HYDRAULICS OF RIVER FLOW
UNDER ARCH BRIDGES

JUNE 1964
NO. II
VOL. II

by

J.W. DELLEUR

PURDUE UNIVERSITY
LAFAYETTE, INDIANA
Final Report

HYDRAULICS OF RIVER FLOW UNDER ARCH BRIDGES

Vol. II

by

J. W. Delleur
Professor of Hydraulic Engineering

Joint Highway Research Project

Project: HFS-R-1(36)

File: 9-8-2

Prepared as Part of an Investigation

Conducted by

Joint Highway Research Project
Engineering Experiment Station
Purdue University

in cooperation with

Indiana State Highway Commission

and the

Bureau of Public Roads
U S Department of Commerce

Not Released for Publication

Subject to Change

Purdue University

Not Reviewed by

Indiana State Highway Commission
or the
Bureau of Public Roads

Lafayette, Indiana

June 19, 1964
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Definition Sketch</td>
<td>1</td>
</tr>
<tr>
<td>3-2</td>
<td>Line Surface Profile Near Submerged Constriction</td>
<td>2</td>
</tr>
<tr>
<td>3-3</td>
<td>Plan View of Flow Through a Submerged Constriction</td>
<td>3</td>
</tr>
<tr>
<td>3-4</td>
<td>Classes of Flow in Sudden Contractions in Open Channels</td>
<td>4</td>
</tr>
<tr>
<td>3-5</td>
<td>Empirical Relationship to Distinguish Between Free Surface Flow and Orifice Flow</td>
<td>5</td>
</tr>
<tr>
<td>3-6</td>
<td>Definition Sketch for Analysis of Expanding Flow</td>
<td>6</td>
</tr>
<tr>
<td>3-7</td>
<td>Graphical Solution of Backwater Due to a Constriction</td>
<td>7</td>
</tr>
<tr>
<td>3-8</td>
<td>Detail of Graphical Solution of Backwater Due to a Constriction</td>
<td>8</td>
</tr>
<tr>
<td>3-9</td>
<td>Geometric Properties of Semi-Circular and Circular Segment Arches</td>
<td>9</td>
</tr>
<tr>
<td>3-10</td>
<td>Limiting Backwater-Boundary Between Flows of Classes I & II Semi-Circular and Circular Segment Arches</td>
<td>10</td>
</tr>
<tr>
<td>3-11</td>
<td>Definition Sketch for the Channel Opening Ratio</td>
<td>11</td>
</tr>
<tr>
<td>3-11a</td>
<td>Definition Sketch for Orifice Flow Calculation</td>
<td>12</td>
</tr>
<tr>
<td>3-12</td>
<td>Definition Sketch for the Development of the Contraction Ratio</td>
<td>13</td>
</tr>
<tr>
<td>3-13</td>
<td>Correction Factor for the Channel Opening Ratio</td>
<td>14</td>
</tr>
<tr>
<td>3-14</td>
<td>Definition Sketches of Test Geometries</td>
<td>15</td>
</tr>
<tr>
<td>4-1</td>
<td>Preliminary Flume</td>
<td>16</td>
</tr>
<tr>
<td>4-2</td>
<td>Effect of Channel Constriction on Water Surface Profile</td>
<td>17</td>
</tr>
<tr>
<td>4-3</td>
<td>Three Dimensional Models for Preliminary Studies</td>
<td>18</td>
</tr>
<tr>
<td>4-4</td>
<td>Small Flume with Artificial Roughness Installed, and Mechanical and Electrical Gages</td>
<td>19</td>
</tr>
<tr>
<td>4-5</td>
<td>Semicircular Weir Tests</td>
<td>20</td>
</tr>
<tr>
<td>4-6</td>
<td>Horizontal Distance in Direction of Flow</td>
<td>21</td>
</tr>
<tr>
<td>4-7</td>
<td>Semicircular Arch Bridge Model Tests</td>
<td>22</td>
</tr>
<tr>
<td>4-8</td>
<td>Flow in Rectangular Channels with Semicircular Constructions - Comparison of Two and Three Dimensional Cases</td>
<td>23</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4-8a</td>
<td>Variation of the Backwater Ratio for Segment Arches - Small Flume - Rough Boundaries</td>
<td>24</td>
</tr>
<tr>
<td>5-1</td>
<td>Flume Construction</td>
<td>25</td>
</tr>
<tr>
<td>5-2</td>
<td>Jack Detail</td>
<td>26</td>
</tr>
<tr>
<td>5-3</td>
<td>Tail Gate</td>
<td>26</td>
</tr>
<tr>
<td>5-4</td>
<td>General Layout of Testing Facility</td>
<td>27</td>
</tr>
<tr>
<td>5-5</td>
<td>Plan View of Jacks and Gears</td>
<td>28</td>
</tr>
<tr>
<td>5-6</td>
<td>Calibration Curve for 6" Venturimeter</td>
<td>29</td>
</tr>
<tr>
<td>5-7</td>
<td>Calibration Curve for Three-Inch Venturi</td>
<td>30</td>
</tr>
<tr>
<td>5-8</td>
<td>Top View of Instrument Carriage</td>
<td>31</td>
</tr>
<tr>
<td>5-9</td>
<td>Point Gage and Prandtl Tube</td>
<td>31</td>
</tr>
<tr>
<td>5-10</td>
<td>Velocity Transducer System</td>
<td>32</td>
</tr>
<tr>
<td>5-11</td>
<td>Calibration Apparatus for Velocity Transducer System</td>
<td>33</td>
</tr>
<tr>
<td>5-12</td>
<td>Typical Calibration Curves for Probe</td>
<td>34</td>
</tr>
<tr>
<td>5-13</td>
<td>$f - Re$ Relation for Normal Depth Tests</td>
<td>35</td>
</tr>
<tr>
<td>5-14</td>
<td>Testing Flume with Artificial Roughness</td>
<td>36</td>
</tr>
<tr>
<td>5-15</td>
<td>Effect of Bars on Velocity</td>
<td>37</td>
</tr>
<tr>
<td>5-16</td>
<td>Variation of Resistance Function with Relative Roughness y_n/a</td>
<td>38</td>
</tr>
<tr>
<td>5-17</td>
<td>Variation of Resistance Function with Relative Roughness y_n/X</td>
<td>39</td>
</tr>
<tr>
<td>5-18</td>
<td>Dimensionless Velocity Profile</td>
<td>40</td>
</tr>
<tr>
<td>5-19</td>
<td>General Resistance Diagram for Uniform Flow in Open Channels (Sayre)</td>
<td>41</td>
</tr>
<tr>
<td>6-1</td>
<td>Tests Selection Curve - Large Flume - Smooth Boundaries</td>
<td>42</td>
</tr>
<tr>
<td>6-2</td>
<td>Tests Selection Curve - Large Flume - Rough Boundaries</td>
<td>43</td>
</tr>
<tr>
<td>6-3</td>
<td>Program Flow Chart for Data Analysis</td>
<td>44</td>
</tr>
<tr>
<td>6-4 - 6-10</td>
<td>Four Variables Graphical Multiple Correlation</td>
<td>45</td>
</tr>
<tr>
<td>7-1-1</td>
<td>Superelevation vs. Kineticity</td>
<td>46</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>7-1-2</td>
<td>Discharge Coefficient vs. Kineticity</td>
<td>47</td>
</tr>
<tr>
<td>7-1-3</td>
<td>Friction Factor vs. Reynolds Number</td>
<td>46</td>
</tr>
<tr>
<td>7-1-4</td>
<td>Friction Factor vs. Reynolds Number</td>
<td>49</td>
</tr>
<tr>
<td>7-1-5</td>
<td>Backwater Ratio vs. Contraction Ratio</td>
<td>50</td>
</tr>
<tr>
<td>7-1-6</td>
<td>Backwater Ratio vs. Channel Opening Ratio $L/b = 0$ Semi-circ. Smooth Channel</td>
<td>51</td>
</tr>
<tr>
<td>7-1-7</td>
<td>Discharge Coef. vs. Channel Opening Ratio $L/b = 0$ Semi-circ. Smooth Channel</td>
<td>51</td>
</tr>
<tr>
<td>7-1-8</td>
<td>Backwater Ratio for Geometry I_A, Smooth Boundary $L_b = 0.0$</td>
<td>52</td>
</tr>
<tr>
<td>7-1-9</td>
<td>Head Loss Coefficient, Geometry I_A, Smooth Boundary $L_b = 0.0$</td>
<td>53</td>
</tr>
<tr>
<td>7-1-10</td>
<td>Backwater Ratio Coefficient, Geometry I_A, Smooth Boundary $L_b = 0.0$</td>
<td>54</td>
</tr>
<tr>
<td>7-2-1a</td>
<td>Backwater Ratio vs. Channel Opening Ratio $L/b = 0$ Semi-circ. Rough Channel $y_1/y_n \leq 1.50$</td>
<td>55</td>
</tr>
<tr>
<td>7-2-1b</td>
<td>Backwater Ratio vs. Channel Opening Ratio $L/b = 0$ Semi-circ. Rough Channel $1.50 \leq y_1/y_n \leq 2.50$</td>
<td>56</td>
</tr>
<tr>
<td>7-2-2</td>
<td>Discharge Coef. vs. Channel Opening Ratio $L/b = 0$ Semi-circ. Rough Channel</td>
<td>57</td>
</tr>
<tr>
<td>7-2-3a</td>
<td>Length to Maximum Backwater</td>
<td>58</td>
</tr>
<tr>
<td>7-2-3b</td>
<td>Length of Surface Profile Between y_1 & y_3</td>
<td>55</td>
</tr>
<tr>
<td>7-2-4</td>
<td>Correlation Curve of F_3</td>
<td>59</td>
</tr>
<tr>
<td>7-2-5a</td>
<td>Comparison Between Backwater Ratios in Smooth and Rough Channels</td>
<td>60</td>
</tr>
<tr>
<td>7-2-5b</td>
<td>Comparison of C_d to F_n for the Two Roughness Conditions $M = 0.7$</td>
<td>60</td>
</tr>
<tr>
<td>7-2-6a</td>
<td>Comparison Between Backwater Ratios for Bridge Lengths - Rough Channel</td>
<td>61</td>
</tr>
<tr>
<td>7-2-6b</td>
<td>Comparison Between Discharge Coefficients for Bridge Lengths - Rough Channel $- M' = 0.7$</td>
<td>61</td>
</tr>
<tr>
<td>7-2-7</td>
<td>Surface Topography $Q = 1$ CFS, $S = 0.000584$, $M = 0.5$, $L/b = 0$</td>
<td>62</td>
</tr>
<tr>
<td>7-2-8</td>
<td>Velocity Profiles at Maximum Backwater $Q = 1$ CFS, $S = 0.000584$, $M = 0.5$, $L/b = 0$</td>
<td>63</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>7-2-9</td>
<td>Isovel Diagrams in FPS Q = 1 CF5, S = 0.00055 h, $M = 0.5$, L/b = 0</td>
<td>64</td>
</tr>
<tr>
<td>7-2-10</td>
<td>Generalized Backwater Ratio</td>
<td>65</td>
</tr>
<tr>
<td>7-2-11</td>
<td>Backwater Ratio for Geometry la, Rough Boundary $\frac{L}{b} = 0.0$</td>
<td>66</td>
</tr>
<tr>
<td>7-2-12</td>
<td>Backwater Ratio for Geometry Ib, Rough Boundary $\frac{L}{b} = 0.5$</td>
<td>67</td>
</tr>
<tr>
<td>7-2-13</td>
<td>Backwater Ratio for Geometry Ib Rough Boundary $\frac{L}{b} = 1.0$</td>
<td>68</td>
</tr>
<tr>
<td>7-2-14</td>
<td>Summary of Backwater Ratio, Geometry la Rough & Smooth Boundaries</td>
<td>69</td>
</tr>
<tr>
<td>7-2-15</td>
<td>Head Loss Coefficient, Geometry la Rough Boundary $\frac{L}{B} = 0.00$</td>
<td>70</td>
</tr>
<tr>
<td>7-2-16</td>
<td>Head Loss Coefficient, Geometry Ib Rough Boundary $\frac{L}{B} = 0.5$</td>
<td>72</td>
</tr>
<tr>
<td>7-2-17</td>
<td>Head Loss Coefficient Geometry Ib Rough Boundary $\frac{L}{B} = 1.0$</td>
<td>72</td>
</tr>
<tr>
<td>7-2-18</td>
<td>Summary of Head Loss Coefficients, Geometry la & Ib, Rough Boundary</td>
<td>73</td>
</tr>
<tr>
<td>7-2-19</td>
<td>Backwater Ratio Coefficient, Geometry la Rough Boundary $\frac{L}{b} = 0.00$</td>
<td>74</td>
</tr>
<tr>
<td>7-2-20</td>
<td>Backwater Ratio Coefficient, Geometry Ib Rough Boundary $\frac{L}{b} = 0.5$</td>
<td>75</td>
</tr>
<tr>
<td>7-2-21</td>
<td>Backwater Ratio Coefficient, Geometry Ib Rough Boundary $\frac{L}{b} = 1.0$</td>
<td>76</td>
</tr>
<tr>
<td>7-3-0</td>
<td>Measured Water Surface Profiles Along the Centerline for Three Dimensional Dual Parallel Arch Bridge Models</td>
<td>77</td>
</tr>
<tr>
<td>7-3-1</td>
<td>Backwater Ratio for Dual Parallel Bridges $F_n = 0.10$ and 0.25</td>
<td>78</td>
</tr>
<tr>
<td>7-3-2</td>
<td>Backwater Ratio for Dual Parallel Bridges $F_n = 0.20$</td>
<td>79</td>
</tr>
<tr>
<td>7-3-3</td>
<td>Backwater Ratio for Dual Parallel Bridges $F_n = 0.25$</td>
<td>80</td>
</tr>
<tr>
<td>7-3-4</td>
<td>Backwater Ratio for Dual Parallel Bridges $F_n = 0.30$</td>
<td>81</td>
</tr>
<tr>
<td>7-3-5</td>
<td>Backwater Ratio for Dual Parallel Bridges $F_n = 0.40$</td>
<td>82</td>
</tr>
</tbody>
</table>
Fig.

