HYDRAULICS OF BRIDGES

PROGRESS REPORT OF THE TASK FORCE ON HYDRAULICS OF BRIDGES OF THE HYDRAULIC STRUCTURES COMMITTEE HYDRAULICS DIVISION, AMERICAN SOCIETY OF CIVIL ENGINEERS

TO: K. B. Woods, Director Joint Highway Research Project File: 9-8-2

FROM: H. L. Michael, Associate Director Joint Highway Research Project September 18, 1964

Attached is an informational copy of a Progress Report of the ASCE Task Force on Hydraulics of Bridges. A summary of this report was presented by Professor J. W. Delleur, Chairman of the Task Force, at the Vicksburg, Mississippi meeting of the Hydraulics Division on August 19, 1964, as part of a technical session on Hydraulics of Bridges. Professor Delleur became a member of the Task Force on Hydraulics of Bridges as a result of his work on "Hydraulics of Bridges" co-sponsored by the Project, the Highway Commission and by the HPR.

Professor Delleur would appreciate receiving comments and suggestions from the members of the Project staff and from the Engineers of the Indiana State Highway Commission.

The paper is presented to the Board as information.

Respectfully submitted,

Harold L. Michael, Secretary

HIM:bc

Attachment

Copy:

F. L. Ashbaucher
J. R. Cooper
W. L. Dolch
W. E. Goetz
F. F. Haves
F. S. Hill
G. A. Leonards

J. F. McLaughlin
R. D. Miles
R. E. Mills
M. E. Scott
J. V. Smythe
E. J. Yoder
Informational Report

HYDRAULICS OF BRIDGES

Progress Report of the Task Force on
Hydraulics of Bridges of the
Hydraulic Structures Committee of the
Hydraulics Division
American Society of Civil Engineers

Draft
Not for Publication

Presented at the ASCE Hydraulics Division Meeting
Vicksburg, Mississippi, August 19, 1964
Table of Contents

1. INTRODUCTION

1.1. INTRODUCTION

2. HYDRAULIC DESIGN DATA

2.1. SITE USE

2.1.1. Site is a Gorge
2.1.2. Site is a Navigable Waterway
2.1.3. Site is a Recreational Area
2.1.4. Site is a Fish or Wildlife Habitat
2.1.5. Site has Unsuitable Soils

2.2. HYDROLOGY

2.2.1. Flows and Stages in the Unrestrictive Section
2.2.2. Design Flood - Bridge on Unrestricted Stream
2.2.3. Design Flood, Bridge on Navigable Stream
2.2.4. Design Frequency
2.2.5. Flood Duration
2.2.6. Backwater in Unrestricted Stream
2.2.7. Limitations in Extent of Backwater
2.2.8. Limitation in Duration of Backwater
2.2.9. Indrect Flood Discharge Measurement

2.3. SITE CHARACTERISTICS

2.3.1. The Cross-Section May Vary
2.3.2. The Slope of the Stream May Change
2.3.3. The Planform May Change
2.3.4. The Channel May Change Across the Section
2.3.5. The Discharge May Be Uneven across the Section

2.4. CONSTRUCTION GEOMETRY

2.4.1. Bridge Superstructure Geometry
2.4.2. Bridge Substructure Geometry
2.4.3. Spur Dikes at Bridge Abutments
2.4.4. Skewness of Bridge Crossing
2.4.5. Eccentricity of Bridge Crossing

2.5. HYDRAULIC DESIGN

2.5.1. BACKWATER FROM OPEN CHANNEL CONSTRUCTIONS
2.5.2. ENERGY LOSSES
2.5.3. MAXIMUM BACKWATER ELEVATION
2.5.4. ABNORMAL STAGE-DISCHARGE
2.5.5. VELOCITY DISTRIBUTION IN THE VICINITY OF THE
 CONSTRUCTION
2.5.6. REGIONS OF HIGH SUSPENSION AND RECOMMENDATIONS
 REGARDING POSSIBLE CORRECTIVE MEASURES
2.5.7. CLEARANCES FOR DEBRIS
2.5.8. SCOUR AT BRIDGE SITE

3.1. Possible Methods of Reducing Scour
3.1.2. Local Scour at Bridge Constructions
3.1.3. Depth of Scour
3.1.4. The Use of Spur Dikes
3.1.5. Fixed-End Spur-Dikes Model Studies at Lehigh Univ.
3.1.6. Preliminary Spur Dike Design Recommendations
3.1.7. SPECIAL GEOMETRIES

3.2. ENERGY LOSSES
3.3. MAXIMUM BACKWATER ELEVATION
3.4. ABNORMAL STAGE-DISCHARGE
3.5. VELOCITY DISTRIBUTION IN THE VICINITY OF THE
 CONSTRUCTION
3.6. REGIONS OF HIGH SUSPENSION AND RECOMMENDATIONS
 REGARDING POSSIBLE CORRECTIVE MEASURES
3.7. CLEARANCES FOR DEBRIS
3.8. SCOUR AT BRIDGE SITE
3.8.1. Possible Methods of Reducing Scour
3.8.2. Local Scour at Bridge Constructions
3.8.3. Depth of Scour
3.8.4. The Use of Spur Dikes
3.8.5. Fixed-End Spur-Dikes Model Studies at Lehigh Univ.
3.8.6. Preliminary Spur Dike Design Recommendations
3.8.7. SPECIAL GEOMETRIES

3.8.8. SCOUR AT BRIDGE SITE
3.8.9. SPECIAL GEOMETRIES

3.9. SPECIAL GEOMETRIES

Appendix A: Scour at Bridge Sites

Appendix B: Scour at Bridge Sites

Appendix C: Scour at Bridge Sites

Appendix D: Scour at Bridge Sites

Appendix E: Scour at Bridge Sites

Appendix F: Scour at Bridge Sites

Appendix G: Scour at Bridge Sites

Appendix H: Scour at Bridge Sites

Appendix I: Scour at Bridge Sites

Appendix J: Scour at Bridge Sites

Appendix K: Scour at Bridge Sites

Appendix L: Scour at Bridge Sites

Appendix M: Scour at Bridge Sites

Appendix N: Scour at Bridge Sites

Appendix O: Scour at Bridge Sites

Appendix P: Scour at Bridge Sites

Appendix Q: Scour at Bridge Sites

Appendix R: Scour at Bridge Sites

Appendix S: Scour at Bridge Sites

Appendix T: Scour at Bridge Sites

Appendix U: Scour at Bridge Sites

Appendix V: Scour at Bridge Sites

Appendix W: Scour at Bridge Sites

Appendix X: Scour at Bridge Sites

Appendix Y: Scour at Bridge Sites

Appendix Z: Scour at Bridge Sites
4. FIELD VERIFICATION
5. ECONOMIC CONSIDERATIONS
6. FIELDS OF RESEARCH, INVESTIGATION AND DISCUSSION
 6.1 DATA PRESENTATION
 6.2 ABNORMAL STAGE-DISCHARGE CONDITIONS
 6.3 CURVED AND NON-UNIFORM CHANNELS
 6.4 VELOCITY DISTRIBUTIONS NEAR CONSTRUCTIONS
 6.5 DEBRIS CLEARANCE
 6.6 BED AND BANK SCOUR
 6.7 SPUR DIKES
7. ANOTATED BIBLIOGRAPHY ON HYDRAULICS OF BRIDGES
PREFACE

The Task Force on Hydraulics of Bridges was created in January 1960 operating under the Committee on Hydraulic Structures. The original members were: the late H. E. Liu, Messrs. J. W. Delleur, J. B. Herbich, and H. J. Tracy, Chairman. Mr. D. E. Schneible was appointed to replace Mr. Liu in April 1961. J. W. Delleur was appointed Chairman in November 1962, and E. M. Laursen was added to the Task Force in October 1963.

The general objectives of the Task Force were stated by A. J. Paterka, then chairman of the Committee on Hydraulic Structures as follows:

"To stimulate the accumulation and dissemination of information regarding design methods and performance characteristics of the Hydraulics of Bridges; to foster the prompt utilization of research results in the development of improved design procedures."

The Task Force has attempted to meet these objectives by preparing an comprehensive outline to delineate in a systematic fashion the problems involved in the hydraulic design of bridges, and to present an annotated bibliography summarizing the state of the art. This outline attempts to be more than a statement of the available knowledge, it should be a thoughtful discussion of the problems that have arisen and yet remain, together with some recommendations and suggestions for research. The following is a draft of this outline.

The task Force has also attempted to disseminate information regarding
Hydraulics of Bridges by organizing technical sessions on this subject. This is the second technical session organized by the Task Force.

The first program organized by the Task Force was at the Boston meeting in May 1960. Papers were presented by:

- J. B. Herlich on "The Effect of Spur Dikes on Flood Flows through Bridge Constrictions"
- P. F. Biery and J. W. Delleur on "Hydraulics of River Flow under Arch Bridges"
- J. Shen on "Flow through Multi-Opening Constrictions"
- W. W. Sayre and M. L. Albertson on "The Effect of Roughness in Rigid Open Channels"
HYDRAULICS OF BRIDGES

1. INTRODUCTION

The various aspects of bridge design, such as location, alignment and the structural foundation, hydrologic and hydraulic design are closely inter-related by the overall considerations of service, safety and economy. The best solution of a problem in one of these phases may involve appreciable modification of the initial proposals of one or more of the other phases. For example, excessive velocities through a bridge waterway may require a lengthening of the span or even a relocation. Again, it may be practicable, from the hydraulic design aspect, to vary the height-to-span ratio of a bridge over an appreciable range and the best ratio being fixed by structural and economic consideration.

This inter-relationship is to be borne in mind in the following outline of the elements of hydraulic design. First, there are listed the design data which may be required by the hydraulic designer, together with brief indications of certain matters requiring investigation, discussion or standardization. Next, the aspects of hydraulic design are presented, with comments on the methods in current use. Finally, there is set out a list of topics based upon which a comprehensive program of study might be undertaken.

2. HYDRAULIC DESIGN DATA

2.1 SITE USE

At some sites, the hydraulics of a proposed bridge may be superseded by other factors, such as topography, navigation, recreation, fish-and-wildlife, geology.
2.1.1 SITE IS AT A GORGE

The gorge will contain the predictable flows of the stream. The problem of a structure spanning the gorge is paramount to the hydraulics of the bridge.

2.1.2 SITE IS A NAVIGABLE WATERWAY

The navigation considerations will require a bridge of such height and length which exceed the requirements for the hydraulics of the bridge.

2.1.3 SITE IS IN A RECREATION AREA

The passage of boats may require a structure larger than needed for hydraulic reasons.

2.1.4 SITE IS IN A FISH OR WILDLIFE HABITAT

A habitat for fish or wildlife may be damaged or destroyed by the construction of earth embankment. A bridge may be constructed in lieu of the embankment and, thus, the hydraulics are a minor consideration.

