
Purdue University
Purdue e-Pubs
Department of Computer Science Technical
Reports Department of Computer Science

1991

Unix and Security: The Influences of History
Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
91-087

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Spafford, Eugene H., "Unix and Security: The Influences of History" (1991). Department of Computer Science Technical Reports. Paper
925.
https://docs.lib.purdue.edu/cstech/925

https://docs.lib.purdue.edu
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

UNIX AND SECURITY: TIlE
INFLUENCES OF IIISTORY

Eugene II. Spafford

CSD-TR-91·087
November 1991

(RevLsed January 1992)

UNIX and Security: The Influences of History'
Purdue Technical Report CSD-TR-91-087

Eugene H. Spafford
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398

spaf@cs.purdue.edu

Revised January 1992

Abstract

UNIX has a reputation as an operating system that is difficult to
secure. This reputation is largely unfounded. Instead, the blame lies
partially with the traditional use of UNIX and partially with the poor
security consciousness of its users. UNIX's reputation as a nonsecure
operating system comes not from design flaws but from practice. For
its first 15 years, UNIX was used primarily in academic and computer
industrial environments - two places where computer security has not
been a priority until recently. Users in these environments often config
ured their systems with lax security, and even developed philosophies
that viewed security as something to avoid. Because they cater to this
community, (and hire from it) many UNIX vendors have been slow to
incorporate stringent security mechanisms into their systems.

This paper describes how the history and development of UNIX can
be viewed as the source of the most serious problems. Some suggestions
are made of approaches to help increase the security of your system,
and of the UNIX community.

1 Introduction

UNIX! security is often described a an oxymoron -like "instant classic" or

.. An earlier version of this paper was presented as t]\e keynote address at the 1991
Austrian UNIX Users Group annual conference, Vienna, Austria.,

UNIX is a. regislered lrademark of Unix Systems Laboratories.

1

"military intelligence." Contrary to prevailing opinion, however, UNIX can
be quite a secure operating system. Today, after two decades of development
and modification - much of it motivated by a desire for improved security
- UNIX is perhaps the best understood security-conscious operating system
in general use.

One of the keys to understanding UNIX'S bad reputation is to understand
something of its history. UNIX was developed in an environment much
different from most commercial operating systems, and this history is one
of the chief sources of UNIX weaknesses.

2 History2

,
Portions of tlLis section arc taken from [4].

2

,
More accurately, Peter (an incorrigible punster) has repeatedly told me (and otIters)

he originated the name; others attribute the name to Kernigban, and he has lold me he
is unsure if he did come up with it.

3

didn't always run properly, because every operating system performed in
put and output in slightly different ways. Mike Lesk developed a "portable
I/O library" to overcome some of the incompatibilities, but many remained.
Then, in 1977, the group realized that it might be easier to port the UNIX

operating system itself rather than trying to port all of the libraries. UNIX

was first ported to the lab's Interdata 8/32, a micro-computer similar to
the PDP-ll. In 1979, the operating system was ported to Digital's new
VAX. minicomputer. However, it still remained very much an experimental
operating system.

2.2 Outside Bell Labs

UNIX had become a popular operating system in many universities and was
already being marketed by several companies. UNIX had become more than
just a research curiosity. As early as 1973, there were 25 different computers
at Bell Labs running the operating system. UNIX soon spread outside of
the telephone company. Thompson and Ritchie presented a paper on the
operating system at a conference at Purdue University in November, 1973.
Two months later, the University of California at Berkeley ordered a copy of
the operating system to run on its new PDP-ll/45 computer. Even though
AT&T was forbidden under the terms of its 1956 Consent Decree with the
federal government from advertising, marketing, or supporting computer
software, demand for UNIX steadily rose. By 1977, more than 500 sites were
running the operating systemj 125 of them at universities.

In the universities, the typical UNIX environment was like that inside
Bell Labs: the machines were in well· equipped labs with restricted physical
access. The users who made extensive use of the machines were people who
had on-going access, and who usually made significant modifications to the
operating system and its utilities to provide additional functionality. They
did not need to worry about security on the system because only autho
rized individuals had access to the machines. In fact, implementing security
mechanisms often hindered the development of utilities and customization
of the software. I worked in two such labs in the early 1980s, and in one
location we viewed having a password on the root account as an annoyance
because everyone who could get to the machine was authorized to use it as
the super-user!