7-3-6 Backwater Ratio for Dual Parallel Bridges

7-3-7 Generalized Backwater Ratio for Dual Parallel Bridges

7-3-8 Backwater Ratio, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 0.90$

7-3-9 Backwater Ratio for Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} \leq 7.5$

7-3-10 Backwater Ratio, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 7.5 - 15$

7-3-11 Backwater Ratio, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 15 - 23$

7-3-12 Backwater Ratio, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 25 - 30$

7-3-13 Summary of Backwater Ratio, Geometry II Rough Boundary

7-3-14 Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 0.00$

7-3-15 Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} > 0 \leq 7.5$

7-3-16 Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 7.5 - 15$

7-3-17 Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 15 - 25$

7-3-18 Head Loss Coefficient, Geometry II Rough Boundary $\frac{L_{db}}{A_{n2}} = 25 - 30$

7-3-19 Summary of Head Loss Coefficients, Geometry II, Rough Boundaries

7-3-20 Backwater Ratio Coefficient Geometry II Rough Boundary

7-4-1 Backwater Ratio for Arch Bridges with Wingwalls $\phi_i = 30^\circ$

7-4-2 Backwater Ratio for Arch Bridges with Wingwalls $\phi_i = 45^\circ$

7-4-3 Backwater Ratio for Arch Bridges with Wingwalls $\phi_i = 60^\circ$

7-4-4 Backwater Ratio for Arch Bridges with Wingwalls $\phi_i = 90^\circ$

7-4-5 Backwater Ratio for Arch Bridges with Wingwalls
Generalized Backwater Ratio for Arch Bridges with Wingwalls