2.1.5 SITE HAS UNSUITABLE SOILS

Soils which are not capable of supporting an embankment must be replaced or bridged. If the economics indicate a bridge, the hydraulics of the structure may be insignificant.

2.2 HYDROLOGY

The determination of the required waterway area of a bridge, the selection of the size of a culvert, or the design of a highway drainage system in general require an accurate estimate of the peak discharge that is expected to pass through the structure. Ven Te Chow has published a general review of Hydrologic Studies of floods in the United States.
TABLE 1

Major organizations in the United States engaging in hydrologic studies of floods and their main interests related to the studies.
(after Chow)

A. Federal Agencies
 (a) Department of Agriculture
 a. Soil Conservation Service (1935) - In upstream flood control and agricultural watershed management related to minor floods.
 b. Agricultural Research Service (1954) - In basic research to obtain information needed for upstream flood control and watershed management.
 c. Forest Service (1906) - In flood survey and effect in forest areas.
 (b) Department of the Army
 a. Corps of Engineers (1802) - In flood control for major floods.
 1. Office of the Chief of Engineers and offices of 10 Division Engineers - In general and particular problems in the District.
 3. Waterways Experiment Station (1928) - In model studies.
 (c) Department of Commerce
 a. Weather Bureau (1940) - In flood data collection and forecasting and determination of design criteria.
 b. Bureau of Public Roads (1949) - In minor and medium floods related to the design of bridges and culverts.
 (d) Department of the Interior
 a. Bureau of Reclamation (1902) - In flood problems for reclamation projects.
 b. Geological Survey (1879) - In flood data collection, survey, and analysis.

B. Federal Corporation
 (a) Tennessee Valley Authority (1933) - In Tennessee Valley flood Problems.

C. Public Corporations - In flood problems of the particular region; for examples:
 (a) Pittsburgh Flood Commission (1908)
 (b) Miami Conservancy District (1914)
 (c) Los Angeles County Flood Control District (1915)
 (d) Franklin County Conservancy District (1915)
 (e) Muskingum Valley Conservancy District (1933)

D. State and Local Agencies.

E. Educational Institutions - Public and private universities and colleges.

F. Technical Societies - For examples:
 (a) American Society of Civil Engineers (1852)
 (b) American Geophysical Union (1919)
 (c) Society of American Military Engineers (1919)
 (d) American Society of Agricultural Engineers (1920)
2.2.1 FLOWS AND STAGES IN THE UNCONSTRUCTED STREAM.

The flows and stages vary from a minimum to a maximum. The knowledge of the maximum design stage and the corresponding flow are usually required for the hydraulic design of bridge openings. The Daily River Stages at Gage Stations on the Principal Rivers of the United States have been compiled between 1858 and 1948 by the Signal Service, United States Army, and since 1949 by the Weather Bureau.\(^{(1)}\)

By means of stage–discharge curves, which are generally available from the USGS regional offices for the principal gaging stations, the stage information may be transformed into a discharge information. In addition there is a number of publications which deal with regional flood records, and are published by the Weather Bureau, the USGS and state agencies.\(^{(2)}\)

2.2.2 DESIGN FLOOD – BRIDGE ON GAGED STREAM

If the bridge is at or near a gaging station for which records are available, the largest discharge on record may be obtained, and a statistical analysis of the peak discharges may be made for the purpose of predicting the peak discharge for a specified return period.

There are several methods of flood frequency analysis. E. J. Gumbel's\(^{(3)}\) extreme–values theory is often used in conjunction with an extreme value probability paper derived by R. W. Powell.\(^{(4)}\) This method requires only compilation of the annual maxima for sufficient number of years, from which a curve of discharge vs. frequency is developed.

Hazen\(^{(5)}\) log-probability law has also been extensively used by many American hydrologists. Ven Te Chow\(^{(6)}\) has developed a table which facilitates the computation, and further
suggested a flexible straight-line fitting of flood data which has the merits of the both the extreme value and log-probability method.

A review of the methods of analysis of flood frequencies was prepared by the subcommittee of the Joint Division Committee on Floods, ASCE(7).

2.2.3 DESIGN FLOOD, BRIDGE ON UNGAGED STREAM

If the bridge is located on a ungaged stream the methods of estimating the peak discharge make use of correlations of physiographic and climatic factors or of a rainfall-runoff relationship. C. F. Izzard, (8) of the U. S. Bureau of Public Roads, has developed a method applicable to the region east of the Rocky Mountains, which gives the design peak discharge as the product of a rainfall factor, a land use and slope factor, a frequency factor and a peak rate of runoff for mixed cover in humid region with frequency of 25 year and rainfall factor of unity. For bridges over streams draining small ungaged watersheds, W. D. Potter (9), of the Bureau of Public Roads, has developed a method of determination of peak rate of runoff from watersheds of less than 25 square miles located East of the 105th Meridian. Several state highway departments - Indiana for example (10) - have developed their own methods. Yen Ta Chow (11) has presented a method of peak runoff from small watersheds less than 10 square miles, and its application to Illinois.

The "Rational Method", which gives the discharge as the product of a runoff coefficient, the rainfall intensity, and the drainage area has been popular because of its simplicity for the drainage
design of urban areas and airports. Horner, (12) Potter, (13) and others have questioned the correctness of this formula for flood flow calculations.

A complete listing of empirical formulas for peak discharge determination has been prepared by Van Te Chow (11).

2.2.4 DESIGN FREQUENCY

The return period established by frequency analysis is the average time interval between events equal to or greater than a given magnitude. The reciprocal of the return period may be thought as the probability that an event occur in any one year.

The actual individual return periods may be less than the average. Thus if it is desired to select a design flow which is not likely to occur during the life of the structure, it is necessary to use a return period greater than the estimated useful life of the structure. Linsley et al (14) give the return periods required for specific risk of occurrence within the structure life.

Weather the permissible risk of failure should be 0.01 or 0.99 is a matter costs vs. benefits and importance of the structure.

2.2.5 FLOOD DURATION

In certain cases it is required to know the duration of a certain discharge or stage. To obtain this information it is generally needed to obtain the distribution of the runoff with respect to time called the hydrograph. For gaged streams, the flow hydrograph may be derived from the recorded stage graphs.

For ungaged streams hydrographs may be developed using the concept of the unit hydrograph. Synthetic hydrographs have been developed for several areas, usually by correlating certain parameters describing the hydrograph, such as the peak discharge, time to peak, etc, to geomorphological and
climatological characteristics of the watersheds. For example, the method developed by Snyder (15) applies to the Appalachian Mountain region, that of Taylor and Schwartz (16) to the North and Middle Atlantic States, that of Wu (17) to Indians, etc. Dimensionless unit hydrographs proposed by Williams (18), Commons (19) and by the Soil Conservation Service (20) give the ratio of the discharge to the peak discharge in terms of the ratio of the time to time to peak and tend to eliminate the effects of the basin characteristics.

2.2.6 BACKWATER IN RESTRICTED STREAMS

The flow through restricted streams can in principle be analyzed making use of the continuity, momentum and energy equations. On the basis of the first two equations Chow (22) has shown that four regimes of flow are possible in a contracted stream:

1. The flow is supercritical through the transition.
2. The flow through the transition passes from supercritical to subcritical.
3. The flow is subcritical throughout the transition.
4. The flow through the transition passes from subcritical to supercritical.

A fifth flow regime possible in bridge constrictions is an orifice type flow which occurs when the bridge opening is submerged. Flow regime No. 2 (subcritical flow throughout) is the most common situation.

2.2.7 LIMITATION IN EXTENT OF BACKWATER

The position of maximum backwater super elevation varies with the amount of constriction and the Froude number. Curves for estimating the distance to the section of maximum backwater have
been prepared by J. N. Bradley (21) of the Bureau of Public Roads. For flow regime No. 2 the backwater upstream of this maximum point follows an M-1 profile (22). This profile may be calculated by the usual methods of gradually varied flow in open channels.

The extent to which the backwater superelevation is permissible varies with the location. In general submergence of the bridge structure should be avoided for several reasons:

a) the orifice-type flow is hydraulically less efficient than the free surface flow.

b) the accumulation of debris which occurs at the upstream face.

c) the danger of overtopping.

Excessive backwater may provide flooding of a zone upstream of the constriction. The tolerable extent to which backwater is permissible should be determined in each individual case.

2.2.8 LIMITATION IN DURATION OF BACKWATER

The duration during which a certain water elevation will be equalled or exceeded and its frequency may be determined from the flow hydrograph at the site for that frequency, and from the geometry of the constriction. If the backwater superelevation produces the flooding of an area and the interruption of certain services, the duration and frequency of this damage should be estimated. The permissible backwater superelevation, its duration and frequency are determined from economic considerations of cost of damage vs. increased cost of the structure. A useful tool in this analysis is a plot of the peak water surface elevation vs. frequency with and without the structure. Once
the permissible backwater super-elevation, its duration, frequency and risk factors are known, the corresponding flood discharges may be evaluated by one of the several methods discussed above, in conjunction with the hydraulic design methods discussed in Section 3.

2.2.9 INDIRECT FLOOD DISCHARGE MEASUREMENT

Observations of high water marks at bridge contractions may also have been used as a means of determining flood discharge through the structure. The fundamental research, which supports the contracted opening method of flood discharge measurement and the values of the discharge coefficients for the several bridge and abutment geometries, have been published by Kincaid, Carter and Tracy in a circular of the U. S. Geological Survey. (23)

2.3 SITE CHARACTERISTICS

A variety of physical features at the site should be considered in analyzing the hydraulics of a bridge at that site. The hydraulics may be different for the normal flow and for the flood flow.

2.3.1 THE CROSS-SECTION MAY VARY

Natural or man-made features upstream of the bridge may affect the manner in which the flows approach the bridge; the distribution of flood flows on the flood plain may vary as a result of this characteristic.

Similar features downstream may affect the hydraulics. A constriction may result in flood water being ponded at the site.
In addition to a cross-section at the site, several representative samples of cross-sections upstream and downstream should be obtained. A cross-section at a location which is a control for the flow must be obtained.

2.3.2 THE SLOPES OF THE STREAM MAY CHANGE

During normal flows the stream will follow meanders of the low water channel. During floods much of the flow may disregard the meanders; the overall valley features will probably influence the flow patterns.

Channel changes will effect the slope of the stream. Changing the slope could affect the velocity of flow and thus the transport capacity (or scouring ability) of the flow. A channel change downstream of the site may result in degradation of the bridge; upstream of the site may result in aggradation at the bridge.

A profile of a stream bed for a distance to 500 to 1000 ft. upstream and downstream should be obtained. If a channel change is planned, a plan and profile sheet for the old channel and for the new channel should be prepared from which potentiation troubles may be evaluated.

2.3.3 THE FLOW ANGLE OF APPROACH MAY VARY

For the usual flow, the flow angle of approach will be controlled by the low water channel. At various stages of a flood, the angle or approach may vary until it is controlled by the characteristics or the stream valley.