Tltis environment was perhaps best typified by the development at the
University of California at Berkeley. Like other schools, Berkeley had paid
$400 for a tape that included the complete source code to the operating

4

system. But instead of merely running UNIX, two of Berkeley's bright grad
uate students, Bill Joy and Chuck Haley, started making modifications. In
1977, Joy sent out 30 free copies of the "Berkeley Software Distribution," a
collection of programs and modifications to the UNIX system.

Over the next six years, in an effort funded by DARPA, the so-called
BSD UNIX grew into an operating system of its own that offered significant
improvements over AT&T's. For example, a programmer using BSD UNIX
could switch between multiple programs running at the same time. AT&T's
UNIX allowed the names on files to be only 14 letters long, but Berkeley's
allowed names of up to 255 characters. Berkeley also developed software
to connect many UNIX computers together using high-speed networks. But
perhaps the most important of the Berkeley improvements was the 4.2 UNIX
networking software, which made it easy to connect UNIX computers to
local area networks. (Note the stress on local.) For all of these reasons,
the Berkeley version of UNIX became very popular with the research and
academic communities.

At the same time, AT&T had been freed from its restrictions on devel
oping and marketing source code as a result of the enforced divestiture of
the phone company. Executives realized that they had a strong potential
product in UNIX, and they set about developing it into a more polished
commercial product.

2.3 Today

Today versions of UNIX are running on several million computers world
wide. Versions of UNIX run on nearly every computer in existence, from IBM
PCs to Crays. Because it is so easily adapted to new kinds of computers,
UNIX has been the operating system of choice for many of today's high·
performance microprocessors. Because the operating system's source code
is readily available to educational institutions, UNIX has also become the
operating system of choice for educational computing at many universities
and colleges. It is also popular in the research community because computer
scientists like the ability to modify the tools they use to suit their own needs.

UNIX has become popular, too, in the business community. In large
part t1tis is because of the increasing numbers of people who have studied
computing using a UNIX system, and they have sought to use UNlxin their
business applications. Users who become very familiar with UNIX become
very attached to the openness and flexibility of the system.

Furthermore, a standard for a UN lx-like operating system interface (POSIX)

5

has emerged, although considerable variability remains. It is now possible
to buy different machines from different vendors, and still have a common
interface. UNIX is based on many accepted standards, and titis greatly in
creases its attractiveness as a common platform base. It is arguable that
UNIX is the root cause of the "open systems" movement: without UNIX, the
very concept might not have been accepted by so many people as possible.

3 Problems

Tills evolution of UNIX has led to many problems. These can be classified
into three categories:

• Problems of user expectation.

• Problems of software quality.

• Problems of add-on integration.

The following sections discuss each of these in some more detail.

3.1 User Expectation

Users have grown to expect UNIX to be conngured in a particular way. Their
experience with UNIX has always been that they have access to most of the
directories on the system, and that they have access to most commands.
Users are accustomed to making their files world-readable by default. Users
are also often accustomed to being able to build and install their own soft
ware, often requiring system privileges to do 50.

Unfortunately, all of these expectations are contrary to good security
practice. To have stronger security, it is often necessary to curtail access to
mes and commands other than what are strictly needed for users to do their
jobs. Thus, someone who needs e-mail and a text processor for his work
should not also expect to be able to run the network diagnostic programs
and the C compiler. Likewise, to heighten security, it is not wise to allow
users to install software that has not been examined and approved by an
authorized individual.

The tradition of open access is strong, and is one of the reasons that
UN IX has been attractive to 50 many people. Some users argue that to
restrict these kinds of access would somehow make the systems something

6

other than UNIX. Perhaps this is so, but in instances where strong security
is required, such measures may need to be taken.

At the same time, it is possible to strengthen security by applying some
general principles, although not in the extreme possible. For instance, rather
than removing all compilers and libraries from each machine, they can in
stead be protected so that only users in a certain user group may access
them. Users with a need for such access, and who can be trusted to take
due care, will be allowed in this group. Similar methods can be used with
other classes of tools, too, such as network monitoring software.

Furthermore, it may be helpful to change the fundamental view of data
on the system: from readable by default to nonreadable by default. For
instance, user ftles and directories should be protected against read access
instead of open by default. Setting umask values appropriately and using
adjunct password files are just two examples of how this attitude can affect
the system configuration.[4]

The most critical aspect here is that the users themselves participate
in the alteration of their expectations. The best way to do this is not by
issuing fiat, but through education - the users probably have not needed
to use the system in an environment where threat is present and the value
of lost information is great. By educating users in the dangers and how
their cooperation can help thwart those dangers, the security of the system
cannot help but be increased.