Backwater Ratio, Geometry III Rough Boundary $\phi_1=30^\circ$ 104
Backwater Ratio, Geometry III Rough Boundary $\phi_1=45^\circ$ 105
Backwater Ratio, Geometry III Rough Boundary $\phi_1=60^\circ$ 106
Backwater Ratio, Geometry III Rough Boundary $\phi_1=90^\circ$ 107
Summary of Backwater Ratio, Geometry III, Rough Boundary 108
Head Loss Coefficient, Geometry III Rough Boundary $\phi_1=30^\circ$ 109
Head Loss Coefficient, Geometry III Rough Boundary $\phi_1=45^\circ$ 110
Head Loss Coefficient, Geometry III Rough Boundary $\phi_1=60^\circ$ 111
Head Loss Coefficient, Geometry III Rough Boundary $\phi_1=90^\circ$ 112
Summary of Head Loss Coefficients Geometry III, Rough Boundaries 113
Backwater Ratio Coefficient, Geometry III, Rough Boundary $\phi_1=30^\circ$ 114
Backwater Ratio Coefficient, Geometry III Rough Boundary $\phi_1=45^\circ$ 115
Backwater Ratio Coefficient, Geometry III Rough Boundary $\phi_1=60^\circ$ 116
Backwater Ratio Coefficient, Geometry III Rough Boundary $\phi_1=90^\circ$ 117
Backwater Ratio for Eccentric Arch Bridges $e=0$ 118
Backwater Ratio for Eccentric Arch Bridges $e=0.80$ 119
Backwater Ratio for Eccentric Arch Bridges $e=0.85$ 120
Backwater Ratio for Eccentric Arch Bridges $e=0.90$ 121
Backwater Ratio for Eccentric Arch Bridges $e=0.95$ 122
Backwater Ratio for Eccentric Arch Bridges $e=1.00$ 123
Generalized Backwater Ratio for Eccentric Arch Bridge 124
Backwater Ratio, Geometry IV Rough Boundary $e=0.0$ 125
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-5-9</td>
<td>Backwater Ratio, Geometry IV Rough Boundary $e=0.8$</td>
<td>126</td>
</tr>
<tr>
<td>7-5-10</td>
<td>Backwater Ratio, Geometry IV Rough Boundary $e=0.85$</td>
<td>127</td>
</tr>
<tr>
<td>7-5-11</td>
<td>Backwater Ratio, Geometry IV Rough Boundary $e=0.9$</td>
<td>128</td>
</tr>
<tr>
<td>7-5-12</td>
<td>Backwater Ratio, Geometry IV Rough Boundary $e=0.95$</td>
<td>129</td>
</tr>
<tr>
<td>7-5-13</td>
<td>Backwater Ratio, Geometry IV Rough Boundary $e=1.0$</td>
<td>130</td>
</tr>
<tr>
<td>7-5-14</td>
<td>Summary of Backwater Ratio Geometry IV Rough Boundary</td>
<td>131</td>
</tr>
<tr>
<td>7-5-15</td>
<td>Head Loss Coefficient, Geometry IV Rough Boundary $e=0.0$</td>
<td>132</td>
</tr>
<tr>
<td>7-5-16</td>
<td>Head Loss Coefficient, Geometry IV Rough Boundary $e=0.8$</td>
<td>133</td>
</tr>
<tr>
<td>7-5-17</td>
<td>Head Loss Coefficient, Geometry IV Rough Boundary $e=0.85$</td>
<td>134</td>
</tr>
<tr>
<td>7-5-18</td>
<td>Head Loss Coefficient, Geometry IV Rough Boundary $e=0.9$</td>
<td>135</td>
</tr>
<tr>
<td>7-5-19</td>
<td>Head Loss Coefficient, Geometry IV Rough Boundary $e=0.95$</td>
<td>136</td>
</tr>
<tr>
<td>7-5-20</td>
<td>Head Loss Coefficient, Geometry IV Rough Boundary $e=1.0$</td>
<td>137</td>
</tr>
<tr>
<td>7-5-21</td>
<td>Summary of Head Loss Coefficients Geometry IV Rough Boundary</td>
<td>138</td>
</tr>
<tr>
<td>7-5-22</td>
<td>Backwater Ratio Coefficient, Geometry IV Rough Boundary $e=0.0$</td>
<td>139</td>
</tr>
<tr>
<td>7-5-23</td>
<td>Backwater Ratio Coefficient, Geometry IV Rough Boundary $e=0.8$</td>
<td>140</td>
</tr>
<tr>
<td>7-5-24</td>
<td>Backwater Ratio Coefficient Geometry IV Rough Boundary $e=0.85$</td>
<td>141</td>
</tr>
<tr>
<td>7-5-25</td>
<td>Backwater Ratio Coefficient, Geometry IV Rough Boundary $e=0.9$</td>
<td>142</td>
</tr>
<tr>
<td>7-5-26</td>
<td>Backwater Ratio Coefficient, Geometry IV Rough Boundary $e=0.95$</td>
<td>143</td>
</tr>
<tr>
<td>7-5-27</td>
<td>Backwater Ratio Coefficient Geometry IV Rough Boundary $e=1.0$</td>
<td>144</td>
</tr>
<tr>
<td>7-6-1</td>
<td>Backwater Ratio for Skew Arch Bridges $\phi_2 = 0^\circ$</td>
<td>145</td>
</tr>
<tr>
<td>7-6-2</td>
<td>Backwater Ratio for Skew Arch Bridges $\phi_2 = 15^\circ$</td>
<td>146</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>7-6-3</td>
<td>Backwater Ratio for Skew Arch Bridges $\phi_2 = 30^\circ$</td>
<td>147</td>
</tr>
<tr>
<td>7-6-4</td>
<td>Backwater Ratio for Skew Arch Bridges $\phi_2 = 45^\circ$</td>
<td>148</td>
</tr>
<tr>
<td>7-6-5</td>
<td>Backwater Ratio for Skew Arch Bridge</td>
<td>149</td>
</tr>
<tr>
<td>7-6-6</td>
<td>Generalized Backwater Ratio for Skew Arch Bridges</td>
<td>150</td>
</tr>
<tr>
<td>7-6-7</td>
<td>Backwater Ratio, Geometry Va, Rough Boundary $\phi_2 = 0.00$</td>
<td>151</td>
</tr>
<tr>
<td>7-6-8</td>
<td>Backwater Ratio, Geometry Va, Rough Boundary $\phi_2 = 15^\circ$</td>
<td>152</td>
</tr>
<tr>
<td>7-6-9</td>
<td>Backwater Ratio, Geometry Va, Rough Boundary $\phi_2 = 20^\circ$</td>
<td>153</td>
</tr>
<tr>
<td>7-6-10</td>
<td>Backwater Ratio, Geometry Va, Rough Boundary $\phi_2 = 30^\circ$</td>
<td>154</td>
</tr>
<tr>
<td>7-6-11</td>
<td>Summary of Backwater Ratio Geometry Va Rough Boundary</td>
<td>155</td>
</tr>
<tr>
<td>7-6-12</td>
<td>Head Loss Coefficient Geometry Va, Rough Boundary $\phi_2 = 0.00$</td>
<td>156</td>
</tr>
<tr>
<td>7-6-13</td>
<td>Head Loss Coefficient Geometry Va, Rough Boundary $\phi_2 = 15^\circ$</td>
<td>157</td>
</tr>
<tr>
<td>7-6-14</td>
<td>Head Loss Coefficient, Geometry Va, Rough Boundary $\phi_2 = 30^\circ$</td>
<td>158</td>
</tr>
<tr>
<td>7-6-15</td>
<td>Head Loss Coefficient, Geometry Va Rough Boundary $\phi_2 = 45^\circ$</td>
<td>159</td>
</tr>
<tr>
<td>7-6-16</td>
<td>Summary of Head Loss Coefficients Geometry Va Rough Boundaries</td>
<td>160</td>
</tr>
<tr>
<td>7-6-17</td>
<td>Backwater Ratio Coefficient, Geometry Va Rough Boundary $\phi_2 = 0.0$</td>
<td>161</td>
</tr>
<tr>
<td>7-6-18</td>
<td>Backwater Ratio Coefficient, Geometry Va Rough Boundary $\phi_2 = 15^\circ$</td>
<td>162</td>
</tr>
<tr>
<td>7-6-19</td>
<td>Backwater Ratio Coefficient, Geometry Va Rough Boundary $\phi_2 = 30^\circ$</td>
<td>163</td>
</tr>
<tr>
<td>7-6-20</td>
<td>Backwater Ratio Coefficient, Geometry Va Rough Boundary $\phi_2 = 45^\circ$</td>
<td>164</td>
</tr>
<tr>
<td>7-7-1</td>
<td>Backwater Ratio, Geometry Vb, Rough Boundary $\phi_2 = 15^\circ$</td>
<td>165</td>
</tr>
<tr>
<td>7-7-2</td>
<td>Backwater Ratio, Geometry Vb, Rough Boundary $\phi_2 = 30^\circ$</td>
<td>166</td>
</tr>
<tr>
<td>7-7-3</td>
<td>Summary of Backwater Ratio, Geometry Vb, Rough Boundary</td>
<td>167</td>
</tr>
<tr>
<td>7-8-1</td>
<td>Backwater Ratio, Geometry VI, Rough Boundary</td>
<td>168</td>
</tr>
<tr>
<td>7-8-2</td>
<td>Head Loss Coefficient, Geometry VI, Rough Boundary</td>
<td>169</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>7-8-3</td>
<td>Backwater Ratio Coefficient, Geometry VI Rough Boundary</td>
<td>170</td>
</tr>
<tr>
<td>7-9-1</td>
<td>Backwater Ratio, Geometry VII Rough Boundary $\beta = 0.00$</td>
<td>171</td>
</tr>
<tr>
<td>7-9-2</td>
<td>Backwater Ratio, Geometry VII Rough Boundary $\beta = 0.3$</td>
<td>172</td>
</tr>
<tr>
<td>7-9-3</td>
<td>Backwater Ratio, Geometry VII Rough Boundary $\beta = 0.5$</td>
<td>173</td>
</tr>
<tr>
<td>7-9-4</td>
<td>Summary of Backwater Ratio, Geometry VII, Rough Boundaries</td>
<td>174</td>
</tr>
<tr>
<td>7-9-5</td>
<td>Head Loss Coefficient, Geometry VII Rough Boundary $\beta = 0.00$</td>
<td>175</td>
</tr>
<tr>
<td>7-9-6</td>
<td>Head Loss Coefficient, Geometry VII, Rough Boundary $\beta = 0.3$</td>
<td>176</td>
</tr>
<tr>
<td>7-9-7</td>
<td>Head Loss Coefficient, Geometry VII, Rough Boundary $\beta = 0.5$</td>
<td>177</td>
</tr>
<tr>
<td>7-9-8</td>
<td>Summary of Head Loss Coefficient, Geometry VII Rough Boundary</td>
<td>178</td>
</tr>
<tr>
<td>7-9-9</td>
<td>Backwater Ratio Coefficient, Geometry VII Rough Boundary $\beta = 0.0$</td>
<td>179</td>
</tr>
<tr>
<td>7-9-10</td>
<td>Backwater Ratio Coefficient, Geometry VII Rough Boundary $\beta = 0.3$</td>
<td>180</td>
</tr>
<tr>
<td>7-9-11</td>
<td>Backwater Ratio Coefficient, Geometry VII Rough Boundary $\beta = 0.5$</td>
<td>181</td>
</tr>
<tr>
<td>8-3-1</td>
<td>Coefficients of Velocity, Contraction & Discharge Submerged Inlet but Unsubmerged Discharge Jet</td>
<td>182</td>
</tr>
<tr>
<td>8-3-2</td>
<td>Isovelocity Curves at Vena Constricta</td>
<td>183</td>
</tr>
<tr>
<td>8-3-3</td>
<td>Isovelocity Curves for Cross Section at Vena Constricta</td>
<td>184</td>
</tr>
<tr>
<td>8-3-4</td>
<td>Velocity Distribution at Vena Constricta</td>
<td>185</td>
</tr>
<tr>
<td>8-3-5</td>
<td>Generalized Backwater Ratio for Submerged Inlet Geometry Ia</td>
<td>186</td>
</tr>
<tr>
<td>8-3-6</td>
<td>Discharge Coefficient vs. Channel Opening Ratio, Smooth Boundaries, Geometry Ia</td>
<td>187</td>
</tr>
<tr>
<td>8-3-7</td>
<td>Discharge Coefficient for Free & Submerged Discharge & Partly Submerged Jet, Geometry Ia</td>
<td>188</td>
</tr>
<tr>
<td>8-4-1</td>
<td>Dimensionless Curves for Geometries Ia and Ib, Smooth Boundaries</td>
<td>189</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>8-5-1</td>
<td>Dimensionless Curves for Geometries Ia and Ib Rough Boundaries</td>
<td>190</td>
</tr>
<tr>
<td>8-5-2</td>
<td>Spiral Motion in Barrel Section Downstream of Vena Contracta</td>
<td>192</td>
</tr>
<tr>
<td>8-5-3</td>
<td>Typical Flow Condition through Constriction</td>
<td>191</td>
</tr>
<tr>
<td>8-5-4</td>
<td>Slug Flow at Barrel Exit</td>
<td>192</td>
</tr>
<tr>
<td>8-5-5</td>
<td>Free Discharge Jet</td>
<td>192</td>
</tr>
<tr>
<td>8-5-6</td>
<td>Comparison of Dimensionless Curves for Geometry Ia for Smooth and Rough Boundaries</td>
<td>193</td>
</tr>
<tr>
<td>8-5-7</td>
<td>Dimensionless Curves for Geometry Vb Rough Boundaries</td>
<td>194</td>
</tr>
<tr>
<td>8-5-8</td>
<td>Dimensionless Curves for Geometry Vb An as Parameter, Rough Boundaries</td>
<td>195</td>
</tr>
<tr>
<td>8-5-9</td>
<td>Dimensionless Curves for Geometry VII Rough Boundaries</td>
<td>196</td>
</tr>
<tr>
<td>8-9-1</td>
<td>Head Loss Coefficient for Geometry Ia Smooth Boundaries, $\frac{L}{D} = 0.0$</td>
<td>197</td>
</tr>
<tr>
<td>8-9-2</td>
<td>Head Loss Coefficient for Geometry Ib Smooth Boundaries, $\frac{L}{D} = 0.25$</td>
<td>198</td>
</tr>
<tr>
<td>8-9-3</td>
<td>Head Loss Coefficient for Geometry Ib Smooth Boundaries, $\frac{L}{D} = 0.50$</td>
<td>199</td>
</tr>
<tr>
<td>8-9-4</td>
<td>Head Loss Coefficient for Geometry Ib Smooth Boundaries, $\frac{L}{D} = 0.75$</td>
<td>200</td>
</tr>
<tr>
<td>8-9-5</td>
<td>Head Loss Coefficient for Geometry Ib Smooth Boundaries, $\frac{L}{D} = 1.00$</td>
<td>201</td>
</tr>
<tr>
<td>8-9-6</td>
<td>Summary of Head Loss Coefficient Curves for Geometries Ia, & Ib, Smooth Boundaries</td>
<td>202</td>
</tr>
<tr>
<td>8-9-7</td>
<td>Head Loss Coefficient Curves for Geometries, Ia & Ib, Rough Boundaries</td>
<td>203</td>
</tr>
<tr>
<td>8-9-8</td>
<td>Head Loss Coefficient Curve for Geometry Vb, Rough Boundaries</td>
<td>204</td>
</tr>
<tr>
<td>8-9-9</td>
<td>Head Loss Coefficient Curve for Geometry VI, Rough Boundaries</td>
<td>205</td>
</tr>
</tbody>
</table>
Fig. Description Page No.