If scour at the piers and abutments is anticipated, the bridge substructure should be aligned or constructed in a manner which considers the angle of approach which will minimize the scour potential.
Aerial photographs or topographic maps should be studied for possible variations in the angle of approach.

2.3.4 THE CHANNEL ROUGHNESS MAY VARY

An average value for channel roughness will probably decrease as the depth increases. However, if the depth increases so that a large portion of the flow is in the dense portion of vegetation, the value for roughness may increase.

The most adverse results from the varying roughness should be analyzed. As the roughness increases, the depth of flow will increase but the average velocity will decrease.

Aerial or ground photographs and personal visits to the site are methods to evaluate the value for roughness. The U. S. Geological Survey has stereoscopic, colored slides for computed values of roughness; these may be used to compare with conditions at the site.

2.3.5 THE DISCHARGE AND VELOCITY VARY ACROSS THE SECTION

The discharge and velocity will vary at different locations in the section primarily as a result of changes in depth and in roughness. The values for these may be estimated by computing the conveyance at the several sections. The technique has been well developed by the U. S. Geological Survey. This agency makes many bridge site studies for highway departments.

2.3.6 THE BACKWATER WILL VARY DEPENDING ON THE CONSTRUCTION GEOMETRY

Backwater at a site is affected by amount of constriction, type of abutments, type of piers, angle of crossing (skew) and eccentricity of crossing.

Methods to compute backwater are contained in "Hydraulics of Bridge Waterways", U. S. Government Printing Office. (21)

2.3.7 SCOUR MAY OCCUR AT SITE

Three forms of scour may occur at a bridge site, the effects of
which may be additive: (1) local scour at a pier as a result of the obstruction to flow, (2) general scour through the site as a result of excessive velocities, and (3) streambed scour or degradation as a result of changes in the stream.

Research has been done at State University of Iowa on evaluation of scour. See Highway Research Board Bulletin No. 4 "Scour Around Bridge Piers and Abutments" (30) and Bulletin No. 8 "Scour at Bridge Crossings". (31)

Embankments constructed of easily scoured material should be protected from scour by (1) vegetation along side of and on the embankment or by (2) prevention of high velocities along embankment.

2.3.8 STREAM LOAD MAY INCREASE DURING FLOOD

More sediment may be in flood waters because of additional scour in stream or removal of bank material. This sediment will tend to reduce scour at site because of the limited capacity of the flow to transport material.

More drift may be in flood waters because of sloughing banks or flood waters covering more wooded flood plain. The drift potential should be considered in determining elevation of bridge.

2.4 CONSTRUCTION GEOMETRY

The degree of constriction is a function of several factors related to the bridge and abutment shapes.

2.4.1 BRIDGE SUPERSTRUCTURE GEOMETRY

The elevation of the bridge superstructure relative to the elevation of flood waters has an effect on the constriction.

A low-level bridge (for roads with a small traffic count) may be
inundated for practically all floods. This superstructure should offer the minimum interference to the floods by having a shallow depth; a slab-type construction rather than a beam and flow type is suggested. Wheel guards and railings (if any) should be low and contain large holes to permit easy passage of flood waters. Depth indicators at the bridge ends will advise traffic as to depth of flow over the bridge. The constrictive value must be considered for this type of bridge.

A median-level bridge will have the low member of the superstructure at an elevation above the stage of a flood of a stated frequency depending upon the overall economy of bridge costs and effects of its loss to traffic. A commonly used value is a 50-year flood. If a flood attains a stage which is in the superstructure, the constrictive value is materially increased.

A high-level bridge (probably for navigation) will have superstructure at an elevation which a conceivable flood cannot attain. Thus, the bridge superstructure should have no constrictive effects.

The width of the stream at flood stage is a factor in determining the number of spans or bridges to be built to accommodate the flow. The bridge across the low-water channel may be designated as the "main" bridge; the others are "relief" bridges. Some feature, such as a higher portion of ground or a grove of trees, may provide a natural division of the flow to the bridges; otherwise, the designer must choose an arbitrary division. Two types of computations will aid in choosing the division:

(1) the relative conveyance in area upstream of each bridge and
(2) the backwater by each bridge must be at about same elevation.
a short distance upstream of the bridges. The relief bridges must be sized to accommodate the flood flows and not on a localized drainage area, except in some possible cases.

2.4.2 BRIDGE SUBSTRUCTURE GEOMETRY.

The type, shape and orientation of piers and abutments affect the constriction and the scour potential. The types and shapes of piers and abutments have different coefficients for the computation of backwater. Values are shown in "Hydraulics of Bridge Waterways." (21) Streamlining the shape of the pier is effective only when the major axis of the pier is approximately parallel to the approaching flow. At sites where the flow may approach at varying angles, consideration should be given to a single shaft cylindrical-shaped pier.

2.4.3 SPUR DIKES AT BRIDGE ABUTMENTS

A properly shaped spur dike reduces the constriction and the scour potential at the abutment. When the flow parallel to the embankment encounters the flow approaching the bridge from a normal direction, an eddy-type action. Laboratory studies and limited field observation have developed the layout for a spur dike as illustrated on attached sketch. (Fig. 1) (See also Article 3.8)

2.4.4 SKEWNESS OF BRIDGE CROSSING

The skewness, or the angle which the bridge and its approaches cross the river and its flood plain, is a factor in the constriction. Values are shown in "Hydraulics of Bridge Waterways." (21)
FIG. I SPUR DIKE LAYOUT

NOTE 1. SHAPE = ELLIPSE
 MAJOR AXIS = 2.5 MINOR AXIS

2. FOR NORMAL CROSSING

TENTATIVE MAY, 1960
2.4.5 ECCENTRICITY OF BRIDGE CROSSING

The eccentricity, or the offset of the main channel from the middle of the flood plain, affects the constriction. Values are shown in "Hydraulics of Bridge Waterways." (21)
3. HYDRAULIC DESIGN

3.1 BACKWATER FROM OPEN CHANNEL CONSTRUCTIONS

A channel transition may be defined as a local change in cross-section which produces a variation in flow from one uniform section to another. An open channel constriction, such as a highway bridge crossing, is an example of a transition of this type. The flow through such constrictions is most often in the tranquil range, and produces gradually varied channel flow far up- and downstream, although at the constriction itself, the flow is of the rapidly varied type.

The effect of the constriction on the surface profile, both upstream and downstream, is conveniently measured with respect to the normal profile, which is the water surface in the absence of the constriction. Upstream from the constriction, the backwater profile is of the M-1 variety. In this region, the velocities - and consequently the rate of loss of flow energy - are less than for the normal condition. The backwater effect may extend for a great distance in the upstream direction. At some upstream point, the constricted and the normal profiles coincide.

Near the constriction, the central body of water begins to be accelerated, whereas deceleration occurs along the outer boundaries, and a separation zone is formed in the corners upstream from the constriction. At the constriction, as the flow is accelerated, the average longitudinal water-surface profile falls rapidly, and the "live" stream contacts to a width somewhat less than the width of the opening. The spaces between the live stream and the constriction boundaries are occupied by eddying water. Immediately downstream from the constriction, the expansion process begins and continues
until the normal regime of flow has been re-established in the full-width channel downstream. At that point, the normal and constricted profiles again coincide. The downstream reach is one of decelerated flow in which the average velocities and energy losses are greater than for the normal case because of the additional turbulent mixing engendered by the expansion process. In the whole backwater reach (the reach between the two points at which the normal and constricted profiles coincide) the total energy loss is the same as that for normal flow.

3.2 ENERGY LOSSES

The effect of the constriction is to cause a re-distribution of the energy of the flow system over the backwater reach. At the constriction, the available energy is greater than for normal flow by an amount required for the increased losses in the downstream reach. The increase in energy is a result of smaller boundary drag loss (as compared with the normal) upstream from the constriction. In the downstream reach, the increased energy losses, also as compared with the normal case, are due primarily to the increased turbulent mixing caused by the diffusion of the live stream as it expands after contraction. These losses are approximately equal to the square of the difference in velocity of the live stream before and after expansion. The difference in velocity, in turn, is a function of discharge, contraction ratio, and the geometry of the constriction, and may be decreased by a decrease in discharge, a smaller contraction ratio, or by an improvement (streamlining) at the abutment and constriction design to more nearly allow the live stream to occupy the full width of the opening. In general, the same statement is applicable to the backwater caused by the constriction.
3.3 MAXIMUM BACKWATER ELEVATION

Although it may be desirable in some cases to predict the complete longitudinal profile of the constricted flow throughout the backwater reach, the highway engineer is most usually concerned with the maximum upstream surface change produced by the constriction, and it is to the definition of this latter quantity that the greater part of the backwater studies to date have been devoted. Thus far, two general approaches to the problem are found in the literature. The first is a routing procedure, the second follows from laboratory measurements upon model structures.

The routing procedure assumes that the total energy loss in the downstream backwater reach can be separated into two independent components, (1) the boundary resistance loss, and (2) an enlargement loss. The boundary resistance loss is computed from one of several open channel flow equations derived from studies of uniform flow, and the enlargement loss is computed from the Borda-Carnot equation. Thus, proceeding upstream from a section far enough downstream to include most of the non-uniform flow resulting from the enlargement (the length of this reach is not critical. It should not be so great, however, to cause the enlargement losses to be of a different order of magnitude than the boundary friction losses), the boundary friction losses are computed as for uniform flow, and added to the enlargement losses computed from the Borda equation.

(Insert statement regarding the coefficient of contraction)

The sum of these losses, added to the energy level at the downstream section, are an approximation of the energy level at the downstream side of the constriction. The energy level, transferred a short
distance above the bridge, is used in conjunction with a diagram of specific energy to find the change in piezometric level at the upstream point due to the constriction, which is the backwater. In spite of the fact that there is no physical justification for the assumption that the energy loss can be divided into independent components, and the use of a uniform flow equation to evaluate the resistance loss in a region of non-uniform flow, this procedure furnishes an approximation to the backwater if no great accuracy is required.

A more direct attack has been made on the backwater problem through laboratory studies on model structures. These studies have had as their objective the measurement and subsequent generalization of the maximum upstream difference between the normal and the constricted longitudinal surface profiles, which usually occurs a short distance upstream from the constriction. Considerable attention has been directed, also, to the influence of piers and piling placed in the constricted section as supports for bridge structures in highway crossings. Much of the earlier work on this problem was devoted to the latter subject, however, experimentation was limited, and little of a general nature resulted.

