixed radial gap $\delta_r = 0.03 \text{mm}$, when axial gap increases from 0, Mises stress and deformation gradually reduce. Small axial gap causes mutual interference and big Mises stress of scrolls, but deformation also has a little change in the whole process, when axial gap reaches 0.025 mm, if continue to increase, Mises stress and deformation have very small change, nearly keep constant, it is also because scrolls interference disappeared. Conjunction with leakage model and loss model of twin-spirals scroll compressor, $\delta_a = 0.025 \text{mm}$ and $\delta_r = 0.03 \text{mm}$ can be as the best sealing gap value for real engineering application.

4 CONCLUSIONS

1) The temperature field declines from the center of scrolls to the outer circle.
2) The Maximum Mises Stress and deformation caused by temperature field are larger a magnitude than caused by gas pressure.
3) The Maximum deformation of the orbiting scroll induced by temperature field and gas pressure is 0.0794 mm, appears at scroll wrap top of exhaust chamber. The Maximum deformation of the fixed scroll is 0.0903 mm; large deformation mainly appears at scroll wrap top area of exhaust chamber.
4) The Maximum Mises stress of the orbiting scroll induced by temperature field and gas pressure is 95.431 MPa, and that of the fixed scroll is 90.451 MPa, appears at scroll wrap root of exhaust chamber.
5) The Maximum Mises stress and deformation of scrolls engaged with each other in the critical gap situation induced by temperature field and gas pressure are 97.288 MPa and 0.0886 mm, appear at exhaust vent.
6) The best sealing gap value $\delta_a = 0.025 \text{mm}$ and $\delta_r = 0.03 \text{mm}$ are gotten.

The calculated results provide useful data for the optimization design of scroll mechanism.

REFERENCES

ACKNOWLEDGEMENT

This research is supported by Natural Science foundation of GANSU province (grant No. 3ZS051-A25-036) and Specialized Research Fund for the Doctoral Program of Higher Education(grant No.20050731002)
Figure 1 The Working Principle of Twin-Spirals Scroll Compressor
(a) Chamber 1 Suction End (b) Chamber 2 Suction End (c) Chamber 3 Suction End (d) Chamber 4 Suction End
(e) Chamber 1 Suction End Again (f) Beginning Exhaust of the First Formed Chamber 1

Figure 2 3D Analyses Model Construction of Orbiting and Fixed Scroll
Figure 3 The Working Chambers of Twin-Spirals Scroll Compressor

Figure 4 Meshed Twin-Spirals Scroll Plates
Figure 5 Mises Stress and Deformation Distribution of Orbiting Scroll Induced by Gas Pressure
(a) Total Deformation Distribution (b) Mises Stress Distribution

Figure 6 Mises Stress and Deformation Distribution of Orbiting Scroll Induced by Temperature Field
(a) Temperature Field Distribution (b) Total Deformation Distribution (c) Mises Stress Distribution
Figure 7 Mises Stress and Deformation Distribution of Orbiting Scroll Induced by Gas Pressure and Temperature Field
(a) Z Axis Deformation Distribution (b) Total Deformation Distribution (c) Mises Stress Distribution
Figure 8 Mises Stress and Deformation Distribution of Fixed Scroll Induced by Gas Pressure and Temperature Field
(a) Z Axis Deformation Distribution (b) Total Deformation Distribution (c) Mises Stress Distribution

Figure 9 Mises Stress and Deformation Distribution of Scrolls Engaged with Each Other in the Minimum Gap Situation (δ = 0mm; δ = 0mm)
(a) Total Deformation Distribution (b) Mises Stress Distribution (c) Scrolls Engaged with Each Other

International Compressor Engineering Conference at Purdue, July 14-17, 2008
Figure 10: Mises Stress and Deformation Distribution of Scrolls Engaged with Each Other in the Critical Gap Situation ($\delta_a = 0.025\text{mm}; \delta_r = 0.03\text{mm}$)
(a) Total Deformation Distribution (b) Mises Stress Distribution

Figure 11: Axial and Radial Gap VS the Maximum Mises Stress and Deformation of Scrolls Engaged with Each Other
(a) Radial Gap VS the Maximum Mises Stress and Deformation ($\delta_a = 0.025\text{mm}$)
(b) Axial Gap VS the Maximum Mises Stress and Deformation ($\delta_r = 0.03\text{mm}$)