8-9-10 Head Loss Coefficient Curves for Geometry VII, Rough Boundaries 206

8-10-1 Generalized Backwater Ratio Geometry Ia, Smooth Boundaries, \(L_b = 0.0 \) 207

8-10-2 Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, \(L_b = 0.25 \) 208

8-10-3 Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, \(L_b = 0.50 \) 209

8-10-4 Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, \(L_b = 0.75 \) 210

8-10-5 Generalized Backwater Ratio Geometry Ib, Smooth Boundaries, \(L_b = 1.0 \) 211

8-10-6 Summary of Backwater Ratio Curves for Geometries Ia and Ib, Smooth Boundaries 212

8-10-7 Generalized Backwater Ratio Geometries Ia and Ib, Rough Boundaries 213

8-10-8 Generalized Backwater Ratio Geometry Vb, Rough Boundaries 214

8-10-9 Generalized Backwater Ratio Geometry VI, Rough Boundaries 215

8-10-10 Generalized Backwater Ratio Geometry VII, Rough Boundaries 216

9-1-1 Olney Street Bridge, Indianapolis, Plan View 217

9-1-2 Olney Street Bridge, Indianapolis, Upstream Face 218

9-1-3 Olney Street Bridge, Indianapolis, Downstream Side 219

9-1-4 Olney Street Bridge, Indianapolis, Natural Cross-Section Upstream 220

9-1-5 Olney Street Bridge, Indianapolis, Natural Cross-Section Downstream 221

9-1-6 Bridge Number 2A, Olney Street and Pogue's Run Topographic Map Appendix

9-2-1 Brookside Bridge, Indianapolis, Plan View 222

9-2-2 Brookside Park Bridge, Indianapolis, Upstream Face 223
Brookside Park Bridge, Indianapolis, Downstream Side
Brookside Park Bridge, Indianapolis, Natural Cross-Section Upstream
Brookside Park Bridge, Indianapolis, Natural Cross-Section Downstream
Jefferson Street Bridge, Indianapolis, Plan View
Jefferson Street Bridge, Indianapolis, Upstream Face
Jefferson Street Bridge, Indianapolis, Downstream Side
Jefferson Street Bridge, Indianapolis, Natural Cross-Section, Downstream
Jefferson Street Bridge, Indianapolis, Natural Cross-Section Upstream
Bridge Number 29, Pogue's Run to Jefferson, Topographic Map
South Belmont Street Bridge, Indianapolis, Plan View
South Belmont Street Bridge, Indianapolis, Upstream Face
South Belmont Street Bridge, Indianapolis, Downstream Side
South Belmont Street Bridge, Indianapolis, Natural Cross-Section Upstream
South Belmont Street Bridge, Indianapolis, Natural Cross-Section Downstream
Bridge Number 30, South Belmont and Little Creek
State Road 200 Bridge, Indianapolis, Plan View
State Road 100 Bridge, Indianapolis, Upstream Face
State Road 100 Bridge, Indianapolis, Downstream Side
State Road 100 Bridge, Indianapolis, Natural Cross Section Upstream
State Road 100 Bridge, Indianapolis, Natural Cross Section Downstream
Bridge Number 12, State Road 100 to William Creek

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-6-1</td>
<td>Villa Street Bridge, Indianapolis, Plan View</td>
<td>242</td>
</tr>
<tr>
<td>9-6-2</td>
<td>Villa Street Bridge, Indianapolis, Upstream Face</td>
<td>243</td>
</tr>
<tr>
<td>9-6-3</td>
<td>Villa Street Bridge, Indianapolis, Downstream Side</td>
<td>244</td>
</tr>
<tr>
<td>9-6-4</td>
<td>Villa Street Bridge, Indianapolis, Natural Cross-Section Upstream</td>
<td>245</td>
</tr>
<tr>
<td>9-6-5</td>
<td>Villa Street Bridge, Indianapolis, Natural Cross-Section, Downstream</td>
<td>246</td>
</tr>
<tr>
<td>9-6-6</td>
<td>Bridge Number 15A, Pleasant Run to Villa, Topographic Map</td>
<td>Appendix</td>
</tr>
<tr>
<td>9-7-1</td>
<td>Linden Street Bridge, Indianapolis, Plan View</td>
<td>247</td>
</tr>
<tr>
<td>9-7-2</td>
<td>Linden Street Bridge, Indianapolis, Upstream Face</td>
<td>248</td>
</tr>
<tr>
<td>9-7-3</td>
<td>Linden Street Bridge, Indianapolis, Downstream Side</td>
<td>249</td>
</tr>
<tr>
<td>9-7-4</td>
<td>Linden Street Bridge, Indianapolis, Natural Cross-Section</td>
<td>250</td>
</tr>
<tr>
<td>9-7-5</td>
<td>Linden Street Bridge, Indianapolis, Natural Cross-Section, Downstream</td>
<td>251</td>
</tr>
<tr>
<td>9-7-6</td>
<td>Bridge Number 15B, Pleasant Run and Linden, Topographic Map</td>
<td>Appendix</td>
</tr>
<tr>
<td>9-8-1</td>
<td>East Jefferson Street Bridge, Franklin, Plan View</td>
<td>252</td>
</tr>
<tr>
<td>9-8-2</td>
<td>East Jefferson Street Bridge, Franklin, Upstream Face</td>
<td>253</td>
</tr>
<tr>
<td>9-8-3</td>
<td>East Jefferson Street Bridge, Franklin, Downstream Side</td>
<td>254</td>
</tr>
<tr>
<td>9-8-4</td>
<td>East Jefferson Street Bridge, Franklin, Natural Cross-Section Upstream</td>
<td>255</td>
</tr>
<tr>
<td>9-8-5</td>
<td>East Jefferson Street Bridge, Franklin, Natural Cross-Section, Downstream</td>
<td>256</td>
</tr>
<tr>
<td>9-8-6</td>
<td>Bridge Number 51, East Jefferson and Hurricane Creek, Topographic Map</td>
<td>Appendix</td>
</tr>
<tr>
<td>9-9-1</td>
<td>County Road Bridge, Plainfield, Plan View</td>
<td>257</td>
</tr>
<tr>
<td>9-9-2</td>
<td>County Road Bridge, Plainfield, Upstream Face</td>
<td>258</td>
</tr>
<tr>
<td>9-9-3</td>
<td>County Road Bridge, Plainfield, Downstream Side</td>
<td>259</td>
</tr>
<tr>
<td>9-9-4</td>
<td>County Road Bridge, Plainfield, Natural Cross-Section Upstream</td>
<td>260</td>
</tr>
<tr>
<td>9-9-5</td>
<td>County Road Bridge, Plainfield, Natural Cross-Section Downstream</td>
<td>261</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>9-9-6</td>
<td>Bridge Number 59A, Plainfield-White Lick Creek and 267, Topographic Map</td>
<td>Appendix</td>
</tr>
<tr>
<td>9-10-1</td>
<td>Dean Road Bridge, Indianapolis, Plan View</td>
<td>262</td>
</tr>
<tr>
<td>9-10-2</td>
<td>Dean Road Bridge, Indianapolis, Upstream Face</td>
<td>263</td>
</tr>
<tr>
<td>9-10-3</td>
<td>Dean Road Bridge, Indianapolis, Downstream Side</td>
<td>264</td>
</tr>
<tr>
<td>9-10-4</td>
<td>Dean Road Bridge, Indianapolis, Natural Cross-Section</td>
<td>265</td>
</tr>
<tr>
<td>9-10-5</td>
<td>Dean Road Bridge, Indianapolis, Natural Cross-Section</td>
<td>266</td>
</tr>
<tr>
<td>9-10-6</td>
<td>Bridge Number 66A, Dean Road to Howland Ditch, Topographic Map</td>
<td>Appendix</td>
</tr>
<tr>
<td>9-11-1</td>
<td>Relation of Maximum Backwater Effect to Velocity Head</td>
<td>267</td>
</tr>
<tr>
<td>9-11-2</td>
<td>Generalized Backwater Ratio</td>
<td>268</td>
</tr>
</tbody>
</table>
A) PLAN

B) MILD SLOPE CHANNEL

C) WEIR PLATES

FIGURE 3-1 DEFINITION SKETCH
Fig 2.2 Center Line Surface Profile Near Submerged Constriction

- Y0 = Yn
- Y1
- Y2, Y3
- Y4 = Yn
- M. curve
- Normal Profile
- S < Sₐ
- 3 - Vena Contracta
FIGURE 3-4 - CLASSES OF FLOW IN SUDDEN CONTRACTIONS IN OPEN CHANNELS
Figure 3-6 — Definition sketch for analysis of expanding flow.
Figure 3.7—Graphical Solution of Backwater Due to a Constriction
FIGURE 3-8 — DETAIL OF GRAPHICAL SOLUTION OF BACKWATER DUE TO A CONSTRICION
FIGURE 3-9 — GEOMETRIC PROPERTIES OF SEMI-CIRCULAR AND CIRCULAR SEGMENT ARCHES
FIGURE 3.10 — LIMITING BACKWATER - BOUNDARY BETWEEN FLOWS OF CLASSES I B, II SEMI - CIRCULAR AND CIRCULAR SEGMENT ARCHES
Flow in ADEH = \(Q = V_n B y_n = V_n A_n \)

Flow in BCFG = \(q = V_n A_n \)

Fig 3-11 Definition Sketch for the Channel Opening Ratio
FLOW IN ADEH = \(Q = V_0 B y_0 \)

FLOW IN BCFG = \(q = V_0 b y_0 \)

DEFINITION SKETCH FOR THE DEVELOPMENT OF THE CONTRACTION RATIO

Figure 3-12
FIGURE 3-13 CORRECTION COEFFICIENT FOR THE CHANNEL OPENING RATIO
PRELIMINARY FLUME

FIG. 4-1
A) PLAN

B) MILD SLOPE CHANNEL

C) STEEP SLOPE CHANNEL

D) WEIR PLATES

Effect of Channel Constriction on Water Surface Profile

FIG. 4-2
FIGURE 4-4 SMALL FLUME WITH ARTIFICIAL ROUGHNESS INSTALLED, and MECHANICAL AND ELECTRICAL GAGES
The image includes a graph and equations related to the flow of water over a semicircular weir.

Graph

Experimental curves showing C_d as a function of F_n and M.