More recent work has provided information more useful to the bridge designer. Practical solutions to the computation of the flow through open-channel constrictions have been furnished by Kindsywater and Carter (46), and by Kindsywater, Carter, and Tracy (23); to the computation of backwater by Tracy and Carter (47), Liu, Bradley, and Plate (48), Biery and Delleur (27), and Bradley (21). Each of the backwater investigations has followed essentially the same basic approach, which consisted of the laboratory measurement of the surface level at a selected upstream section before and after the
placement of the constriction in the flow. The difference in
surface level was made dimensionless by dividing it by an
appropriate flow parameter, and the resulting ratio was related to
other variables of the flow or of constriction and channel geometry
through correlation techniques used in conjunction with methods of
dimensional analysis.
Unless a highway-bridge constriction is located at a gaged site at
which a normal stage-discharge relationship has been defined prior
to the installation of the structure, prototype verification of the
laboratory studies are usually not obtainable. Very little of this
type of data are available. Normal stages at bridge crossings are
usually synthesized from area-conveyance relationships computed on
the basis of a field survey and visual selection of applicable
roughness coefficients. This is an approximation, at best, which
depends almost entirely upon the skill and experience of the observer.
It is generally not satisfactory as a verification procedure in the
higher ranges of discharge, particularly where overbank flow is involved.
The accumulation of several years of experience with backwater
computations at bridge sites have indicated that the backwater may
usually be predicted within reasonable limits. The difficulties
that have been encountered are common to almost all open-channel flow
computations, and stem from the approximations involved in the
hydraulic description of channel shape and roughness. An allied
problem in prototype channels is the description of the non-uniformity
of the flow as it approaches the constriction. It is in these areas
that further work on this subject is the most needed.
The preceding pages have considered only single-opening constrictions
located in channels on a mild slope. Even for this case, the percentage of channel contraction may be great enough to cause critical flow in the contracted section. When this occurs, the constriction is a control section, and the upstream surface profile is independant of the downstream flow reach, and its determination may proceed from the recognition of this circumstance.

3.4 ABNORMAL STAGE-DISCHARGE CONDITION

Liu, Bradley, and Plate (48) have also considered the condition for which the surface levels in the downstream reach before the placement of the constriction are not controlled by the hydraulic characteristics of that portion of the channel, but are, instead, regulated by a downstream control or transition section. A limited number of laboratory tests were made for this condition, which they called an "abnormal" stage-discharge condition. In the same study, they reported the results of studies involving two constrictions, one being placed downstream from the other. They found that the maximum backwater was created upstream from the upper constriction under a particular combination of opening width and longitudinal spacing.

Davidian, Carrigan, and Shen (49) have considered the case where a single constrictive element may have more than one opening. The division of flow among the openings was related to the area of each opening relative to the total opening area; and on this basis, the boundaries of the flow channel approaching each opening were established. The discharge and backwater characteristics of each opening were then analyzed separately. It was shown that the
backwater relations developed for the single opening constriction are applicable to each opening of a multiple-opening constriction one the boundaries of the separate flow channels are established.

to be added:

discussion of computation of friction loss

verification program in Mississippi

Coefficient of contraction
3.5 VELOCITY DISTRIBUTION IN THE VICINITY OF THE CONSTRUCTION

It may be desirable to know the velocity distribution in the vicinity of the constriction in order to estimate possible scour effects and forces on piers. Due to the complexity of the flow field, which is three-dimensional with a free surface, there is no direct way of predicting mathematically the velocity distribution in the vicinity of the constriction. Good approximations to the velocity field may be obtained from model tests. The maximum mean velocity may be roughly approximated by neglecting boundary layer effects in the region of accelerated flow, and by assuming that coefficients of contractions for slots and orifices are applicable to the problem of finding the minimum flow section. Contraction coefficients for slots and orifices are given, for example by Rouse (24). The maximum mean velocity so obtained may then be compared to the admissible mean velocities in correlation with the type of soil under the bridge. Such a table is given, for example by Jarocki (25).

3.6 REGIONS OF HIGH TURBULENCE AND RECOMMENDATIONS REGARDING POSSIBLE CORRECTIVE MEASURES

The turbulence characteristics of an abruptly expanding flow with expansion half angles of 15°, 30°, 45°, and 90° was studied by Chaturvedi (26) (in the absence of a free surface). These tests simulate somewhat the flow existing in the expansion zone downstream of a bridge constriction although they do not reproduce the free surface effects. It is apparent that the maximum axial turbulence intensity is of the order of 20% and the maximum radial turbulence intensity is of the order of 15%. The points of maximum turbulence intensity occur approximately downstream of the edge of the contraction for a length of about 3 to 4 contraction openings, and
as the flow progresses downstream a more uniform distribution of turbulence intensity is gradually obtained. From these experiments it is apparent that the maximum intensity of turbulence is slightly less for smaller expansion angles, and a uniform distribution of the turbulence intensity is much more rapidly attained for the smaller angles, (in particular for 15°). It therefore appears that the guideline to follow to decrease the turbulence intensity is to provide wingwalls with a small expansion angle.

3.7 CLEARANCES FOR DEBRIS

The vertical clearance above the elevation of the design flood is usually determined by the drift potential at the bridge site. For average drift conditions, a value of 2 or 3 feet is usually selected. The lateral clearance between piers of the bridge is usually determined by the size of potential drift; large trees will require larger openings to pass through the bridge. Most highway departments have developed standard span lengths for conditions in their State and economical reasons.

3.8 SCOUR AT BRIDGE SITE

The hydraulic design of a highway bridge over a stream subject to flood flows involves the consideration of the possibility of scour, its magnitude, its likely effect on the stability of the structure if not checked, and the most appropriate method of minimizing its effect.

Constriction of the flow of a stream caused by approach embankments or piers results in a rise in the water level immediately upstream of the constriction, and an increase in the stream velocity in the constricted area. Under normal flow conditions, the higher velocities may not be sufficient to produce significant disturbance
of the material on the stream. In times of flood, the greatly increased velocities may produce severe scouring action, particularly at the bases of abutments and piers, which causes partial or complete collapse of the bridge structure. In the case of a short span bridge, the scour effect increases with the extent of constriction, so that the shorter (and generally the more economical) the bridge structure at a particular site subject to flood scour, the greater is the danger of flood damage due to scour.

Frequently, therefore, the designer's problem involves the determination of the bridge span which, when the cost of scour protection is included, results in the least costly, safe structure. If scour occurs the situation is entirely different from the non-scouring case; the flow pattern is completely different and the essential problem is different. The work at Iowa \(^{(30,31)}\) and at Colorado State University \(^{(32)}\) both indicate that backwater was so small as not to be measurable with any confidence. The scour relieves the high velocity jet and there are no high velocities to dissipate. There is some disturbance and, therefore there should be some added loss (probably of the order of one velocity head at the most). More important, probably, are the changed flow conditions downstream from the bridge. The flow is confined to the channel and often cannot easily return to the flood plain because of the banks and riverbank vegetation. The dune formation can then be different and the value of the roughness coefficient "n" can be different. Depending upon whether the "n" value is larger or smaller the backwater could be positive or negative. The problem then is scour...
and the safety of the bridge and not the maximum backwater as in the case of the rigid bed. The principal difficulty in this approach lies in the lack of reliable data and guidance for predicting the extent of scour under given conditions, and for designing methods of avoiding or reducing its effects. The general problem of sediment entrainment and scour has received considerable research attention over the past thirty years, with, as yet, only limited success. Local scour at bridge sites has been the subject of intensive laboratory and field studies only in the last decade, and there is as yet little guidance available for designers.

3.8.1 POSSIBLE METHODS OF REDUCING SCOUR

One aspect of the bridge scour studies is the economic feasibility of spur dikes, extending upstream from bridge abutments. These dikes are intended to guide the flow into the bridge waterway without the development – near the abutments – of excessively high local velocities. In this way, the scouring action tending to undermine
the abutments is minimized. A knowledge of the most suitable location, form, and dimensions of these dikes, and of the quantitative effects they have in reducing the scouring action, would enable the bridge designer to make confident judgments as to their value.

3.8.2 LOCAL SCOUR AT BRIDGE CONTRACTIONS

Whereas the general scour in a long channel constriction results in a more or less uniform lowering of the bed, local scour refers to the development of holes of limited extent, produced in regions of high local velocity. These generally are in the vicinity of sharp changes in bed or wall boundary alignment where the flow separates from the boundary so as to produce eddies and zones of high turbulence.

In the case of short span bridges, the extent of channel contraction appreciably affects the mean velocity and the local high velocities in the constricted section, and hence the local scour. With bridges of long span, the local velocity and scour effects appear to be less dependent on the overall flow geometry and are treated as purely local phenomena.

3.8.3 DEPTH OF SCOUR

It was not until 1949 that a theoretical approach was attempted in the investigation of scour at bridge sites. When Posey studied briefly, the scour around a pier in the Rocky Mountains Hydraulic Laboratory.\(^{(29)}\)

After the disastrous floods in Iowa in the early fifties, the State University of Iowa began investigations into scour around bridge piers and abutments. This work was described by Laursen and Toch in 1956\(^{(30)}\), and further work was reported by Laursen in 1958\(^{(31)}\) and 1960\(^{(35)}\). Some of their conclusions are mentioned below. Various empirical formulas have been proposed for the depth of
local scour in the case of long span bridges. Some of these express the depth of scour hole below the water surface \(D_s \) as a multiple of Lacey's regime depth \(D_L \) in the contracted section. For example, the Khosla and Inglis formula \(^{(32)}\) are of the type
\[
D_s = k D_L = k \times 0.47 \left(\frac{Q}{f} \right)^{1/3}
\]
where \(Q \) is the total flow rate, \(f \) is Lacey's silt factor, and \(k \) is a factor varying from 2 to 4, depending upon the local geometrical form. Blanch \(^{(33)}\) and Ahmed \(^{(34)}\) similarly relate the depth of maximum scour to a mean flow rate and, to some extent, to the bed material. Laumen \(^{(35)}\) on the other hand, maintains that, with bed load movement continuing during the scouring process, the maximum local scour is independent of the sediment size and flow velocity, and depends only on the normal flow and the length of the obstruction. He concluded that the maximum depth of a scour hole below the stream bed may be four times the depth of the general scour in the case of an embankment extending to the edge of the main channel, with neighboring scour holes overlapping; and as much as twelve times, when the main channel is constricted, with no overlap of adjacent scour holes.

Following the August 1935 flood in Connecticut, the Connecticut State Highway Department made careful measurements of maximum and average depth of scour and obtained other data relative to maximum high water, mode of failure, debris, and channel characteristics. A formula was developed relating the average depth of scour to the difference between the sediment load in the approaching flow and the transport capacity under the bridge \(^{(36)}\).
The more recent laboratory study (32) by Liu, Chang, and Skinner, indicates that the effect of flow velocity on scour may be appreciable, and suggests that Laursen's conclusion to the contrary, holds only for Froude Numbers of less than 0.5 in the unconstricted channel. It concludes that, if the bed load is appreciable, the constriction ratio has no appreciable effect on the depth of scour; but that if there is no bed load, the limiting scour is a function of the constriction ratio. This laboratory investigation yielded experimental curves relating equilibrium and maximum local scour depth to the flow geometry and flow rate (ratio of length of embankment to normal depth, and the normal Froude number, respectively). The authors point out, however, that their results should be used only with caution by designers until prototype verification is obtained.

