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COllyersioll lI.Iethods
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Abstract

W.. prr.seHL methods for parameterizin!!; implicit curves and surfaces and for implicit.
izing parametric curves and surfaces. hased Oil computational techniques from algebraic
gl?onwf.ry, Aft.er reviewing the basic mat.lu·matical facts of relevance. WP, describe and
i!lustral,e state-of-the-art algorithms and illsights for the conversion problem.

lI'eywords: Parametric and inlplicit curves and surfaces. parameterization. implicitizatioll, elimi­
nation, birational maps, projection. Algebraic geomet.ry. symbolic computation, Grabller bases.
11101l0i05. resultallts.
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1 Introduction

These 110f,Pi'i contain the slides of t.he course (:"llif.'li1l9 Pnmmf'lric and [ml,li('it Sllrface Re}Jre­
.~, H/n/.j()II.~ /01' CmlllHJ1.er Gmphics. given al. SIGG RAP H QO. They be.e;in with commentaries
,lllU references that introduce the material to indi\"idllals who have not at.tended this COUfse.

nrnefE'ssit:'-,. the subject is matllematicili. IlSill~ many concepts from elementary al.e;ebraic
,!!,C'oIl\Ptry. The t'Oncepts do have an intuitivf' inr.erpretation that can guide the reader nsing

t lIose mt\cepts e\"en though he or site may not be aware of some of the finer points. Those
illluitions are only sketclled here. hnt can be found in much detail. for instance. in [13], in
('haptE'fs:") through 7.

The mat.erial is organized as follows: After n'\"iewing some basic facts from mathematics.
lIletllod5 [aI' parameterizin~ implicit cllrv('::; <Iud surfaces are presented. concentrating on how
to de<ll wilh Illolloids. i\lonoids <lllow an ('specially easy conceptual approach. but one can
<lP1H('('iate sOllie of t.he technical complt'xities wh€'l1 stutiyill,!!; the method in the case of cubic
curyes.

There<lftN. we discuss how t,o convert from parametric 1.0 implicit form. 1'I'lanyauthors
h"w' diSCUSSf'd \.hesf' techniques. "lid onl.\' a n'r.v limited pNspectiv(' is developed here, A
hro<lcl('[ (I('script.ion of the subject is fOl1ud in [I:IJ. ill Chapters.') and 7. and also in [Vii,
when' tile pl'Onlelll of faithflllHf:s,~ is cotll:eptllil.lizC'd and discussed. In particHlar. resultants
are cO\'Ned in detail in Lhe theses h,v SederhC'rg (l7J aud h~' Chionh (9]. We do not discuss
lIlulfit:arialf" resultant formulations. but reff'r to [91 for further reading on the subject.

Conversion hetween implicit and parametric form is. in general. all expensive computa­
tion. It is therefore worth considering alternatives. One such approach is to view parametric
curves and snrfaces as manifolds ill higher-dimensional spaces. Such a \·jew no longer has
to distinguish between implicit and parametric representations. and the methods it develops
apply to hoth equall.... well. We wili not discuss this approach here. and the reader is referred
for dptails to (1"1. Vi].

Basic Mathematical Facts

Recall that a. plane parametric curve is defined b,\' t.wo fnnctions

,l~ /tds)

y h2( s)

altd that a Immmetric smjace is defined by t.hree functions

,l~ "ds.f)

.'I h·~(s.t)



We cau think of a parametric curve tiS a map from a strail!:ht line with points s to a curve
ill tilE" (:c . ./I)-plane. and ofa parametric surface tiS a map from a plane with points (s.t) to
a surface ill j.T . ./I.=)-space,

The functions hI: will be polynomials or ra.tios of polynomials in sand t. Accordingly,
WI' speak of in/cgml or rational parametric curves and surfaces whenever the distinction is
nitical. Ordinarily. the curves or surfaces are restricted in the literature to a domain: e,g"
to the interval [0.11 or r,o the s<[ua.re [0.1] x [0.1]. Here. we do not so restrict parametric
I"lLrVeS and surfaces_