Equations

1. \[Q = C y_i^{3/2} b T \]
2. \[C = c_d \sqrt{2g} \left(\frac{1}{17/24} \right) \]
 \[T = \left[1 - 0.1294 \left(\frac{y_i}{h}\right)^2 - 0.0177 \left(\frac{y_i}{h}\right)^4 \right] \]
3. \[\frac{y_i}{y_n} = \left(\frac{F_n \sqrt{g}}{C M A} \right)^{2/3} \]

Definitions

- $F_n = \frac{V_n}{\sqrt{g y_n}}$
- $M = \frac{b}{B}$

Fig. 4-5

Semicircular Weir Tests
Flow in rectangular channels with semi-circular constrictions - Comparison of two and three dimensional cases

Fig. 4-8
Fig. 4-8a: Variation of the backwater ratio for segment arches - small flume - rough boundaries.
FLUME CONSTRUCTION

OPERATORS PLATFORM
GUIDE RAIL
L 1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{4}

\frac{3}{4} STAINLESS STEEL INSTRUMENT CARRIAGE
GUIDE RAILS

L 2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{3}{4}

\frac{1}{4} \times 2 \frac{1}{2} STUD

L 2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{8}

\frac{1}{4} STEEL PLATE

\frac{1}{4} STEEL PLATES

L 1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{4}

\frac{1}{2} \times 5 STUD

6 U 8 2

20I 65.4

TOP OF JACK STAND

SYMMETRICAL
ABOUT

FIGURE 5-1
Fig 5-7 FLOW RATE; CU FT. PER SEC.
FIG 5-8 TOP VIEW OF INSTRUMENT CARRIAGE

FIG 5-9 POINT GAGE AND PRANDTL TUBE
FIGURE 5-10 VELOCITY TRANSDUCER SYSTEM
FIG 5-II Calibration Apparatus for Velocity Transducer System
Fig. 5-12 Typical Calibration Curves for Probe
FIGURE 5-13 $f - Re$ RELATION FOR NORMAL DEPTH TESTS
FIG 5-15 EFFECT OF BARS ON VELOCITY
\[\frac{c}{\sqrt{g}} = 6.06 \log \frac{y_n}{\alpha} + 3.15 \]

FIG 5-16 VARIATION OF RESISTANCE FUNCTION WITH RELATIVE ROUGHNESS \(\frac{y_n}{\alpha} \)
FIG 5-17 VARIATION OF RESISTANCE FUNCTION WITH RELATIVE ROUGHNESS y_n/χ

$\frac{c}{\sqrt{g}} = 6.06 \log \frac{y_n}{\chi}$
FIGURE 5-18 DIMENSIONLESS VELOCITY PROFILE

Conditions:
\[\sqrt{\frac{y}{x}} = \sqrt{\frac{y}{x}} \]
\[X = 0.0126 \text{ ft} \]
\[Q = 3.714 \text{ cfs} \]
\[S = 0.0125 \]
\[n = 0.275 \text{ ft} \]
FIGURE 5-19 GENERAL RESISTANCE DIAGRAM FOR UNIFORM FLOW IN OPEN CHANNELS (SAYRE)
FIGURE 6.1 TEST SELECTION CURVE — LARGE FLUME — SMOOTH BOUNDARIES
FIGURE 6-2 TESTS SELECTION CURVE — LARGE FLUME — ROUGH BOUNDARIES
START

READ

\[Q = 1.20 \]
\[\lambda = 0.03281 \text{ ft/cm} \]
\[B = 4.955 \text{ ft} \]

\[9 = 32.2 \text{ ft/sec}^2 \]

\[\text{READ} \]
\[Q = \text{cfs} \]
\[F_n = \text{cms} \]
\[y_n = \text{cfs} \]
\[s_n = \text{cfs} \]

\[\text{PARAMETER, } \frac{L}{b}, \frac{C_p}{b}, \frac{C_i}{b}, \frac{C_j}{b}, \beta \]

\[n = \text{READ} \]

\[\sigma = \frac{2.16 \lambda y_n}{B M} \]
\[S = \sqrt{\sigma^2} \]
\[C_m = 0.5 (8 + \Delta) \]
\[M^* = C_m M \]

\[\xi = \sqrt{\frac{S \lambda}{F_n}} \]
\[Q = B \cdot y_n \lambda \xi \]

\[P = \lambda \beta y_n \]
\[a_n = \lambda b \cdot y_n \]
\[z = 2 g \lambda (y_n - y_0)/V^2 \]
\[\Omega = a_n / A \]
\[K = 2 g \lambda (w^2 - \Omega^2) \]

\[V = Q / a_n^2 \]

STOP

PRINT

\[\text{PARAMETER} \]
\[M \]
\[F_n \]
\[Q \]
\[y_n \]
\[s_n \]
\[M^* \]

\[D = n_c \left[\frac{F_n M^*}{2} \right] \]
\[ZM = (F_n y_n) (M^* / F_n)^2 \]

\[M^2 / y_n \cdot (y_n - y_0) / y_n \]
\[(F_n M^2)^2 \]

FIG. 6-3
FOUR VARIABLES GRAPHICAL MULTIPLE CORRELATION

\[M_1 = 0.75, B_1 = 0.0 \]
\[M_2 = 0.5, B_2 = 0.3 \]
\[M_3 = 0.25, B_3 = 0.5 \]

\(y = 0.5, M = 0.25 \)
\(y = 0.3, M = 0.75 \)
\(y = 0.0, M = 0.5 \)
SUPERELEVATION

VS

KINETICITY

○ - M = 5
△ - M = .7
□ - M = 9

FIGURE 7-1-1
DISCHARGE COEFFICIENT

V.S.

KINETICITY

- \bigcirc - $M = 5$
- \triangle - $M = 0.7$
- \square - $M = 0.9$

FIGURE 7-1-2
FIGURE 7-1-4

FRICTION FACTOR VS REYNOLDS NUMBER

\[f = \frac{8945}{V^2} \]

\[Re = \frac{V \cdot y}{V} \]

- □ 2.0 CFS
- △ 3.0 CFS
- ● 3.5 CFS
- ○ 4.0 CFS
BACKWATER RATIO

vs

CONTRACTION RATIO

○ - 2 CFS
□ - 3 CFS
△ - 4 CFS

FIGURE 7-1-5
FIGURE 7-1-6 — BACKWATER RATIO VS CHANNEL OPENING RATIO $L/b = 0$ SEMI-CIRC SMOOTH CHANNEL

FIGURE 7-1-7 — DISCHARGE COEF. VS CHANNEL OPENING RATIO $L/b = 0$ SEMI-CIRC SMOOTH CHANNEL
FIGURE 7-1-8 BACKWATER RATIO FOR GEOMETRY
I_a, SMOOTH BOUNDARY $\frac{L}{b} = 0.0$
FIGURE 7-1-9 HEAD LOSS COEFFICIENT, GEOMETRY I_a
SMOOTH BOUNDARY $\frac{L}{b} = 0.0$
\[D = nc \left(\frac{F_{n_1}}{M_i} \right)^{n-1} \]

\[n = 1.108 \]

\[C = 0.304 \]

FIGURE 7-110
BACKWATER RATIO COEFFICIENT, GEOMETRY I, SMOOTH BOUNDARY

\[\frac{L}{b} = 0.0 \]
FIGURE 7-2-1a BACKWATER RATIO VS CHANNEL OPENING RATIO L/b = 0 SEMI-CIRC.
ROUGH CHANNEL \(y_i/y_n \leq 1.50 \)
FIGURE 7-2-1b BACKWATER RATIO VS CHANNEL OPENING RATIO \(L/b = 0 \) SEMI-CIRC.
ROUGH CHANNEL \(1.50 \leq \gamma_y/\gamma_n \leq 2.50 \)
FIGURE 7-2-2 DISCHARGE COEF VS CHANNEL OPENING RATIO L/b = 0 SEMI-CIRC. ROUGH CHANNEL
FIGURE 7-2-3a LENGTH TO MAXIMUM BACKWATER

FIGURE 7-2-3b LENGTH OF SURFACE PROFILE BETWEEN y_1 and y_2
FIG 7.2-4 CORRELATION CURVE OF F_3
FIG. 7-2-5a COMPARISON BETWEEN BACKWATER RATIOS IN SMOOTH AND ROUGH CHANNELS

FIG 7-2-5b COMPARISON OF C_d TO F_n FOR THE TWO ROUGHNESS CONDITIONS M=0.7
FIG. 7-2-6a COMPARISON BETWEEN BACKWATER RATIOS FOR BRIDGE LENGTHS-ROUGH CHANNEL

FIG. 7-2-6b COMPARISON BETWEEN DISCHARGE COEFFICIENTS FOR BRIDGE LENGTHS - ROUGH CHANNEL - $M' = 0.7$
FIGURE 7-2-7 SURFACE TOPOGRAPHY \(Q = 1 \text{ CFS}, \)
\(S = 0.000584, \ M = 0.5, \ L/b = 0 \)
FIG 7-2-8 VELOCITY PROFILES AT MAXIMUM BACKWATER $Q = 1$ CFS, $S = 0.0003$ ft/s2, $M = 0.5$, L/b
FIG 7-2-9 ISOVEL DIAGRAMS IN FPS Q=1CFS,
S=0000584, M=0.5, L/b=0
FIGURE 7-2-10 GENERALIZED BACKWATER RATIO

\[
\frac{y}{y_n} = 1 + 0.47 \left(\frac{F_n}{M'} \right)^{2/3} 3.39
\]
FIGURE 7-2-11 BACKWATER RATIO FOR GEOMETRY I_a, ROUGH BOUNDARY $\frac{L}{b} = 0.0$
FIGURE 7-2-12 BACKWATER RATIO FOR GEOMETRY I_b, ROUGH BOUNDARY \(\frac{L}{b} = 0.5 \)
FIGURE 7-2-13 BACKWATER RATIO FOR GEOMETRY I_b
ROUGH BOUNDARY $\frac{L}{b} = 1.0$
FIGURE 7-2-14 SUMMARY OF BACKWATER RATIO, GEOMETRY I, ROUGH & SMOOTH BOUNDARIES

\[
\frac{h_i}{y_n} = 0.403 \left(\frac{F_n}{M_i} \right)^2 1.08 \text{ ALL DATA GEOM. I}
\]
FIGURE 7-2-15 HEAD LOSS COEFFICIENT, GEOMETRY Iₐ
ROUGH BOUNDARY, $\frac{L}{B} = 0.00$
FIGURE 7-2-16 HEAD LOSS COEFFICIENT, GEOMETRY I₀
ROUGH BOUNDARY $\frac{L}{b} = 0.5$
FIGURE 7-2-17 HEAD LOSS COEFFICIENT, GEOMETRY I_b
ROUGH BOUNDARY $\frac{L}{b} = 1.0$
FIGURE 7-2-18 SUMMARY OF HEAD LOSS COEFFICIENTS
GEOMETRY Ia & Ib, ROUGH BOUNDARY
\[D = n C \left(\frac{F_n}{M'} \right)^2 \]^{n-1}

\[n = 1.108 \]
\[C = 0.403 \]

Figure 7-2-19 Backwater Ratio Coefficient, Geometry Ia
Rough Boundary \(\frac{L}{b} = 0.00 \)
\[D = n \cdot C \left(\frac{F_n}{M'} \right)^{2}
\]

\[n = 1.108 \]

\[C = 0.304 \]