3.8.4 THE USE OF SPUR DIKES

Spur dikes have been used in a number of cases in the United States to "streamline the flow" through a bridge opening in an attempt to eliminate separation and the accompanying scour. In some cases they are permeable, such as loose rockfill timber cribs, rockfill embankments, and open timber pilings; others, consisting of earth embankments or solid timber sheeting, are impermeable.

In general, separation of the flow at the abutments of abrupt channel constriction results in further contraction of the flow, and hence higher velocities through the constriction. The purpose of the spur dikes is to produce a more uniform velocity distribution and a lower mean velocity, with consequently less liability of scour, through the constriction. The first study on the effect of spur dikes on the flow pattern in this country was sponsored by the Georgia State Highway
Department. The model spur dikes were made to simulate dikes constructed of timber cribs. It was reported by Carter in 1955, that for spill-through type abutments, a dike of length equal to 0.08B (where B = width of opening) at a distance of 0.08B from the beginning of abutment curvature, and at an angle of 0° to the flow, proved to be the most efficient\(^{(37)}\). No other details were given in the paper.

Some studies were conducted in Sweden in 1957 by Hartzell and Karemyr where dikes were used to align the flow and secure a uniform velocity between the abutments\(^{(38)}\). It appeared that a dike some distance away from the abutment end, and at a 10° angle with the direction of flow, gave best results. However, the tests were inconclusive.

In another Swedish model study of possible erosion at a proposed bridge site\(^{(39)}\), it was found that short guide banks extending upstream from the ends of the abutments resulted in appreciable reduction of local scour.

Colorado State University and Lehigh University commenced studies of the effect of spur dikes almost simultaneously early in 1959. The studies at Colorado were conducted in a movable-bed model, while those at Lehigh were in a movable- and fixed-bed model.

An elliptically-shaped dike with an axis ratio of 2.5:1 appeared to be most efficient in the Colorado tests. It was also reported\(^{(40)}\) that the depth of scour at the abutments is inversely proportional to the length of dike. It was noted that the scour depth is a function of quantity of the flow obstructed or diverted by the embankment. The design criteria were presented for spill-through type abutments, and a tentative guide subject to prototype
confirmation — for determining the length of spur dike was given. In addition, a limited investigation was made for 45° skewed openings. In this part of the study, the depth of scour decreased with increase of length of dike in case of downstream skew, but for the upstream skew, the length of dike did not seem to have any effect on the depth of scour.

The conclusions drawn from the Colorado Studies (41) were that spur dikes are effective in reducing local scour; that their effectiveness depends upon the geometry of the roadway embankments, the flow on the flood plain, and the size of the bridge opening; and that the dike should be curved with its toe alignment at the abutment tangential to the end of the abutment (that is, parallel to the flow in the constriction). With a sloping bank spur dike, this results in the centerline of the dike intersecting the embankment some distance from the end of the embankment.

3.3.5 FIXED-BED SPUR-DIKES MODEL STUDIES AT LEHIGH UNIVERSITY

The objective of the study was to determine the shape and size of dikes necessary for generalized field conditions (42).

In the case of the 90-degree approach (Fig. 2), the spur dikes produced a marked improvement in the uniformity of the velocity across the constriction. The length of dike appeared to be unimportant in reduction of velocities (provided that the length was over a certain minimum length), but the contraction ratio L_o/L_f is important (Fig. 4). In Fig. 4 the change in velocity along the centerline of abutments due to addition of spur dikes is plotted against z/L_o. The average reduction in velocities to about nine-tenths of the original is evident for each of the
FIG. 2 DEFINITION SKETCH FOR 90° APPROACH FLOW.
FIG. 3
DEFINITION SKETCH SKEWED ABUTMENT
FIG. 4 TYPICAL PATTERNS OF VELOCITY REDUCTION AT CENTER LINE BETWEEN ABUTMENTS
BY USING SPUR DIKES 90° APPROACH FLOW
FIG. 5 VELOCITY REDUCTION BY USING SPUR DIKES
60° APPROACH FLOW
contracting ration \((L_o/L_p) \). However, the patterns of reductions are a function of the contracting ratios and it should be noted that the maximum reduction occurs near the abutment, where it is important to prevent high velocities. Thus it may be stated that the average reduction is not as significant as the pattern of reduction.

With the abutments skewed at 60-degrees to the flow, the addition of dikes decreased the velocities along the left-hand abutment to as low as sixty percent of the original. On the right side the velocities increased for 23 percent contraction but decreased for the other contractions (Fig 5). That the greatest contraction should produce the worst condition may be explained by the fact that the fluid flow is deflected toward the right abutment by the dike.

3.8.6 MOVABLE-BED SPUR DIKE MODEL STUDIES AT LEHIGH UNIVERSITY

The movable-bed studies confirmed the predictions based on the fixed-bed investigation that curved spur dikes, in providing a smooth transition for the flow, were extremely effective in reducing scour effects at the abutments. At some points along the abutments deposition occurred where, without dikes, scour would have developed. The following conclusions were reached:

(1) 90-degree approach

(a) Studies of spirally-shaped spur dikes attached to a bridge abutment indicated that such dikes will protect the abutment from damage due to scour. Not only did the dikes significantly reduce maximum scour depth, but they moved the points of deep scour away from the abutments.
(b) The assumptions made in the fixed-bed investigation that uniformity of flow and reduction of eddies produced less scour were verified by the movable bed model study.

(c) In the scour studies of diked-abutments it was found that the mean depth varied as the two-thirds power of the discharge. The same proportionality was reported by Leopold and Wolman for scour between bridges\(^{(44)}\).

(ii) 60-degree approach

(a) The condition at a bridge site with skewed abutments is much more severe than with right-angled abutments, and the scour occurs at comparatively low discharges.

3.8.7 PRELIMINARY SPUR DIKE DESIGN RECOMMENDATIONS

(f) 90-degree approach

(a) A curved dike should be used as it eliminates eddying at the head of dike, at the junction of dike and abutment and causes uniform velocities between abutments.

(b) Experimental studies indicate that a spiral shape is suitable to fulfill these requirements. The dike should join the abutment tangentially (fig. 2).

(c) The length of dike itself is not important, provided that it is over a minimum length. The length required to develop a certain shape will usually be greater than the minimum length. The dike should be tangent at the abutment, gradually turning away from the main stream lines to a point having a distance of one-tenth or one-eighth of the width of opening between abutments.

(d) The dike shape should be determined for maximum flow to be expected. This will provide a satisfactory flow for lower discharges.
(e) Shape and length of dike depends upon discharge. In case of high discharge, the shape of the dike should change very gradually. This would cause the dike to be longer than for the case of lower discharge where the transition need not be so gradual.

(f) It should be borne in mind that highest velocities would occur along the dikes in the transition zone and measures should be taken to protect the dike embankment with rip-rap or rock fill.

(ii) 60-degree approach

(a) Comments discussed under 1(a), (d), (e), and (f) apply equally to the 60-degree approach.

(b) Dikes at both abutments are necessary. The most effective shape for the upstream dike is elliptical with axis ratio 2.5:1 (upstream of point B, Fig. 3), and that for the downstream dike is the straight at 5-degree inclination toward the center of the opening (upstream of point P). A stub dike, curved in shape is necessary at the downstream corner (point G) of the downstream abutment.

(c) For the upstream abutment, although a shorter dike is quite sufficient to eliminate scour in front of the abutment, scour at the end of the shorter dike would reach the abutment from behind—consequently a longer elliptical dike is required there.

3.9 SPECIAL GEOMETRIES

The bridge openings discussed in the previous paragraphs refer to deck or girder bridges supported on abutments. The hydraulic characteristics of arch bridges have been studied by Biery and
Figure 3-14 Definition Sketches of Test Geometries
Deltour(27,28). It appears that the finding for rectangular openings are applicable to arch openings if the channel width ratio (Contraction width ÷ channel width) is replaced by the channel opening ratio (conveyance of constricted opening ÷ conveyance of channel, both computed for the channel normal depth). The channel opening ratio is a function of the stage. Back-water, superelevation and head loss coefficients were evaluated for several geometries, including the effect of wingwalls, skew, eccentricity, dual bridges, two-span bridges and various degrees of submergence.

4. FIELD VERIFICATION

Some field verifications of the hydraulics of bridges have been previously published.

1. Some of the examples in "Hydraulics of Bridge Waterways" (21)
3. "Some Field Examples of Scour at Bridge Piers and Abutments" BETTER ROADS, August 1954 (50).
5. Bank and Shore Protection in California Highway Practice.

5. ECONOMIC CONSIDERATIONS

Each bridge site will require an economic study based on the characteristics of the specific site. Such a study might be summarized as shown in Fig. 30, page 46 of "Hydraulics of Bridges
Waterways”.

This topic is presented in:

1. "Procedure for Determining the Most Economical Design for Bridges and Roadways Crossing Flood Plains", Highway Research Board Bulletin 320,

The optimum design flood for a highway structure is defined by B. W. Gould (45) as that which results in a minimum direct and indirect annual cost. The following annual costs are considered by Gould:

A) the interest on capital

B) the sinking fund for replacement

C) the maintenance cost

D) the risk of destruction of the structure by the minimum flood to destroy or cause substantial damage to the structure

E) the cost due to interruption of the traffic due to the minimum flood to cause traffic interruption

F) the cost of damage caused to crops and property by increased upstream water level due to average annual flood

G) the cost of accident hazards.

6. FIELDS OF RESEARCH, INVESTIGATION AND DISCUSSION

6.1 DATA PRESENTATION

Bridge design authorities frequently have standard data forms to be completed with respect to a bridge design proposal. So far as the hydraulic design is concerned it may be advisable to fix upon
standard data to be provided for adequate hydraulic design.
The items listed in Section 2 above might form a starting
point and consideration might be given to the standardization of
methods of presenting the individual items, particularly those
pertaining to site characteristics and constriction geometry.
A standard form for presentation of information for hydraulic
design should contain data as shown on the following "Hydraulic
Report of Proposed Bridge Waterway" which was prepared by
Hydraulics Brance, BPR in Washington.
Hydraulic Report
of
Proposed Bridge Waterway

A. Site Data

1. Location Map
 a. Purpose: To show proposed alignment and reach of river.
 b. Type:
 (1) U.S.G.S. quadrangle sheet or map of equal detail.
 (2) Aerial photo.

2. Vicinity Map
 a. Purpose: To determine flood flow pattern and cross sections of stream.
 b. Type:
 (1) Specially prepared map showing 1 or 2 ft. contours, stream meanders, vegetation and man-made improvements.
 (2) In some cases, cross sections perpendicular to flood flow are acceptable in lieu of map described in (1). A minimum of 3 cross sections is desirable — (1) upstream, (2) at crossing, and (3) downstream, say at 500 to 1000 ft. intervals.

3. Locate and describe existing bridges in vicinity of proposed crossing. Relate available flood history.

4. Locate all high water marks giving elevation and dates of occurrence. Describe or list critical flood elevations of interest in evaluating possible damage. (State datum used).