T.\'pit:alt~·. t.he functions hI: are presented ill a particular basis: for instance. in the
IJam:;t.ein-Be=ier hasis. and this allows r("latine; the C'Oefficients of the functions h k with. an
intuitive understanding of the shape or I.he rllrve the.\' denne. A suitable basis also affords
a wpalth of t,erhniques for combilline; patrbps or par<lllletric curves or sllrfaces into larger
"urfaces. aud t.o lIIodify t,he shape or I·he lare;er snrfaee loeall.v or globally. ill au intuitive
manlier. Sl'e. e.)!, .• [;j. 111 .

.\Il IlIll,lirif rllrl'e is delilll:'d b.\' a sill.e;le equation

/1.".'1 = [)

;!.LId aIL implirif .~llIjar:e is deli ned h,\' a sillgle f"qlla.tioll

11'''.'1.01 = 0

Thus. the curve or surface points are those (hat satisfy the implicit equation. so that we uo
longer think of curves and surfaces as the result of a mappinp;. We will restrict the function
/ to POlYllOlliials.

Since we restrict the hI: to pol~·lIomials. or ratios of polynomials. and restrict tIle /
to pol,vnomials. we are dealing \\'irh algebmir curves and surfaces. Algebraic curves and
.~Ilrfaces inrlLLdl' virtually all surfaces fi1.udied and used in geometric and solid modeling. and
iLL computer-aided geometric desie;n ..-\ll!;el>raic ~eometry provides us with the following key
facts about algebraic curves: e.g .. [20j:

Every plane !Jamme.tric curlle r:an bf' f'J:jJTessed as an implicit curve. Some, but
not all. implicit. cUnJes c(m be eJ:pf'f'$!;f'(l a,~ pammelric cUnJes.

Similarly, we can state of algebraic surfaces

EVEf'Y plnne !Jammelric swjace r.all bf' f,l'pres,<:.nl ns an implicit swjace. Some.
but not all. implicit sur/aces r:(m be e.l:pressed ns pammetric surfaces.

This means. that the class of parametric ah~;el>raic curves and surfaces is smaller than ttle
class of implicit algebraic curves and sllrfaces. There is even a rigorous characterization
or what distin.e;lIislles a parameterizable algebraic curve or surface from one that is not
parameterizable. Roughly speaking. a rnrw" is parameterizable if it has many singular
l'0int.~: that is. mallY points at which the CLln'p intersects itself or lias cusps. \Ve will not go
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Figure 1: The Projective Line

x,

illta those details. uecause the characterization is ~'ery technical. and the computations that
would be needed to test whether a curve or surface is parameterizable are quite complex and
time-consuming; [;lJ.

Wp will discuss special curvE'S <Lnd surfaces tltat can bfO' parameterized fairly easily. They
inclnue till' rollowillg cases.

• All conic sections and all quadratic surfaces are parameterizable.

• Cubic curves that have a singular point are parameterizable.

• Monoids are parameterizable.1

l Monoids ,ue defined later.
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Figure '2: Parameterizing the Unit Circle
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To each affine line point (XL), there corresponds th£' projective line point (1. Xl)' Visually,
t.he affine line is viewed as tlte points obtained by intersecting the pencil with the line IO = 1.
The projective line has one additional point. with coordinates (0,1), corresponding to the
line XQ = O. This point is said to be (II. infinity.

The projective plane has the points (.rO,Xt.x2), (0.0.0) is not allowed. For all >. #- o.
(XQ.Xl.X2) and (>.xo.,\X"AX2l are the same point. A.gain, one may embed the projective
plane into affine 3·space by considerinl!; the projective plane as the bundle of all lines. in
:3-space. through the origin. The affine plane is a subset. obtained by intersecting the bundle
with the plane .TO = o. The additional points correspond to the pencil of lines through the
origin that lie in the plane xo = O. and form the line at infinity. The coordinates of these
points are of tIle form (O.XbJ:2)'

Projective geometry leads to simplifying many theorems by eliminating special cases.
For our purposes. projective curve parameterization has the advantage that all points on a
parametric curve can be reached with finite parameter values without exception. This will
not necessarily be the case for projectively parameterized surfaces.