3.2 Software Quality

Many of the UNIX utilities people take for granted were written as student
projects, or as quick "hacks" by software developers inside research labs.
There were not formally designed and tested. Instead, they were put to
gether and debugged on-the-fly. The result is a large collection of tools that
usually work, but sometimes fail in spectacular manners. The utilities are
not the only things written by students. Much of BSD UNIX, including the
networking code, was written by students as research projects of one sort or
another.

This is not intended to cast aspersions on the abilities of students, cer
tainly, but to point out that UNIX was not created as a carefully-designed
and tested system. Instead, many of the significant features and tools have
been developed using ad-hoc techniques. It is no wonder that occasionally
there will be bugs discovered that compromise the security of the system; it
is perhaps a wonder that so few are evident!

7

Unfortunately, two things are not occuring as a result of the discovery
of bugs. The first thing that does not seem to be happening is that people
are not learnlng from past mistakes. Buffer overruns have been a known
problem for some time, yet software continues to be written and discovered
containing SUcll bugs.

A second, and more serious problem is that few, if any, vendors are
performing any organized program of testing on the utilities they provide.
With over t of the utilities on some machines being buggy ([6}), one might
think that vendors would be eager to test their versions of the software and
correct lurking bugs. However, as one vendor's software engineer told me,
"The customers want their UNIX - including the bugs - exactly like every
other implementation."

So long as the customers demand strict conformance of behavjor by ex
isting versions of the programs, and so long as software quality is not made
a fundamental issue by customers, it seems unlikely that many vendors will
make any concerted effort to test and fix their software. The existence of
even de-facto standards that include weaknesses or bugs further complicates
the issue. Formal standards, like the ANSI C standard and POSIX stan
dard help perpetuate and formalize bugs, too. For instance, the ANSI C
standard4 perpetuates the gets call that does no bound checking on in
putj this was one of the methods exploited by the Internet Worm program,
among others.[ll, 101

3.3 Add-On Functionality

•ANSI X3JIl

8

(usually) worked well. But now, with the proliferation of workstations and
non- UNIX machines on international networks, such assumptions usually
lead to major weaknesses in the security mechanism.[8, 12J This does not
even begin to consider what happens when a higher-level system such as
NFS is built upon the already existing, unsecure layers!

It is both a tribute to UNIX, and a condemnation, that such difficul
ties arise. It is a tribute to the robust nature of UNIX that it can accept
and support new applications by building on the old. It is in a sense also a
condemnation that the existing mechanisms are sometimes completely inap
propriate for the tasks assigned to them. Actually, it is more an indictment
of the developers for failing to consider the security ramifications of building
on the existing foundation; it should be noted than not all of those foun
dations were laid by UNIX developers, either - TCP fIT, for instance, was
developed outside of UNIX initially, and was developed without a strong
concern for authentication and privacy.

Here there is a conundrum: to rewrite large portions of UNIX and the
protocols underlying its environment, or to fundamentally change its struc
ture would be to attack the very reasons UNIX has become so widely used.
Furthermore it would be contrary to the spirit of standardization that been
a major factor in the recent wide acceptance of UNIX. At the same time,
without such a reevaluation and some restructuring, there is some serious
doubt about the level of trust that can be placed in the system. And it was
that same spirit of development and change that led UNIX to its current
niche.

4 Concluding Remarks

Many conclusions can be derived from the experience with UNIX. Certainly
one of the most obvious involves the evolution and design of code. 15 years
ago, it would have seemed inconceivable that a simple operating system
designed almost as a simple exercise would become such a major part of the
world of computing. Had that knowledge been available then, it is almost
certain that Dr. Thompson (and Kernighan, Ritchie, Lesk, and the others)
would have thought more about his designs. He and the others might not
have changed anything, but I suspect they certainly would have given serious
thought to how to handle other matters (such as security).

Of course, it is easy to look back 15 years and describe design decisions
that should have been made differently. In a research environment, decisions

9

are made all the time out of expediency, and often, ignorance. There is
certainly no dishonor in cutting some corners when one has limited goals
and resources, but there is a problem when those mistakes become codified
and accepted as standard practice by others.