5. Comment on drift, ice, nature of streambed and bank stability.

6. Factors affecting water stages.
 a. High water from other streams.
 b. Reservoirs — existing or proposed.
 c. Flood control projects (give status).
B. Hydrological Analysis

1. List flood records available on river being studied.
2. Determine drainage area from available maps.
3. Plot flood-frequency curve for the site.
4. Plot a stage-discharge-frequency curve for the site.
5. Prepare chart showing flood flow and velocity distribution—
 for several discharges or stages.

C. Hydraulic Analysis.

1. List permissible velocity, backwater depth, and depth of scour.
2. Compute backwater and plot for various trail bridge lengths.
3. Compute mean velocities through trial bridge lengths for
 various discharges.
4. Show final layout in plan and profile.
 a. State design discharge, stage and frequency.
 b. State discharge, stage and estimated frequency of maximum
 flood of record.
5. Comment on:
 a. Types of alignment of piers.
 b. Need for spur dikes.
 c. Channel changes.
 d. Bank protection.
6.2 ABNORMAL STAGE-DISCHARGE CONDITIONS

The determination of the effect on the stage of the bridge site and above, of flood conditions downstream is in "Hydraulics of Bridge Waterways" (1) ch. 6 (1960) as a "Complicated process requiring much individual judgment." It may be possible to derive experimental data which would simplify this procedure.

6.3 CURVED AND NON-UNIFORM CHANNELS

The computation of backwater profiles upstream of bridge constriction in curved streams and streams of non-uniform cross-section depends largely on estimates of bend and eddy losses. This is one aspect of river flow which might be of importance to a bridge designer and which requires the collection of reliable data, both from laboratory models and field studies.

In addition the flow in meandering streams and adjoining flood plain requires further investigation. Large flows through meandering rivers with adjoining flood plains are usually considered in two parts:

1. The flow across the flood plains taken to be in the direction of the valley.

2. The flow confined within the meander banks.

This view is quite unsatisfactory in many instances. However, a better analysis is lacking since there is no knowledge on how these flows interact. Where important changes in the flood plains or the low water channel are contemplated, one has invariably sought guidance in model studies for the specific case at hand.

The problem of needing better knowledge about the hydraulics of flow in meandering channels arises primarily when changes are contemplated in the flood plains and/or the meander thalweg. By far the most frequently contemplated change is the construction of a highway crossing the stream.
6.4 VELOCITY DISTRIBUTIONS NEAR CONSTRUCTIONS

It may be possible, from a series of "idealized" laboratory constriction studies, to provide the designer with approximate guidance, in the estimation of velocity distributions and in the location of regions of high turbulence for a wide range of geometries; and to provide guidance as to the most effective ways of minimizing objectionable flow features in such cases. The only measurements available were made in air, invasively symmetric flows. Similar information is needed for free surface flow through different types of constriction.

6.5 DEBRIS CLEARANCE

Studies, primarily in the field, might provide the designer with more detailed and authoritative information than is as yet readily available, on the clearance to be provided below bridge decks and between piers, for floating debris.

6.6 BED AND BANK SCOUR

Laboratory and field studies could yield much new information on the likelihood and the extent of scour to be expected and on the efficacy and economics of various methods of mitigating scour effects. This is probably the field in which data are more urgently required than any other.

Included in this study should be work on bed and bank stabilisation, undercutting of piers and abutments, the use of training walls or spur dikes and the geometric proportions of piers and abutments.
If the bed is erodible, some estimate of the scour at the piers and abutments must be made. If the predictions proposed by Laurson (30,31,35) are correct, bridges could be made shorter and safer and, therefore, cheaper from any standpoint. The entire basis of design would be changed, instead of sizing a bridge on the basis of a waterway opening to give a nonnal acceptable velocity or to give a minimum acceptable backwater assuming no scour, an economic analysis of cost superstructure, cost of foundations and probability of failure would be used. To do this, further knowledge about scour is necessary in order to proceed with confidence.

6.7 SPUR DIKES

Further research is needed on

(i) Determination of optimum curvature and length of curved dike for

(a) \[
\frac{\text{abutment opening}}{\text{width of stream}} \text{ ratio}
\]

(b) discharge

(ii) Effect of \[
\frac{\text{abutment opening}}{\text{width of stream}}
\] on scour pattern

(iii) Determination of scale effect, if any, for various sediments.
(0) Van Te Chow - "Hydrologic Studies of Floods in the United States", International Association for Hydrology, Publication No. 42, Symposia Darch, Dijon, France, 1956.

(2) For Example:
Hurricane Rains and Floods of August 1955,

(21) Bradley, J. N. "Hydraulics of Bridge Waterways," Hydraulic Design Series No. 1 by the Division of Hydraulic Research, Bureau of Public Roads

(22) Van To Chow, Open-Channel Hydraulics, McGraw-Hill, 1959, pp463-475.

(48) Liu, H. K.; Bradley, J. N.; Plate, E. J., "Backwater Effects of Piers and Abutments." Rept. CBR 57 HKL 10, Colorado State University 1957

7. ANNOTATED BIBLIOGRAPHY ON

HYDRAULICS OF BRIDGES
I. CONSTRUCTION AND BACKWATER

"Investigations carried out by Division of Hydraulic Research Bur. Pub. Roads centered on determination of backwater produced by bridges. Scour at bridge abutments, scour around piers, and methods for alleviating scour; research results, design information derived and application of bridge backwater to waterway design; data presented are based on experimental backwater studies using hydraulic models and field measurements", from Engr. Ind. 1960, pg. 160. For a more detailed discussion see Bradley, "Hydraulics of Bridge Waterways".

This report gives the hydraulic design criteria for bridge waterway design and for the computation of backwater caused by bridges, and is written for highway department engineers. Design procedures and illustrative problems are given for normal crossing, dual bridges, skew crossing, eccentric crossing, abnormal state discharge, and backwater with scour. The methods of computing the backwater are based almost entirely on model tests conducted at Colorado State University (see Liu, Bradley and Plate)

In addition to being the most recent and comprehensive text on hydraulics of open channels, Professor Chow's book contains a chapter on "Flow Through Nonprismatic Channel Sections", (Chapt. 17). A detailed summary (Art. 17-16) with complete set of figures of the work of Kindsvater Carter and Tracy, (reproduced from U.S.G.S. circular 284, 1959) gives all the necessary information to calculate the discharge through constrictions, or the backwater ratio due to bridge constrictions.

The 1951 flood in the Kansas river basin is taken as an example to discuss the necessity for indirect discharge measurements. The indirect methods are classified in four groups: 1) the slope area, 2) the contracted opening, 3) the flow through culvert, 4) the flow over dam. Each method is discussed briefly.

For a more detailed discussion of indirect discharge measurement at bridge constrictions see Kindsvater, Carter, and Tracy, "Computation of Peak Discharge at Constrictions".

By simultaneous use of the momentum equation and the specific energy relation both in dimensionless form, Mr. Henry obtains graphically a theoretical solution for the backwater ratio, thus eliminating the trial and error calculation required by the method of Tracy and Carter (see also Ven Te Chow, Open Channel Hydraulics, example 17-3). The effect of the roughness on the decrease of momentum occasioned by boundary shear in the zone of expansion downstream of the constriction is compared to the roughness effect on the loss of energy on the contracting flow upstream of the constriction.

The experiments of Kindswater and Tracy on "Tranquil Flow through Open-Channel Constrictions", were limited to the case of a horizontal bed. Izzard extends the analysis to the case of sloping channels, and making use of experimental data of Tracy and Carter ("Backwater Effects of Open-Channel Constrictions") he shows that the backwater of the constriction may be expressed approximately as the product of a velocity head (velocity at normal depth in downstream section of constriction) times a coefficient which depends primarily on the contraction ratio of the constriction. Whereas Kindswater and Tracy were concerned with the problem of estimating the discharge from measurement of water levels in the vicinity of a channel constriction, Izzard is concerned with the reverse problem of estimating the backwater caused by a channel carrying a known flow at normal depth.

The paper by Tracy and Carter is analyzed from the highway engineer viewpoint which is that of calculating expected backwater elevations due to floods of various frequencies. As the accuracy of the flood peak estimates is seldom better than ± 20%, simplifications may be introduced in the backwater calculation. The following simplification is proposed by Izzard. Neglecting minor effects (roughness, and length of constriction) the ratio of the maximum backwater depth upstream of the constriction to the normal depth in the unconfined channel may be correlated to the contraction ratio and the velocity head in the constricted section. The velocity head in the constricted section is based on the area at normal depth.

The paper reports on comparison of prototype measurements with computed values, derived from model tests for backwater caused by bridges, occur at bridge abutments, and head-discharge characteristics of culverts. Computed and measured values of the drop in water level across the bridge embankment is given for ten sites, two of which are for submerged deck girder. The smallest error is 0.5%, the largest is 13%.

This report gives a procedure for computing subcritical peak discharges at constrictions based on laboratory studies. The discharge formula given includes a discharge coefficient which may be obtained from sets of curves which contain the essential geometric and hydraulic factors governing the flow at a constriction. The factors are: the contraction ratio, the relative length of the abutment, the Froude number, the entrance rounding, the abutment changes, the angularity of the constriction, the side depth at abutments, the side slope of the abutment, the eccentricity of the constriction, the bridge submergence, and bridge piles and piers. The primary variables are the contraction ratio and the relative length of the abutments. Standard values of the discharge coefficient as a function of the primary variables are given for four types of geometries: 1) vertical embankments and vertical abutments; 2) sloping embankment and vertical abutments; 3) sloping embankments with sloping abutments; 4) sloping embankments with vertical abutments with wing walls. The standard value of the discharge coefficient is then multiplied by adjustment coefficients, which take into account the effect of the remaining variables, to obtain the discharge coefficient. Detailed field and office procedures are given.

See also: Kindsvater and Carter, "Tranquil Flow through Open-Channel Constrictions" in a summary including working curves see Van Te Chow, "Hydraulics of Open Channels".

A practical method of solving the discharge equation for tranquil flow of water through open channel constrictions is described. The functional relationships between the coefficient of discharge and the principal independent variables (contraction ratio, length of contraction, Froude number, entrance rounding, eccentricity of opening, angularity and guide walls) is presented from experimental data. Boundary conditions considered include vertical constrictive elements, channel cross-sectional shapes and roughness pattern. Within the limits tested the proposed computation procedure yields satisfactory results. Tests were run in a horizontal flume. See also the discussion by C. F. Issard. (adapted from author's conclusions).

This is probably the first laboratory study on open channel constriction in the U.S. The Froude numbers used are higher than those usually found in bridge waterways. There is a limited number of boundary shapes. Experiments were made in four different flow constrictions, namely rounded-edge plate, sharp edge plate, short flume, Venturi flume. Coefficients of discharge were first computed using D'Abbsbilen's and 'ebach's formulas. Based on the experimental data a general equation of contraction was developed. The results of flume tests were presented in detail and discussed.