2 Parameterization

2.1 Plane Algebraic Curves

A Geometric View of Parameterization

The /!;eometric idea underlying parameterizing a plane algebraic curve is illustrated by the
unit circle. x 1 + y'l - 1 = O. We pick one point Oil the circle. say PI = (-1,0), and consider



<lUlines through this point. A line throu~h PI has the eCJuation Y = fx + {, where t is the
illtercept with the .IJ-axis. The lines are indexed by I: r.hat is. to each value of t corresponds
<l specific line through /11' Each (ine interspcr.s the circle in fJ[ and ill one additional point
IJ(I)·2 The cOOl'dinates of p(t) are ohtained in tllree steps:

l. Substitut.e Ix + f for.l/ in the circle's e{Juat.ioll, obtaillill.l?; the equation

2. SolvE' this equation for J', ohtaining

'/', -l

:1. Obs£>rVP 1hat .rl is the alJscissa of the pnillt Pl. ilild that :1:·2 the abscissa of tlte point
!J2' ('Iparl.\, ..1:'! is <l. function of f. The f'orresponding orciinate .1/2 is obtained from tIle
lillE' P{ll1il\.iOI1 tiS 112 = 1.1:2 + I "nd is

21
.11'1=-­

l + I'l

Note t.llat (:1:·20.'12) is the familiar parameterization of the unit circle.
The met.hodjust illustrated call be thought of as the following procedure. Let f(x, y) = 0

bp the curve to be llarameterized.

Simple Parameterization Algorithm 1

l. Pick a. point fJI all the curve f, and consider all lines through Pl. indexed
b.v t.he parameter t. These lines form a pencil.

2. for pach line of the pencil. computp the "other" intersection point with
f· expressing its coordinates as functions of t. These functions are tIle
parameterization.

l,\S a fine poin~. observe that the line r + 1= tl il.lso conlains lhe point PI = (-1,0) and intersects the
,·ircle onl:-, in 111. Here. PI counts as a doublr point. I'ince ~he line is tangent to the circle. The poin~ PI is
I herefore Ihe additional point in which this linE" illlerseCl.s the circle. and corresponds to / = ±oo. Only a
projective parameterization reaches ~his point from a finite parameter value.



one of thelll on the curve_ would 1('(lvE:' two additional intersection points. P2 and P3, hoth
<I~sociated with the same value of l. and so the curve would not be properly parameterized
h,~· ollr all!;orithm.

To make the method work for rubies r('quires choosing a special point: that is, a point
sHch that lilles through it intersect t.he cubic in just Olle additional point. Such a special
point exists onl.v on singular cubics. alld is <lCTually the sine;ular point itself. Nonsin'p;ular
rubics do not Ila,·e such a. point. and callnot IH' so fJ<lrameterized. Indeed, it can be proved
t hat. a Ilonsiul'!;ular cubic cannot be parameterized at. all.

\Iodified in this way. choosill~ a sp£"cial cur\"{" poillt 1'1_ will our simple method of param­
ptprizille; cllI'ves work for all thos£" clll"ves that possess a. parametric form·? Not unless ot.ller
modifications are made that wp do 1I0t di:'jcnss. Uut rhere is an interesting class of curves
Ihat. rail lH' so p<lfameterized, na.mel:-· t he class of mOl/aids. to he discllssed later.

Parameterization of Conics

('ollie seniolls <lr£" parameteriz{"(l b:-· IllE' ltIl"Thod ([('scribed hefoTe. using au.v curve point.
]{owpvpl'. i1 ma.v lH' incollvenient, 10 [lick au arbitrar.\" point on the conic. The computations
simplify ir the poi lit is picked sHch Ihat il is thE:' origin. or else at infinit~·_ iLt a principal
dirpclion.J This ma:-· rpquire a ch<ll1!!;p or roOl'din<lte.~.