FIGURE 7-2-20 BACKWATER RATIO COEFFICIENT, GEOMETRY Ib, ROUGH BOUNDARY \(\frac{L}{b} = 0.5 \)
\[D = n c \left(\frac{F_n}{M^1} \right)^2 n-1 \]

\[n = 1.108 \]

\[c = 0.403 \]

FIGURE 7-2-21 BACKWATER RATIO COEFFICIENT, GEOMETRY I_b
ROUGH BOUNDARY \(\frac{L}{b} = 1.0 \)
MEASURED WATER SURFACE PROFILES ALONG THE CENTERLINE FOR THREE DIMENSIONAL DUAL PARALLEL ARCH BRIDGE MODELS

FIG. 7-3-0
FIG 7-3-1 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

$F_n = 0.10$, AND 0.15
FIG. 7-3-2 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

\[F_n = 0.20 \]
FIG. 7-3-3 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

$F_n = 0.25$
FIG 7-3-4 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

$F_n = 0.30$
FIG. 7-3-5 BACKWATER RATIO FOR DUAL PARALLEL BRIDGES

\[F_n = 0.40 \]
\[\frac{y_i}{y_n} = c + a \left[\left(\frac{F_n}{M'} \right)^{2/3} \right]^e \]

<table>
<thead>
<tr>
<th>(\frac{bL_d}{An_2})</th>
<th>c</th>
<th>a</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.93</td>
<td>0.67</td>
<td>2.40</td>
</tr>
<tr>
<td>10</td>
<td>0.93</td>
<td>0.83</td>
<td>2.51</td>
</tr>
<tr>
<td>20</td>
<td>0.93</td>
<td>0.92</td>
<td>2.53</td>
</tr>
<tr>
<td>30</td>
<td>0.93</td>
<td>0.97</td>
<td>2.57</td>
</tr>
</tbody>
</table>

FIG. 7-3-7 - GENERALIZED BACKWATER RATIO FOR DUAL PARALLEL BRIDGES
FIGURE 7-3-8 BACKWATER RATIO, GEOMETRY II
ROUGH BOUNDARY $\frac{L_{db}}{A_{n2}} = 0.00$

\[
\frac{h_i}{y_n} = 0.462 \left(\frac{F_n}{M_i} \right)^{0.976}
\]
\[\frac{h_i}{y_n} = 0.542 \left(\frac{F_n}{M^*} \right)^{1.111} \]

Figure 7-3-9 Backwater Ratio for Geometry II

Rough Boundary \(0 < \frac{L_d b}{A n^2} \leq 7.5 \)
\[\frac{\frac{h_l}{y_n}}{F_n^2} = 0.618 \left[\left(\frac{F_n}{M'} \right)^{2.1025} \right] \]

FIGURE 7-3-10 BACKWATER RATIO, GEOMETRY II
ROUGH BOUNDARY \(\frac{L_{db}}{An^2} = 7.5 - 15 \)
FIGURE 7-3-II BACKWATER RATIO, GEOMETRY II
ROUGH BOUNDARY $\frac{L_d b}{A_{n2}} = 15 - 25$

\[h_1^* \frac{y_n}{y_n} = 0.98 \left(\frac{F_n}{M} \right)^2]^{1.57} \]
FIGURE 7-3-12 BACKWATER RATIO, GEOMETRY II
ROUGH BOUNDARY \(\frac{L_{db}}{A_{n2}} = 25 - 30 \)
FIGURE 7-3-13 SUMMARY OF BACKWATER RATIO, GEOMETRY II ROUGH BOUNDARY
FIGURE 7-3-14
HEAD LOSS COEFFICIENT, GEOMETRY II
ROUGH BOUNDARY $\frac{L_d b}{A_n^2} = 0.00$
FIGURE 7-3-15 HEAD LOSS COEFFICIENT, GEOMETRY II
ROUGH BOUNDARY $\frac{L_{db}}{A_{n2}} > 0 \leq 7.5$

$K = 2.15 - 2.06 M'$
FIGURE 7-3-16 HEAD LOSS COEFFICIENT, GEOMETRY II
ROUGH BOUNDARY $\frac{L_{db}}{A_{n2}} = 7.5 - 15$
\[K = 2.79 - 2.87 M' \]

FIGURE 7-3-17 HEAD LOSS COEFFICIENT, GEOMETRY II
ROUGH BOUNDARY \(\frac{L_{db}}{A_{n2}} = 15 - 25 \)
FIGURE 7-3-18 HEAD LOSS COEFFICIENT, GEOMETRY II
ROUGH BOUNDARY $\frac{L_{db}}{A_{n2}} = 25 - 30$
FIGURE 7-3-19 SUMMARY OF HEAD LOSS COEFFICIENTS, GEOMETRY II, ROUGH BOUNDARIES
\[D = n \left(\frac{F_n}{M'} \right)^{n-1} \]

FIGURE 7.3-20 BACKWATER RATIO COEFFICIENT GEOMETRY II

ROUGH BOUNDARY
FIG. 7-4-1 BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS $\Phi_i = 30^\circ$
FIG. 7-4-2 BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS $\Phi_i=45^\circ$
FIG. 7-4-3 BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS $\Phi_i = 60^\circ$
FIG. 7-4 BACKWATER RATIO FOR ARCH BRIDGES
WITH WINGWALLS $\phi_1 = 90^\circ$
FIG. 7-4-5 BACKWATER RATIO FOR ARCH BRIDGES WITH WINGWALLS
\[
\frac{Y_i}{Y_n} = c + a \left[\left(\frac{F_n}{M'} \right)^{2/3} \right] e
\]

<table>
<thead>
<tr>
<th>(\phi_i)</th>
<th>c</th>
<th>a</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>1.00</td>
<td>0.45</td>
<td>3.42</td>
</tr>
<tr>
<td>45°</td>
<td>1.00</td>
<td>0.48</td>
<td>3.40</td>
</tr>
<tr>
<td>60°</td>
<td>1.00</td>
<td>0.52</td>
<td>3.40</td>
</tr>
<tr>
<td>90°</td>
<td>1.00</td>
<td>0.55</td>
<td>3.40</td>
</tr>
</tbody>
</table>

Fig. 7-4-6 - Generalized Backwater Ratio for Arch Bridges with Wingwalls
\[\frac{h_i^*}{y_n} = 0.27 \left(\frac{F_n}{M'} \right)^{1.07} \]

Figure 7-4-7 Backwater Ratio, Geometry III
Rough Boundary $\Phi_I = 30^\circ$
\[\frac{h_1^*}{y_n} = 0.29 \left[\frac{(F_n^2)}{M^2} \right]^{0.03} \]

Figure 7-4-8 Backwater Ratio, Geometry III

Rough Boundary \(\Phi_1 = 45^\circ \)
\[
\frac{h^*_{1}}{y_{n}} = 0.42 \left[\left(\frac{F_{n}}{M'} \right)^2 \right]^{1.08}
\]

FIGURE 7-4-9 BACKWATER RATIO, GEOMETRY III
ROUGH BOUNDARY \(\Phi_{1} = 60^\circ \)
FIGURE 7-4-10 BACKWATER RATIO, GEOMETRY III
ROUGH BOUNDARY $\Phi_i = 90^\circ$

\[\frac{h_i^*}{y_n} = 0.45 \left(\frac{F_n}{M'} \right)^{1.068} \]
FIGURE 7-4-II SUMMARY OF BACKWATER RATIO, GEOMETRY III, ROUGH BOUNDARY
FIGURE 7-4-12 HEAD LOSS COEFFICIENT, GEOMETRY III
ROUGH BOUNDARY $\Phi_1 = 30^\circ$
FIGURE 7-4-13 HEAD LOSS COEFFICIENT, GEMETRY III
ROUGH BOUNDARY $\phi_1 = 45^\circ$
FIGURE 7-4-14 HEAD LOSS COEFFICIENT, GEOMETRY III
ROUGHBOUNDARY $\Phi = 60^\circ$

$K = 1.751 - 1.750 M'$
FIGURE 7-4-15 HEAD LOSS COEFFICIENT, GEOMETRY III
ROUGH BOUNDARY $\Phi_1 = 90^\circ$

$K = 1.85 - 1.70 M'$
FIGURE 7-4-16 SUMMARY OF HEAD LOSS COEFFICIENTS
GEOMETRY III, ROUGH BOUNDARIES
$D = n C \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1}$

$n = 1.07$

$C = 0.27$

Figure 7-4-17 Backwater Ratio Coefficient, Geometry III, Rough Boundary $\Phi_1 = 30^\circ$
\[D = n \cdot c \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1} \]

\[n = 1.03 \]

\[c = 0.29 \]

Figure 7-4-18 Backwater Ratio Coefficient, Geometry III Rough Boundary \(\Phi_1 = 45^\circ \)
\[D = n c \left(\frac{F_n}{M'} \right)^2 \]^{n-1} \\
\[n = 1.08 \] \\
\[c = 0.42 \]

Figure 7-4-19 Backwater Ratio Coefficient, Geometry III, Rough Boundary \(\Phi_1 = 60^\circ \)
\[D = nc \left(\frac{F_n}{M^l} \right)^{n-1} \]

where:
- \(D \) is a dimensionless parameter
- \(n = 1.068 \)
- \(c = 0.450 \)

Figure 7-4-20 Backwater Ratio Coefficient, Geometry III, Rough Boundary \(\phi_l = 90^\circ \)
FIG. 7-5-1 BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

\[e = 1 - \frac{c}{a} \]

\(e = 0 \)
\[e = 1 - \frac{c}{a} \]

Fig. 7-5-2 - Backwater Ratio for Eccentric Arch Bridges

\[e = 0.80 \]
\[e = 1 - \frac{c}{a} \]

FIG. 7-5-3 - BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

\(e = .85 \)
FIG. 7-5-4 BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

\(e = 0.90 \)
FIG. 7-5-5 - BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

\[e = 0.95 \]
FIG. 7-5-6 - BACKWATER RATIO FOR ECCENTRIC ARCH BRIDGES

\[e = 1 - \frac{c}{a} \]
FIG. 7-5-7 - GENERALIZED BACKWATER RATIO
FOR ECCENTRIC ARCH BRIDGE

\[\frac{y_i}{y_n} = 1 + 0.64 \left[\frac{(F_n)^{2/3}}{M^*} \right]^{3.31} \]

for \(e \leq 0.9 \)

\[\frac{y_i}{y_n} = 1 + 0.73 \left[\frac{(F_n)^{2/3}}{M^*} \right]^{3.31} \]

for \(e = 1.00 \)
\[\frac{h^*}{y_n} = 0.556 \left(\frac{F_n}{M^*} \right)^2 \]

FIGURE 7-5-8 BACKWATER RATIO, GEOMETRY IV
ROUGH BOUNDARY \(e = 0.0 \)
\[\frac{h_i}{y_n} = 0.62 \left[\left(\frac{F_n}{M'} \right)^2 \right]^{0.992} \]