LIU, H. K.; BRIDLEY, J. N.; PLATE, E. J. "Backwater Effects of Piers and Abutments," Rept. CER 57 HK1 10; Colorado State Univ. 1957.

This is the final report of a project undertaken at Colorado State University in cooperation with the Bureau of Public Roads, U.S. Dept. of Commerce. Maximum backwater due to bridge constriction is given for simple normal crossing, abnormal stage-discharge condition, dual bridge crossing, skew crossing, eccentric crossing piers, partially submerged bridge girders. The water surface profiles, coefficient of contraction, location of maximum backwater, are presented. This report is perhaps the most comprehensive work on hydraulics of bridge constrictions in the American technical literature.
NAGAI, S., On the two-dimensional analyses of suddenly contracted flows. Houille Blanche, Nov., 1950, Pg. 662-73. AMR 7-1849

Position of contraction in suddenly contracted flows is determined by use of the Schwarzs-Christoffel theorem. Study is made for flows about a suddenly contracted pipe and about that having a round corner. The position of contraction is approximately given with determination of the stationary points of vortex center. Corner radius can be found by which vortex will vanish.

A method of computing the backwater due to open channel constriction is given. It is based on empirical discharge coefficients and on a laboratory investigation of channel shape, constriction geometry and influence of channel roughness. The solution involves the computation of water-surface drop through the constriction and the determination of a factor which is the ratio of backwater to water surface drop. This ratio is shown to be a function of channel roughness, per centage of channel contraction, and constriction geometry. See also the discussion by Izzard. (adapted from author's synopsis).
II. EXPANSION LOSSES

This paper deals with the turbulence generated at the edges of a free air jet issuing from orifices and slots. Results are given of measurements of the distribution of the longitudinal velocity and of turbulence characteristics. Of particular interest to bridge hydraulics is the discussion by H. R. Henry (1950) on flow under sluice gates.

Sudden expansion head loss:

\[h = 1.098 \left(\bar{u}_1 - \bar{u}_2 \right) \frac{1.919}{2g} \]

where \(\bar{u}_1 \) and \(\bar{u}_2 \) are the mean velocities in the upstream and downstream conduits.

"Problem of turbulence and loss of head caused by obstructions in channels and rivers; turbulence curves related to curves of specific energy; influence of sill at channel bed and of contraction of cross section area on kinetic energy; results of study can be applied only to channels or rivers of stable bottom not liable to form deposits". From Engr. Ind. 1946 pg. 428.

Characteristics of flow for four abrupt expansions with half angles of 15°, 30°, 45° and 90° have been determined by a combination of analytical and experimental means. The transformation of mean energy, the rate of production of turbulence, and the rate of dissipation of turbulence energy are determined. The evaluated head-loss results from the air-duct studies are checked by independent measurements in a water-pipe assembly. The kinetic energy of the mean motion, kinetic energy of turbulence, pressure distribution, turbulence production, and turbulence shear are presented in the form of their spatial distribution, for all expansion angles. Head loss in abrupt expansions is given for different angles of separation; for 90° (half angle) the head loss coefficient is practically equal to that obtained in the assumption of constant pressure at the inlet section and one-dimensional analysis (p. 80 and Fig. 13). The variation of the head loss with changing expansion ratio is considered (p. 89 and Fig. 20).

"Flow pattern at constrictions with 2 to 7 openings; laboratory experiments and analysis were directed toward development of methods for computing discharge through multiple opening constrictions, apportioning given total discharge among several openings and predicting backwater caused by constrictions." Engr. Index 1962.

"Water passages under small road bridges; size of underpass is often overdimensioned, because formulas of calculation use too high safety factor; it is recommended that permissible factor of incidence of submersion should be defined by considering possible damage due to submersion; calculations should be based on flood statistics, also law of large values, practical applications." Engr. Ind. 1959, p. 171.

This paper is primarily for wind tunnel design dealing with potential flow through two-dimensional contracting channels of finite length. Method of eliminating adverse velocity gradient along channel wall was presented in great detail. A numerical example is given.

This is a discussion to a paper by M. L. Albertson, Y. B. Dai, R. A. Jensen and H. Bourse on diffusion of submerged jets. The effect of boundary conditions different from those used in the main paper are investigated. These, for the case of the flow under a sluice gate, are the effects of the free surface i.e. gravitational effect and the presence of a solid boundary, i.e. the flume floor, instead of a plane of symmetry of a two-dimensional jet.

Hydraulic design conclusion: Experimental discharge coefficients for the flow under a sluice gate are given in terms of a dimensionless gate opening, a dimensionless tailwater depth and the orifice Froude number (Fig. 35, p. 691). The expansion of the jet (which is limited by a fixed lower boundary and by a free surface upper boundary) is reported to have a slope of 1 on 6 approximately.

In connection with the USGS study of hydraulics of bridge-waterways, an experimental investigation was made of the flow of water through abrupt concentric enlargements in circular pipes. Particular attention is paid to the influence of pipe-wall roughness and to methods of computing the energy loss reulting from enlargements. The conventional method of computing the energy loss from the Borda-Garnot equation was found adequate for practical use.
Hydraulic design conclusion: Superimposing a spiral motion on the flow entering an expansion increased the efficiency, as the rotational motion delays the separation.

The integrated equations of momentum and of mean energy are examined for the case of two-dimensional flow over a normal wall, and attention is given to the variation of the sum of the terms of Bernoulli equation along a streamline in either the primary flow or the zone of separation.

This paper establishes some of the theoretical background on the mechanism of flow separation used in the experimental studies of Chaturvedi (1963).

Distribution of energy in regions of separation

Described in the present paper is the determination of the mean and secondary patterns of asymmetric flow for two comparable boundary forms: the abrupt inlet and the blunt shaft.

Measurements available for analysis included the distributions of mean velocity, mean pressure, longitudinal and radial intensities of turbulence, turbulent shear, and longitudinal intensity gradient. Through use of the equations of momentum and of energy for the mean and the secondary motion, the measured distributions were adjusted to yield the required balance of the essential terms in the equations, thus yielding results in general accord with physical requirements. These are presented in the form of the flow patterns, (from author's abstract)

Investigating the possibility of improving the pressure recovery in flow expansions, author observed visually the separation phenomena and measured the development of velocity profiles and pressure distribution in a gradual unilaterally expanding two-dimensional rectangular test canal with varied divergence from zero degrees to 20 degrees in range of Reynolds number 5 x 10^4 to 3 x 10^5.

A simple analytical dependency is established between the angle of divergence and the rate of separation at which the maximum pressure recovery in each section occurs. This permits us to predict the optimum divergence for any required rate of gradual expansion.
Valentine, H.R., Flow in rectangular channels with lateral constriction plates,
Houille Blanche l3, 1, 75-84, Jan.-Feb. 1958. (AMR 12-834.)

Characteristics of flow in a rectangular channel with sharp-edged lateral
constriction plates placed symmetrically, normal to the flow, are examined in a small
tilting channel. The flow rate Q is related to the upstream depth y by means of a
discharge equation $Q = Cby^{3/2}$, where b is the width of opening and C is an experi-
mental coefficient which depends upon the constriction ratio and the Froude number
of the unconstricted flow. The values of C are established for Froude numbers up to
2.1 and constriction ratios up to 95%.

The conditions under which insertion of constriction plates produces an increase
in upstream depth are investigated and the extent of the increase is evaluated.
(From author's summary)
III. SUBMERGENCE

BENJAMIN, T. B., On the flow in channels when rigid obstacles are placed in the stream. J. Fluid Mech. 2, 227-248; July 56 (AMR 11-503)

Author uses three physical quantities \(q, R, S \) introduced in a previous paper (see Benjamin, T. B., and Lighthill, "On cnoidal waves and bores", Proc. roy. Soc. (A), 224, 443-460, 1954) with the meaning

\[
Q = \nu h, \quad R = \frac{1}{2} \nu^2 h, \quad S = \nu^2 h + \frac{1}{2} gh^2
\]

i.e., \(Q \) is the flow rate, \(R \) the energy for unit mass, and \(S \) the momentum flow rate for unit span (corrected for changes in horizontal pressure force due to changes in depth) and divided by density. Invariance of these quantities at different cross sections implies, respectively, conservation of flow rate, of energy, and of momentum.

This present paper is divided in five parts: 1-Introduction; 2-General theory of flow; 3-Flow under a sluice-gate; 4-Flow under a planning surface; 5-Experimental tests.

Parts 1 and 2 deal with some properties of flow and waves. In the last three parts, author studies the flow under a vertical or inclined gate. This subject has also been treated in the Italian papers of Gentilini Energia elett. April and June 1941 and Marchi Ann. Mecc. pure appl. (IV) 34, 1953.

By introducing the Froude number of the flow, author simplifies relationship between conditions upstream and downstream of sluice gate. "All-known expressions are derived for alternate depth of flow discharge, and force in the gate. A simple explanation is presented for the absence of waves on both sides of the gate. Coefficient of contraction \(C_0 \) of the issuing flow is given as a review of experimental and theoretical investigations. Actually, author does not mention \(C_0 \), but presents instead the gate opening required to produce given Froude number.

The most recent survey of the methods for computing three classes of steady potential flows with free streamlines: (1) plane flows having free boundaries and curved fixed boundaries without gravity; (2) plane flows having free boundaries and straight fixed boundaries with gravity and (3) axially symmetric flow having free boundaries without gravity.

Discussion by H. House (March 1962, p. 187); L. Landweber (May, 1962, p. 223); S. F. Gorg, T. S. Strickoff and Y. S. Yu (July 1962, p. 293), and the closing discussion by G. Birkhoff, (March 1963, p. 117) point out the limitations of the mathematical methods; and comparisons between theoretical calculations and experimental results are given. The paper along with its discussions provides an excellent survey of references on the subject.

"(1) Models of sluice gates can be depended upon to predict the discharge of their prototypes with reasonable accuracy, (2) Proud's model law will apply to the discharge of sluice-gates, (3) Roughness of both model and prototype must be given consideration in the construction of the model; and (4) good results should not be expected for small gate-openings and low velocities". (From Authors Conclusion.)

FRANEE, P., Jet contraction in flow under sluice gates in rectangular channels, Bautechnik 32, 6, 257-259, Aug. 55. (AIR 9-2240)

Analytical study is based on energy considerations of the flow under sluice gates in a rectangular channel. Author computes the downstream depth in the case where energy losses are neglected and in the case where they are taken into consideration. Values of the coefficient of contraction are given for different ratios of upstream depth to gate opening. All results are expressed in dimensionless form.

FRANKE, P., Theoretical consideration of jet contraction in flows under a sluice gate, Bautechnik 33, 3, 73-77, March '56. (AIR 9-3636)

Author analyzes the contraction of an irrotational stream issuing from the opening of a sluice gate. In the first part of the analysis use is made of the results of von Mises (who did not consider gravity) for flow from a two-dimensional opening. The computed results do not compare well with the experimental data given in the paper.