Let thp cOllic ei[uatiou be

WE:' first look for a point "at infinit.v·· b.... computing: the roots of the quadratic form

The rootf'i are !!;ivE:'1I b.v

7J "II

They are either two real roots. possihl:-· pCJual. 01' they are conjugate complex. III the complex
C<lse. the ('ollic does IIOt have points at inJillil.\·, and is an ellipse or a circle. In tllat case we
must find a point at finite distance. and use thereafter tile method for monoids described
later. Otherwise we have a point at iutinity_ auel proceed as follows.

Let (It. /,1) be aile of the two real roots. \\'£" substitute

:1: .rl + tl.lJI y VYI

ill the ('ollie ('{[ua-lion. It is easy 1.0 spp 1llilt 1hp resulting equation is of the form

!fileTl +rll+q(:rl) =0

-'See (iJ. or [Uj. p. l'i.



wllere q(.rl) is a. quadratic polynomial ill .rl alone. This conic is parameterized by

.1: Jl t)

13f'cause of the substitution. therefore. t.hp OI'i,e,:illal conic is parameterized by

/ + "Ydt) 'II I)

There is Ruot-her method for pal·<l.llI('t.E'l"iziug {'Ollics. baspd on linear a.l.e;ebra. dne to JRcobi
ill the [JrPviolls cent.llry. We sketch it bripll.\·: spe [t:lJ p. liD for details. The advanta.e;e of
.Jacohi·s al!!;orit.IIOl is that it generalizes directl.\· to quadratic surfaces. and that it is well
h.... hav('(llIlIIIlNically.

Tht' {'ollie ('qllaLioll.

(',HI hl' wl'it t,Pll as I,he I>iline<l.r form

:::)(:)
ft1.'3 1

=0

An iterative a.l~orithm can be devised that applies rotations to the coefficient matrix. and
dia.e::onalizt's it.. After diagonalizatioll. t.he I'pslllting lOuic has a standard parameterization.
of til", form-I

<(I.)
1_/2

1"--,
1+/"

ytt)
21

"'--.1 + (~

The numbers J11 and J!'l depend all thp entries bkk of the diagonalized matrix: that is,
I!l = v'lbll /b:I.'3r and J!'l = v'lb22 /b.'3:Jr· By applying t.he inverse rotations. this standard
parameterization is mapped to a parameterization of t.he original conic.

Parameterization of Cubic Curves

The difficnlt.\· of parameterizing a cubic curve is to find out wllether the curve has a singular
point. alld if so. where it is. The singularit.y {'Quid be apparent and at the ol'igin. as in the
('lIspidal cnbic

':-'lore precisel~'. the parameterization depends on Ill(' sill:ns of I,he dial/;onaL entries. \Ve assume here that
lhp lirst tlVO "ia~ona1 entries have etlulL! siJ';1I oppo~il,p 10 t.he sil;1I of the third elllry.



I hat is parameterized by

.r(t ) JJUl

The sin!!;ularity could be at inHnity. as in the case of

.J '.'J - f +.1.- - .I' = 0

parameterized b:,-"

., y = ,.1 _ fl + {
Bur the {"lillie ("Quid also be lloHsingular <l.lld lta,V£, no parameterization. as ill the case of

Tile lollowill!!; ;d,gorithm from [:2J solvE'S tilt' 1),Uameterization problem of cubic curves. De­
"'pite the relative- mll\plexit.~·.lh(> algorithm is related t.o tile simple parameterization proce­
dul'f' discussed ill geometric tt'rms hefore. We illustrate the ll\ethod with a.u example from
["1111. 1'1.

