November 2013

People Profile: Michael Altman

Editor

Follow this and additional works at: http://docs.lib.purdue.edu/atg

Part of the Library and Information Science Commons

Recommended Citation
DOI: https://doi.org/10.7771/2380-176X.2563

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
these hooks are designed to interface with the Dataverse libraries in order to navigate the click-through style authentication used in the DVN.

- The plugin can process metadata schemas other than OAI-DC, when an appropriate library is supplied. We have supplied a library for DDI version 2.0 metadata. This preserves the metadata, and harvests any URI’s listed as resources in it. We have also included performance enhancements for handling portions of large metadata objects.

Discussion

The ability to express replication requirements and inter-archival replication commitments using a formal schema, and to automatically audit a LOCKSS network for dynamic consistency with these requirements is a significant advance. This provides an organization with automatic, continuous and compelling evidence that accurate, timely, and complete replicas are being maintained. Moreover this approach does not require a central administrator or homogenous configuration of the LOCKSS network, or create a single point of failure, either in terms of individual machines or entire institutions.

This work is in a prototype stage, and two questions remain before it could be used in production: First, the LOCKSS cache manager, which plays a much more prominent role in a PLN than it does in the public LOCKSS network, is still in a “beta” stage, and in our experience, must be manually triggered regularly in order to update its state — this can trigger “false alarms” when the state of the cache manager database becomes stale, and does not reflect the actual network state. It is unclear when the cache manager will be robust enough to support automated auditing. Second, we are investigating the extent to which the PLN architecture can support reconfiguration of host nodes by a source that is not completely trusted.

In future work, we plan to investigate how the network might adapt automatically to changes to commitments through harvesting requests to participating hosts to perform additional harvesting. We also intend to identify ways to make the network self-repairing, so that deviations from policy commitments are repaired using the same request mechanism. That said, having the ability to audit the network against a formal policy is a useful innovation on its own. Our prototype serves as a case-in-point of the ability of LOCKSS to accommodate the institutional needs of archives as well as libraries. For more information on Data-PASS’s approach to archival replication, including our policies and practices, software, and schemas see the Data-PASS Website: http://data-pass.org.