The real heart of the problem, however, is the marketing of software
that was largely experimental in nature, and without extensive testing. To
further compound the problem, users and vendors have pushed for standards
that lock many of the troublesome features in place. This may well mean
that we are stuck with these weaknesses for some time, or else we must be
willing to accept a certain amount of experimentation and "non-standard"
code as vendors seek to come to better designs.

Furthermore, we are now seeing attempts to "standardize" features for
security that do not address the fundamental problems with UNIX.(5] For
instance, the IEEE PI003.6 draft standard specifically excludes issues of
authentication from its scope. These "standards" describe features that have
not been widely-implemented and tested in real UNIX systems, if they have
been tested at all. Th.is means there is no assurance that the mechanisms
will work as expected, or that they are comprehensive or flexible enough
for typical environments. vVe may see considerable effort expended on the
implementation and development of standards-compliant software, only to
see a new set of weaknesses and bugs as a result.

A second conclusion is a bit more subtle, and is that" there is perhaps
a problem with our educational system. Many of our students have been
taught using this experimental operating system, and they have entered
the world of commerce seeking that same system. We failed to expose those
students to other operating systems, and we certainly failed to educate most
of them about how to make good decisions about security and risk analysis.
This same narrowness of view is evidenced in more places than just security,
but is a severe problem here.

Of course, the problem is not limited to just computer science-oriented
programs. Other programs have been teaching using PCs for some time, and
these machines are susceptible to a wider range of problems than most UNIX
machines, including computer viruses. Even elementary schools are using
personal computers and workstations to teach, and the educators there are
encouraging students to purchase their own computers. Unfortunately, few
programs at any level in the educational structure are teaching responsi
ble behavior and risk awareness to accompany the other computer-oriented
material they offer.

A third observation is that we need to reevaluate our view of how our

10

computers should be used and how we view UNIX. For instance, not too
long ago, computers were big and expensive, and it was necessary to do
everything on a single system. Now, with cheaper hardware, we are still
operating in the same mode. Tltis is probably not a good idea. Instead, we
should separate functionality out to madtines best suited - by hardware,
security, or other considerations - to handle them. Thus, it may be best to
have all the program development tools on one system (or set of systems),
but not have those systems equipped with electronic mail and news software.
We would have another set of systems with the mail, and a third set with
the production software in use. By partitioning our tools and our usage, it
may help reduce the threat.

Whatever our conclusions, we must agree that UNIX is here to stay,
and its presence will only become more widespread. We cannot change
its history, nor can we easily (or quickly) change its fundamental nature.
Thus, if we wish to have better security, we are going to have to alter our
expectations of what a UNIX environment is and has to offer, or else we are
going to have to settle for more than a modicum of risk.

References

[1] Daniel Farmer and Eugene H. Spafford. The COPS security checker
system. In Proceedings of the Summer Use nix Conference. Usenix As
sociation, June 1990.

[2) llik Farrow. Unix System Security. Addison-Wesley, 1991.

[3J JEleen Frisch. Essent'jal System Administration. NutsheU Handbook,
Inc. O'Reilly & Associates, Petaluma, CA, 1991.

[4] Simson Garfinkel and Gene Spafford. Pradical Unix Security. O'Reilly
& Associates, Inc., Sebastapol, CA, 1991.

[5] IEEE P1003.6 Committee. Draft standard for information technology
- portable operating system interface (posix) security interface. Cur
rently in balloting on draft 12, September 1991.

[6] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of
the reliability of unix utilities. Communications of the ACM, 33(12):32
44, December 1990.

11

[7] E. Nemeth, G. Snyder, and S. Seebass. Unix System Administration
JIandbook. Prentice Hall, 1989.

[8] Brian Reid. Reflections on some recent computer break-ins. Commu
nications of the ACM, 30(2):103-105, February 1987.

[9] Deborah Russell and G. T. Gangeml Sr. Computer Security Basics.
O'Reilly and Associates, Inc., July 1991.

[10] Donn Seeley. Password cracking: A game of wits. Communications of
'he ACM, 32(6):700-703, June 1989. 1989.

[11] Eugene H. Spafford. The Internet Worm: Crisis and afterma.th. Com
munications of the ACM, 32(6):678-687, June 1986.

[12] Cliff Stoll. The Cuckoo's Egg. Doubleday, NY, NY, October 1989.