Figure 7-5-9: Backwater Ratio, Geometry IV

Rough Boundary \(e = 0.8 \)
\[
\frac{h_i^*}{y_n} = 0.57 \left[\left(\frac{F_n}{M'} \right)^2 \right]^{0.993}
\]

FIGURE 7-5-10 BACKWATER RATIO GEOMETRY IV
ROUGH BOUNDARY \(e = 0.85 \)
FIGURE 7-5-11 BACKWATER RATIO, GEOMETRY IV
ROUGH BOUNDARY \(e = 0.9 \)

\[
\frac{h_*}{y_n} = 0.624 \left[\left(\frac{F_n}{M} \right)^2 \right]^{0.975}
\]
FIGURE 7-5-12 BACKWATER RATIO GEOMETRY IV

ROUGH BOUNDARY \(e = 0.95 \)
\[
\frac{h_i}{y_n} = 0.612 \left(\frac{F_n}{M'} \right)^{0.972}
\]

FIGURE 7-5-13 BACKWATER RATIO, GEOMETRY IV
ROUGH BOUNDARY \(e = 1.0 \)
FIGURE 7-5-14 SUMMARY OF BACKWATER RATIO
GEOMETRY IV ROUGH BOUNDARY
FIGURE 7-5-15 HEAD LOSS COEFFICIENT, GEOMETRY IV
ROUGH BOUNDARY $e = 0.00$
FIGURE 7-5-16 HEAD LOSS COEFFICIENT, GEOMETRY IV
ROUGH BOUNDARY $e = 0.8$
FIGURE 7-5-17 HEAD LOSS COEFFICIENT, GEOMETRY IV
ROUGH BOUNDARY e = 0.85
FIGURE 7-5-18 HEAD LOSS COEFFICIENT, GEOMETRY IV
ROUGH BOUNDARY $e = 0.9$
FIGURE 7-5-19 HEAD LOSS COEFFICIENT, GEOMETRY IV
ROUGH BOUNDARY $e = 0.95$
FIGURE 7-5-20 HEAD LOSS COEFFICIENT, GEOMETRY IV
ROUGH BOUNDARY $e = 1.0$
FIGURE 7-5-21 SUMMARY OF HEAD LOSS COEFFICIENTS
GEOMETRY IV ROUGH BOUNDARY
\[D = n c \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1} \]

\[n = 0.994 \]

\[c = 0.556 \]

Figure 7-5-22 Backwater Ratio Coefficient, Geometry IV, Rough Boundary \(e = 0.0 \)
\[D = n c \left(\frac{F_n}{M_T} \right)^2 n - 1 \]

\[n = 0.972 \]

\[c = 0.612 \]

Figure 7-5-23 Backwater Ratio Coefficient, Geometry IV Rough Boundary \(e = 0.8 \)
\[
D = n c \left(\frac{F_n^2}{M'} \right)^{n-1}
\]

\[
n = 0.993
\]

\[
c = 0.57
\]

Figure 7-5-24 Backwater Ratio Coefficient

Geometric IV Rough Boundary \(e = 0.85 \)
\[D = n c \left(\frac{F_n}{M'} \right)^2 \left(\frac{h_i}{y_n} \right) {\left(\frac{M'}{F_n} \right)}^2 n^{-1} \]

\[n = 0.975 \]

\[c = 0.624 \]

Figure 7-5-25 Backwater Ratio Coefficient, Geometry IV Rough Boundary e = 0.9
\[D = n \cdot c \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1} \]

\(n = 0.983 \)
\(c = 0.575 \)

Figure 7-5-26 BACKWATER RATIO COEFFICIENT

Geometry IV ROUGH BOUNDARY \(e = 0.95 \)
FIG. 7-6-1 BACKWATER RATIO FOR SKEW ARCH BRIDGES
$\phi_2 = 0^\circ$
FIG. 7-6-2 - BACKWATER RATIO FOR SKEW ARCH BRIDGES

\[\Phi_2 = 15^\circ \]
FIG. 7-6-3 - BACKWATER RATIO FOR SKEW ARCH BRIDGES

\[\Phi_2 = 30° \]
FIG. 7-6-4—BACKWATER RATIO FOR SKEW ARCH BRIDGES

$\phi_2 = 45^\circ$
FIG. 7-6-5 - BACKWATER RATIO FOR SKEW ARCH BRIDGE
FIG. 7-6-6 - GENERALIZED BACKWATER RATIO
FOR SKEW ARCH BRIDGE

\[
\frac{Y_i}{Y_n} = c + a \left[\left(\frac{F_n}{M'} \right)^{2/3} \right]^e
\]

<table>
<thead>
<tr>
<th>Φ</th>
<th>c</th>
<th>a</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>1.00</td>
<td>0.65</td>
<td>3.27</td>
</tr>
<tr>
<td>15°</td>
<td>1.00</td>
<td>0.62</td>
<td>3.27</td>
</tr>
<tr>
<td>30°</td>
<td>1.00</td>
<td>0.51</td>
<td>3.28</td>
</tr>
<tr>
<td>45°</td>
<td>1.00</td>
<td>0.42</td>
<td>3.28</td>
</tr>
</tbody>
</table>
\[
\frac{h_i^*}{y_n} = 0.563 \left(\frac{F_n}{M} \right)^{1.038}
\]

Figure 7-6-7 Backwater Ratio, Geometry V_a

Rough Boundary $\Phi_2 = 0.00$
FIGURE 7-6-8 BACKWATER RATIO, GEOMETRY V_a
ROUGH BOUNDARY $\Phi_2 = 15^\circ$

\[
\frac{h^*_l}{y_n} = 0.565\left[\left(\frac{F_n}{M_L}\right)^2\right]^{1.113}
\]
\[\frac{h_1}{y_n} = 0.5 \left[\left(\frac{F_n}{M'} \right)^2 \right]^{0.628} \]

FIGURE 7-6-9 BACKWATER RATIO, GEOMETRY \(V_a \)

ROUGH BOUNDARY \(\Phi_2 = 30^\circ \)
FIGURE 7-6-10 BACKWATER RATIO, GEOMETRY V_o

ROUGH BOUNDARY $\Phi_2 = 45^\circ$

$\frac{h_i}{y_n} = 0.394 \left[\left(\frac{F_n}{M} \right)^2 \right]^{1.0889}$
FIGURE 7-6-11 SUMMARY OF BACKWATER RATIO
GEOMETRY V_0 ROUGH BOUNDARY
FIGURE 7-6-12 HEAD LOSS COEFFICIENT, GEOMETRY \(V_a \)
ROUGH BOUNDARY \(\phi_2 = 0.0^\circ \)

\[K = 2.34 - 2.37 M' \]
FIGURE 7-6-13 HEAD LOSS COEFFICIENT, GEOMETRY V_d
ROUGH BOUNDARY $\phi_2 = 15^\circ$

\[K = 2.23 - 2.29 M' \]
FIGURE 7-6-14 HEAD LOSS COEFFICIENT, GEOMETRY ξ_0
ROUGH BOUNDARY $\Phi_2 = 30^\circ$

$K = 1.77 - 1.75 M'$
FIGURE 7-6-15 HEAD LOSS COEFFICIENT, GEOMETRY Σ_a
ROUGH BOUNDARY $\phi_2 = 45^\circ$

\[K = 1.51 - 1.58 M' \]
FIGURE 7-6-16 SUMMARY OF HEAD LOSS COEFFICIENTS
GEOMETRY φ_0. ROUGH BOUNDARIES
\[D = n \cdot C \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1} \]

- \(n = 1.038 \)
- \(C = 0.563 \)

Figure 7-6-17 Backwater Ratio Coefficient, Geometry \(\nu_a \) Rough Boundary \(\Phi_2 = 0.0 \)
D = n C \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1}

n = 1.113
C = 0.565

Figure 7-6-18 Backwater Ratio Coefficient, Geometry \(\mathbf{V}_a \) Rough Boundary \(\Phi_2 = 15^\circ \)
\[D = n c \left(\frac{F_n}{M^2} \right)^{n-1} \]

\(n = 1.0889 \)

\(c = 0.394 \)

FIGURE 7-6-20 BACKWATER RATIO COEFFICIENT, GEOMETRY \(V_a \) ROUGH BOUNDARY \(\Phi_2 = 45^\circ \)
FIGURE 7-7-1 BACKWATER RATIO, GEOMETRY V_d
ROUGH BOUNDARY $\Phi_2 = 15^\circ$
FIGURE 7-7-2 BACKWATER RATIO, GEOMETRY V_b
ROUGH BOUNDARY $\Phi_2 = 30^\circ$
FIGURE 7-7-3 SUMMARY OF BACKWATER RATIO, GEOMETRY ν_b ROUGH BOUNDARY
\[
\frac{h_i}{y_n} = 0.754 \left(\frac{F_n}{M} \right)^{0.931}
\]

FIGURE 7-8-I BACKWATER RATIO, GEOMETRY VI
ROUGH BOUNDARY
FIGURE 7-8-2 HEAD LOSS COEFFICIENT, GEOMETRY VI
ROUGH BOUNDARY

\[K = 3.58 - 3.20 M' \]
\[D = n \cdot c \left[\left(\frac{F_n}{M'} \right)^2 \right]^{n-1} \]

\[n = 0.931 \]

\[c = 0.754 \]

Figure 7-8-3 Backwater Ratio Coefficient, Geometry VI Rough Boundary
FIGURE 7-9-1 BACKWATER RATIO, GEOMETRY VII
ROUGH BOUNDARY $\beta = 0.00$

\[\frac{h_i}{y_n} = 0.563 \left(\frac{F_n}{M'} \right)^{1.088} \]
FIGURE 7-9-2 BACKWATER RATIO, GEOMETRY VII
ROUGH BOUNDARY $\beta = 0.3$

\[\frac{h_i^*}{y_n} = 0.525 \left[\left(\frac{F_n}{M'} \right)^2 \right]^{0.954} \]
\[
\frac{h_i}{y_n} = 0.563 \left(\frac{F_n}{M'} \right)^{0.962}
\]

FIGURE 7-9-3 BACKWATER RATIO, GEOMETRY VII
ROUGH BOUNDARIES \(\beta = 0.5 \)
Figure 7-9-4 Summary of Backwater Ratio, Geometry VII, Rough Boundaries
FIGURE 7-9-5 HEAD LOSS COEFFICIENT, GEOMETRY VII
ROUGH BOUNDARY, $\beta = 0.00$

\[K = 2.49 - 2.67 M' \]
FIGURE 7-9-6 HEAD LOSS COEFFICIENT, GEOMETRY VII
ROUGH BOUNDARY, $\beta = 0.3$
FIGURE 7-9-7 HEAD LOSS COEFFICIENT, GEOMETRY VII
ROUGH BOUNDARY, $\beta = 0.5$