The only exact (in the sense that no assumption in addition to irrotationality is made) solution for the sluice-gate problem is that of Southwell and Vaisey Phil. Trans. A 240, 117-161, which yields results in better agreement with author's experimental curve than any of his curves obtained from calculation.

GENTILINI, B., Flow under inclined or radial sluice gates. W.E.S., Translation 51-27, 11 pp., Nov. 1951. (AIR 5-1441)

Theoretical and experimental determinations were made of coefficient of discharge for inclined and radial sluice gates. Experimental channel was 16 cm wide and angles of inclination of 15°, 30°, 45°, 60°, 75° and 90° were used. Opening ranged from 3 to 9 cm. Results closely checked theoretical coefficients that were derived from the specific energy relation.

Although an exact analytical solution of the orifice problem has not yet proved feasible, use of the relaxation method has permitted a numerical determination of flow characteristics to be made with sufficient precision for the problem to be considered solved. The coefficient of contraction is found to be practically identical with that evaluated by von Mises for two-dimensional flow from
slots over the entire range of area ratio, and reasonable agreement is shown to exist between measurement and computation. Coordinates of the jet profiles are presented in tabular and graphical form, and are found to differ appreciably from those previously adapted from the two-dimensional case. A composite dimensionless chart is also provided showing the distribution of pressure along the boundary and center line and across the efflux section for the various area ratios. (From Authors summary).

One of the pioneering textbook in "Hydraulics of Open channels" by an outstanding hydraulician and fluid mechanicist. The theory and methods of calculation of backwater curves are treated in detail in the text of the late Professor Bakhamehoff.

The results of model testing of semi-circular arch bridge constrictions are presented. All tests were run for the condition of no skew, no eccentricity, no entrance rounding, and no submergence. A generalized backwater equation is presented, by means of which the backwater super-elevation may be evaluated in terms of the bridge span, the stream width and the Froude number of the approaching flow. The equation holds for geometries other than semi-circular constrictions. Design procedures for indirect discharge measurement and for determination of required waterway area are given. (adopted from author's summary).

The author suggested an authority to make regulations governing the building. He also suggested as examples the requirements for good bridge design; such as the skewing of bridge piers, shape of piers, foundation requirement, flood estimation and bridge waterway opening. Many failures of bridge along Miami river were due to the insufficient waterway.

A fundamental treatment of the hydraulics of channel transitions and controls is given.

Approximate formula is derived for determination of water depth in a contracted rectangular section \(h = 0.103 \left(x + 5.5 \left[1 - \left(1 - x \right)^{0.5} \right] \right) E \), where \(x = 0/0 \) \(\max. \) \(E \) is specific energy measured over a sill. Simple empirical formula is derived for critical depth in a trapezoidal channel \(h = A \left[\frac{1 + 2 h}{A} \right]^{0.5} \), where \(h \) is critical depth in a rectangular section, which is easy to compute, and \(A = 1.3 \) \(b/m \); here \(b \) is bottom width, \(m \) is side slope coefficient. Results are adequate for practical application. Second formula is of particular interest.

This paper is essentially a summary (in Hungarian) of the report by J. N. Bradley, "Hydraulics of Bridge Waterways", U. S. Dept. of Commerce, Bureau of Public Roads, 1960.

Study of gradually varying flow in channels. General formula of free flow study of flow considering obstructions.

A demonstration is proposed of an approximate criterion in order to determine the aperture of a small, submerged or non-submerged bridge. The criterion is obtained on the basis of Bernoulli's equation, drawn up for the sections under the bridge and behind the bridge with energy losses considered. The experimental verification was performed on the model of a small bridge with aperture 20 cm, with widths of the outlet channel 150, 100, 60, and 30 cm.

Author adopts the criterion \(b_{cr} = \frac{1.40}{\sqrt{gh^3}} \) for the characteristics of the flow of a stream in the opening of a small bridge, where \(b_{cr} \) is the critical width of the bridge’s opening at a discharge \(Q \) and an actual depth \(h \) for the stream. Should the width of the bridge be \(b \leq b_{cr} \) then the flow of the stream in the opening is analogous to the flow through an unsubmerged spillway with a wide apron (in the author's words — a free flow); with \(b > b_{cr} \) flow is analogous to the flow through a submerged spillway (an impeded flow). At this point another criterion follows for removing the limits from these forms of motion \(Q_{cr} = 0.714 \frac{b}{\sqrt{gh^3}} \). A model of the bridge with an opening 0.2 m wide was placed in a through 1.2 m wide. The discharges of the model were 2.55 + 20.4 2/sec.

Observations were carried out on the flow of the stream in the "lower water" of the bridge. The presence is affirmed of a steady flow pressed against one of the walls of the trough; no analysis is given of the causes for such a flow.

A theoretical treatment of energy loss in turbulent flows.

Author exposes general expressions, in orthogonal curvilinear coordinates for the motion and for the pressures of an ideal fluid flow along an arbitrarily shaped surface, taking the thickness of the layer, in the direction of the normal to the surface, as a small quantity.

Paper deals with the incompressible potential flow through two-dimensional contracting channels of finite length. These channel flows are obtained by first specifying flow patterns in the logarithmic hodograph plane. It is shown that certain of these patterns can result in infinite values, or points on the channel walls, of both the velocity gradient and wall curvature. A method of avoiding these undesirable features is given which alters the contraction boundary so as to replace them by well portions along which the velocity gradient is constant. A numerical example is given.

An experimental study to calculate the rate of energy dissipation in the flow transition zone of a two-dimensional sudden contraction. The loss coefficient was calculated and found greater than expected. About one-half of the loss occurred upstream from the contraction.

A fundamental study of flow in converging and diverging ducts.

Fundamental discussion of diverging flows.

An experimental investigation of the flow structure behind a half-(partial) dam. Using different ratios of dam-height to flow-depth, the boundary of the deadwater (eddy) region behind the construction is determined. The measured boundaries of the deadwater region are compared with those calculated by the theory of J. M. Konovalov "Turbulent currents," Trudi Akad. Nauk SSSR Mekh. No. 1, 1932. It is shown that, for coincidence of the measured with the calculated velocity fields, the introduction of an empirical correction term is required, by approximately doubling the coefficient a entering into Konovalov's equations. The divergence between the calculated length of the deadwater region and the experimentally observed length increases with decreasing height of the dam, and strains 5% for a dam height of 0.2 of the flow depth. Qualitative study of the singularities of formation and flow structure; in particular, the connection between the appearance of breakaway points in the boundary layer and the formation of sandbars is confirmed.

KHIMITSKY, K. F., On formulas for the coefficient of contraction of a jet (in Russian). Teploenergetika No. 3 70-74 Mar'61 AMR 15-3390

This paper presents a simplified formula for the calculation of the coefficient of contraction of a jet that compares, in special cases (k = 0.4), reasonably well with more cumbersome formulas of Joukowski, Von Mises, Konovalov and others. The development of the expression for the coefficient of contraction in terms of \(h/A \) (the ratio of the hole area to flow area of fluid approaching the opening) and \(k \), the entrance coefficient of the hole, is straightforward, although some typographical errors are present (Eq. 15). Author's formula is also well represented by several simple curve-fitting formulas of other investigators. The value of the coefficient of contraction for submerged flow is sometimes calculated to be less and sometimes more than the case of efflux into the atmosphere. On this basis the author suggests use of his formula for all cases, varying the value of \(k \) as given in his previous paper.

Results are given of the investigations of the conditions governing the flow of water in the submerged below-bridge openings of rectangular transverse section, together with proposals for an approximate method for the hydraulic calculations, based on data of laboratory experiments carried out by the author. Data of the experiments (curves of the free surface, coefficients of discharge, etc.) are furnished for one of the series: a model of a bridge with openings of 10.1 cm with a length for the buttresses along the flow of 20 cm.

This is a complete treatise of a large part of applied hydraulics, dealing with flow through orifices, nozzles and valves, over free and submerged weirs of different forms, and through variable openings under sluice-gates. Thorough theoretical derivation of formulas or flow is presented. Author considers dynamics pressure distribution caused by curved streamlines and the resulting force effects; these important facts are usually disregarded in computation of weirs and gates. Many recent textbooks of fluid mechanics mention orifices and weirs as devices for flow measurement only. Therefore this book is of great importance for hydraulic designing engineers.

SOUTHWELL and VAISEY. Relaxation Methods Applied to Engineering Problems XII, Fluid Motion Characterized by Free Streamlines. Phil. Trans. (A) 240 (1946) 117.

The exact solution (in the sense that no assumption in addition to irrotationality is made) for the sluice gate problem is given.

Water surface profiles due to sills, bridge piers and constrictions are studied making use of the specific energy diagram.

This extensive treatise covers in detail the methods of computation and the formulas for computing maximum discharges at bridge or culvert sites. A listing of Polish, Russian, South European, German, and American Formulas is given. The section on hydraulic computations covers the water discharge through small openings, the accumulation of water above culverts, the hydraulic computation of small bridge openings and of culvert openings.

The paper states that erosion control must be considered in the design and construction phase rather than taking care of it with maintenance.

HICKENLOOPER, I. J.; GUILLOU, J. C.; VEN YE CHOW, "Hydraulic Studies of a Highway Bridge", Hydraulic Engineering Series No. 4, Department of Civil Engineering, University of Illinois.

The report covers the result of a model study of the New Harmony overflow Bridge No 3 that links New Harmony, Indiana to Crossville, Illinois. The purpose of the investigation was to ascertain the cause of excessive scour downstream of the bridge, and to develop a remedial solution.

An example of calculation of backwater caused by bridge is given using the momentum principle. Results is compared with a calculation based on energy principle. Author obtain excellent agreement.

This paper reports on the results of experimental investigations done at the University of Iowa in the topics indicated in the title of the paper. The direction of flow and spiral motion in a channel bend were observed. Empirical equations for the discharge over several types of embankments are given.

LIU, H. K.; CHANG, F. M.; SKINNER, H. M. "Effect of Bridge Constriction on Scour and Backwater", Report CER60HKL22, Colorado State University 1961

Scour at Bridge Abutments is the main subject of this report in which the applied side of the problem is stressed. Scour depth, cross-section, location of maximum scour and scour rate are related to the geometry of the constriction, sediment and flow properties, the maximum backwater and water-surface drop across the embankment are studied.

(adapted from author's introduction)

This report is an addendum to the report by Liu, Chang and Skinner, "Effect of Bridge Constriction on Scour and Backwater"; it includes review of additional pertinent literature, discusses further results, describes physical hydrodynamic aspects of local scour and suggests further research (adapted from authors foreword).

ABOU-SEIDA, M. M. "Sediment Scour at Structures", Technical Report HEL-4-2, Hydraulic Engineering Laboratory, University of California, 1963

The results of an experimental investigation of local scour around structures due to wave action or a combination of waves and stream flow are given. Circular and square piles, flat plates and hemi-spheres were tested.