A Suggested Readings

There is very little written about UNIX security. Some computer vendors
offer a security guide along with their standard documentation, but that
is usually just information on the technical details of how to use the tools
provided with the system.

Two recent books on UNIX security are available, and recommended.
Itik Farrow's book [2] is a nice introduction to UNIX security. It focuses on
System V-derivations of UNIX and provides sound advice on how to use the
available security tools and protection mechanisms. Practical Unix Security
([4]) is a 512 page in-depth look at practical methods for both System V
and BSD-based versions of UNIX. It includes chapters on NFS, network
firewalls, encryption, Kerberos, handling a breakin and US legal issues along
with informaUon on the usual topics. It also has an extensive bibliography
and source list for additional material and organizational support.

The administrator's guides by Nemeth, Snyder and Seebas ([7]) and
[3] are e.xcellent guides for UNIX system administrators, and both provide
information on a wide variety of topics, including some related to security.

Computer Security Basics by Russell and Gangemi ([9]) is an excellent
introduction to the basic terminology and literature of computer security.
It explains such things as TEMPEST and the Orange Book, as well as
providing a very extensive source book of information on other resources. It
is highly oriented to US law and regulations, however.

12

B Specific Recommendations

The following fourteen suggestions, if applied, can make a significant im
provement in your overall UNIX system security:

1. Set an enterprise-wide security and ethics policy - for everything,in
cluding the computing resources. Be sure that the policy is explicit,
fair, and applies to everyone. Describe why it is important to fol
low the policy. Be certain everyone receives a copy of the policy and
understands it.

2. Do regular backups of everything on your system. Test the backups
regularly to be sure they can be used to restore the system. Protect
the backup media from theft, snooping, and catastrophe (fire, flood,
etc.).

3. Educate your users about good security practice. Do not provide a list
of do's and don'ts without explanation; rather, provide some sensible
instruction in good security practice. Included should be (at least)
advice in setting good passwords, file protections and setting umask
values, using group IDs to best effect, and physical security.

4. Establish contingency plans. Review and rehearse the plans on a reg
ular basis - conduct "hacker drills" on a periodic basis. Important
personnel should be familiar with the plan, and all computer users
should be aware of how to activate the emergency provisions.

5. Designate specific personnel to be in charge of security. Provide them
with authority concomitant with this responsibility. Provide them
with sufficient support (including scheduled time and continuing edu
cation funding) to perform their job.

6. Do not assume that all the threats to your operation are from the
outside. In most environments, the likely threat is from the inside:
disgruntled or opportunistic employees, relatives and friends of em
ployees, or ex-employees.

7. Carefully evaluate your computing needs and roles. Does everyone
with access currently need that access? Do all the machines networked
together need to be on the same network?

13

8. Stay current with bug fixes and announcements. See if your vendor
has an update list that describes security fixes and problems. Watch
various newsgroups and mailing lists that deal with UNIX security
information.

9. Tllrn on whatever auditing capabilities your system may have, and
regularly monitor the output. Investigate suspicious entries and activ
ities.

10. Regularly scan your system for changes, odd protection modes, new or
altered programs, strange mailer aliases, or altered configuration flIes.
The checklists in [4] can help, as can use of a system like COPS.(l]
Keep a paper listing of important configuration files and protection in
formation for comparison purposes. Keep an archived copy of critical
flIes and commands on read-only media for comparison and restora
tion, if needed.

11. Consider putting seldom-changed configuration flIes and commands
on read-only media that can only be updated during single-user mode
operation. This keeps those commands and files from being tampered
with. Note that software read-only protection is not adequate in a
UNIX environment.

12. Consider carefully removing commands and facilities, or protecting
them so that they are not accessible by every user. On production ma
chines, compilers and program development tools should be removed
or protected to be unusable by regular users.

13. Consider curtailing or removing network services (especially NFS)
when there are untrusted machines on your local network. Use sub
netting to isolate untrusted machines from your protected hosts, or
put them on isolated networks.

14. If your local network needs to connect to the outside world, put a
firewall madline in place.[4] Done properly, this will protect your sys
tems inside from cracking activity, and protect against disclosure of
information to the outside.

14

	Purdue University
	Purdue e-Pubs
	1991

	Unix and Security: The Influences of History
	Eugene H. Spafford
	Report Number:

	tmp.1307986960.pdf.JuHap