$K = 1.53 - 1.27 M'$
FIGURE 7-9-8 SUMMARY OF HEAD LOSS COEFFICIENT

GEOMETRY VII ROUGH BOUNDARY
\(D = n \cdot c \left[\left(\frac{F_n}{M^i} \right)^2 \right]^{n-1} \)

\(n = 1.088 \)

\(c = 0.563 \)

FIGURE 7-9-9 BACKWATER RATIO COEFFICIENT, GEOMETRY VII ROUGH BOUNDARY \(\beta = 0.0 \)
\[D = n \cdot c \left[\left(\frac{F_n}{M_i} \right)^2 \right]^{n-1} \]

\[n = 0.954 \]

\[c = 0.525 \]

FIGURE 7-9-10 BACKWATER RATIO COEFFICIENT, GEOMETRY VII ROUGH BOUNDARY \(\beta = 0.3 \)
\[D = n \cdot c \left(\frac{F_n}{M^*} \right)^{2n-1} \]

\[n = 0.962 \]
\[c = 0.560 \]

FIGURE 7-9-11 BACKWATER RATIO COEFFICIENT, GEOMETRY VII ROUGH BOUNDARY \(\beta = 0.5 \)
FIG 8.3-2 ISOVELOCITY CURVES AT VENA CONTRACTA
FIG. 8-3 ISOVELOCITY CURVES FOR CROSS SECTION AT VENA CONTRACTA
FIG. 8-3-5 GENERALIZED BACKWATER RATIO FOR SUBMERGED INLET GEOMETRY Iα
Fig. 8-3-7 Discharge coefficient for free & submerged discharge & partly submerged jet. Geometry I_0.
FIG. 8-5-1 DIMENSIONLESS CURVES FOR GEOMETRIES Ia AND Ib. ROUGH BOUNDARIES
Fig 8-5-2a Spiral Motion in Barrel Section Downstream of Vena Contracta

Fig 8-5-2b Typical Flow Condition Through Constriction
FIG 8-5-3 SLUG FLOW AT BARREL EXIT

FIG 8-5-4 FREE DISCHARGE JET
FIG. 8-5-5 Comparison of Dimensionless Curves for Geometry Ia for Smooth and Rough Boundaries
FIG. 8-7-1 DIMENSIONLESS CURVES FOR GEOMETRY VI USING IF_n AS PARAMETER. ROUGH BOUNDARIES
FIG. 8-8-1 Dimensionless Curves for Geometry VII Rough Boundaries
FIG. 8.9-1 HEAD LOSS COEFFICIENT FOR GEOMETRY

In smooth boundaries, $\frac{L}{b} = 0.0$

The graph shows a linear relationship between K and M' with the equation $K = 2.70 - 2.967 M'$. The plot includes data points for various values of K and M'.
K = 2.40 - 3.00 M'

FIG. 8-9-2 HEAD LOSS COEFFICIENT FOR GEOMETRY

Ib SMOOTH BOUNDARIES, \(\frac{L}{b} = 0.25 \)
FIG. 8-9-3 HEAD LOSS COEFFICIENT FOR GEOMETRY

I_b SMOOTH BOUNDARIES, $\frac{L}{b} = 0.50$

$k = 2.061 - 3.248 M'$
FIG 8-9-4 HEAD LOSS COEFFICIENT FOR GEOMETRY

I_b SMOOTH BOUNDARIES, \(\frac{L}{b} = 0.75 \)
FIG. 8-9-5 HEAD LOSS COEFFICIENT FOR GEOMETRY

\[K = 1.969 - 4.695 M^I \]

Points Not Considered:
Outlet Not Sufficiently Submerged

\[\frac{L}{b} = 1.00 \]
FIG 8-9-6 SUMMARY OF HEAD LOSS COEFFICIENT CURVES FOR GEOMETRIES I_a, & I_b , SMOOTH BOUNDARIES
FIG. 8-9-7 HEAD LOSS COEFFICIENT CURVES FOR GEOMETRIES I_a, I_b, ROUGH BOUNDARIES
φ, ϕ, Δ: Points Not Considered, Outlet Not Sufficiently Submerged.

Points

ϕ₂

Δ 22.5°
○ 30°
○ 15°

\[K = 0.895 - 2.942 M' \]

FIG 8-9-8 HEAD LOSS COEFFICIENT CURVE FOR GEOMETRY \(V_b \), ROUGH BOUNDARIES
\[K = 0.227 - 0.753 M' \]

FIG. 8-9-9 HEAD LOSS COEFFICIENT CURVE FOR GEOMETRY VI, ROUGH BOUNDARIES
\[\beta = 0.3 \]
\[K = 3.767 - 1.774 M' \]

\[\beta = 0.5 \]
\[K = 2.128 - 0.668 M' \]

FIG. 8-9-10 HEAD LOSS COEFFICIENT CURVES FOR GEOMETRY VII, ROUGH BOUNDARIES
FIG. 8-10-IGENERALIZED BACKWATER RATIO GEOMETRY
IG, SMOOTH BOUNDARIES, \(\frac{L}{b} = 0.0 \)

\[
\frac{h_i^*}{y_n} = 1.08 \left(\frac{F_n}{M'} \right)^{0.74}
\]
FIG. 8-10-2 GENERALIZED BACKWATER RATIO GEOMETRY

Ib, SMOOTH BOUNDARIES, $\frac{L}{b} = 0.25$

\[\frac{h_i^*}{Y} = 0.964 \left(\frac{F_n}{M_t} \right)^{2.205} \]
FIG 8-10-3 GENERALIZED BACKWATER RATIO GEOMETRY

Ib, SMOOTH BOUNDARIES, \(\frac{L}{b} = 0.50 \)

\[\frac{h_i^*}{Y_n} = 0.807 \left(\frac{F_n}{M_i} \right)^{2.280} \]
FIG. 8-10-4 GENERALIZED BACKWATER RATIO GEOMETRY

Ib, SMOOTH BOUNDARIES, \(\frac{L}{b} = 0.75 \)
FIG. 8-10-5 GENERALIZED BACKWATER RATIO GEOMETRY

Ib, SMOOTH BOUNDARIES, $\frac{L}{b} = 1.0$

$h^* \over Y_n = 0.646 \left(\frac{F_n}{M} \right)^{2.436}$
FIG. 8-10-6 SUMMARY OF BACKWATER RATIO CURVES FOR GEOMETRIES Ia AND Ib, SMOOTH BOUNDARIES
FIG. 8-10-7 GENERALIZED BACKWATER RATIO GEOMETRIES Ia AND Ib, ROUGH BOUNDARIES
FIG 8-10-8 GENERALIZED BACKWATER RATIO GEOMETRY Vb, ROUGH BOUNDARIES
FIG. 8-10-9 GENERALIZED BACKWATER RATIO GEOMETRY VI, ROUGH BOUNDARIES
FIG. 8-10-10 GENERALIZED BACKWATER RATIO GEOMETRY

VII, ROUGH BOUNDARIES
POGUES RUN
OLNEY STREET BRIDGE
INDIANAPOLIS
UPSTREAM FACE

SCALES: AS NOTED

FIG. 9-1-2

NOTE: ALL SECTIONS ARE PLOTTED LOOKING IN DOWNSTREAM DIRECTION.

DISTANCE IN FEET
NOTE: ALL SECTIONS ARE PLOTTED LOOKING IN DOWNSTREAM DIRECTION
NOTE: ALL SECTIONS ARE PLOTTED LOOKING IN DOWNSTREAM DIRECTION
FIG 9-6-5

Scales as noted

INDIANA FLOOD CONTROL AND WATER RESOURCES COMMISSION

ELEVATION (M S L, 1932 AD)

NOTE: ALL SECTIONS ARE PLOTTED LOOKING IN DOWNSTREAM DIRECTION

PLEASANT RUN, INDIANAPOLIS NATURAL CROSS-SECTION

RIVER MILE 351

NEGATIVE GS 63

WS 7.5.63

0.000 FOR BRIDGE CROSS-SECTION

0.000 FOR NATURAL CROSS-SECTION

BRIDGE
NOTE: ALL SECTIONS ARE PLOTTED LOOKING IN DOWNSTREAM DIRECTION

HURRICANE CREEK
EAST JEFFERSON STREET BRIDGE
FRANKLIN
DOWNSTREAM SIDE
RIVER MILE 0.30
SCALES: AS NOTED

FIG. 9-8-3

INDIANA FLOOD CONTROL AND WATER RESOURCES COMMISSION
NOTE: ALL SECTIONS ARE PLOTTED LOOKING IN DOWNSTREAM DIRECTION

DEAN ROAD BRIDGE, INDIANAPOLIS
DOWNSTREAM SIDE

SCALES: AS NOTED

FIG 9-10-3
\(\Delta y_E \)

- Pursue Data, Small Flume - Segment Tests - Rough Boundaries
- Pursue Data, Large Flume - Semicircular - Smooth Boundaries
- Pursue Data, Large Flume - Semicircular - Rough Boundaries
- Colorado Data, Simple Normal Crossing - Vertical Board Model
- Indiana Streams

Relation of maximum backwater effect to velocity head

FIG. 9-11-1
Bridge Number 2A
Olney Street and Pogue's Run
Aerial Photograph Numbers 48 (166-167)
Scale: one inch represents fifty feet
July 1963

FIG. 9-1-6
Bridge Number 8A
South Belmont and Little Buck Creek
Aerial Photographs 48(57-8)
Scale: one inch represents 50 feet
July 1963

FIG. 9-4-6
Bridge Number 13
State Road 100 to Williams Creek
Marion County
Aerial Photographs 48 (163-163)
July 1963
Bridge Number 15A

Pleasant Run to Villa

Aerial Photographs 48 (72-3)

Scale: one inch represents 50 feet

FIG. 9-6-6 July 1963
Bridge Number 15B
Pleasant Run and Linden
Indianapolis
Aerial Photographs 48 (74-5)
Scale: one inch represents 50 feet
July 1963

FIG. 9-7-6
Bridge Number 51
East Jefferson Street and Hurricane Creek
Franklin, Indiana
Aerial Photographs 148 (155-156)
Scale: One inch represents 50 feet
FIG-9-8-6
Bridge Number 59A
Plainfield–White Lick Creek and 267
Aerial Photographs 48(59-60)
Scale: one inch represents 50 feet
FIG 9-9-6
July 1963
Bridge Number 66A
Dean Road to Howland Ditch
Aerial Photographs 145 (164-5)
Scale: 1 inch represents 50 feet
July 1963
FIG. 9-10-6