\"vp ::Ire ~ivel\ t,ll{' cubic

Its (/Fqrre form COllsists of all cul>ic terms. The first ~tep is to find a real root of the
cle~ree form. so as 10 apply a coordillate trallsformation to f that eliminates the y3- term .
Sillce lhe degree form is cubic. it llas at le::l~t one real root. Here. (-:2.1) is a root of
'l.x.rr + 'l.Gxy! + 7.I'!Y + £J/2.

lit the second st,ep. we lise the root (II.V) to perform the suustitution

., I'YI

:-.Iot.e [hat this substitution is exactl.\' as in the couic parameterization. In our example. we
obtain

The (.ransformed curve equation has the form

wllere hi is a lineal' polynomial. 11 2 (l. quadratic polynomial. and h3 a cubic polynomial. In
step :1. we multiply with hi to bring the equation into the form

9



whl;'re 11.'1 = "Ih:] - "y-J. Note that 11.1 has d~'gTee ...L So. we ha"'e

-1(.l:I-11
2
Yf+-!(·tl-lH,r':+'I.l'1 + 1).'I\+\.r'11 -,,.:i+:J:/:i-:J'/:11/2=O

whicll C<l.1I bl' rewrir.ten as

[1('/:1 - I lilt + (,d + -1-·1"1 + 1)12 ~ (.I'i + ~,I'1 + 1)2 + {,l:t - ,r'? + :l,/:i - :J./"il/2 = 0

In Step <\. WI' substitute.'l~ for t.hE' quadratic form (hl(.l:1 )YI + "2(./:\ ) f'.! , In tile example .
.'Iz = 21'/:1 - 1),1/\ + (.ti + 4·1"1 + 1). wl1elH"t>

yi = (·/:-1 + II,d + :1:1,l"i + H)J., + '2)/2

ThE' ric;hthalld side of this e<lIlatioll is a polYliomial of degree lip to·L It can be proved
that 1he oric;iual cubic is Ilonsin.e;ular if 'Iud ollly if the rip;hthand side is of degree :3 or '-l and
It'IS 110 multiple roots. Note r,hat a. ILonsine;ular ("lIllie ,an not be parametE'rized. Otherwise.
1111' IIInltipl(' 1'001. A ("t11l he used to 1.1'<lIl~rOrill lht' equatioll into a quadrat.ic- equatioll. by tile
.~l1hsritll1.iOIL

.Ill
YJ = -"-'--

.1'1 - A

III Step :j. Lh<'l'eforp. we iuvE'stigatc Lh(' roms nf I lie ri$',hth<llld side. If a double root is present.
WP make this subst.itntiOIl. In the example. the ril;"hthand side has the double root XI = -1,
so Wli:' set .'13 = y'l!'{.I"\ + II and obtain

'2.'1A = .ri + Uk\ + 2

l[ StE'P ,') slicceeds. the substitution transforms Lhe equation into a quadratic one, and
I his quadratic eqnation is parameterized ill StE'P (j lIsing the methods discussed before.
Thereaft(>f. rhe ....arious substitutions are ill\·erted. transforming the conic parameterization
10 a pilfamer.erizatiou of the original cubic. In our E'xample. the conic is parameterized by

/1. + 1St +:2
V'1(2t+ 15)

.11:11/ )
'2l + l!j

SiuCE'.'I1 = .In/(:/:I + IJ. we thus obtain

(11. + l:jf +1)(/2 + '2t + 13)
Y2 = - '-----'---'-'7'i;:;:"-:-~7>--'---'-'-'

Vll21 + l.j)'

.'11=

Xow !/2 = 2(,rl - IlUi + ;t~ + 4xI + 1. from which WE' obtain

rV2 + 1)1' + 18V2 + 1,11' + llJOV2 + •.»1' + I••V2 + (99)1 + I109V2 + 261
.'II = - !2(4t3 + '2'2t'l 1:28t 510)

XotE' that WE' can caucel (t - 1 +:3/2\ whence

IV2+ 1)l'+lliV2+ 12l1'+I:IOV2+2111+lllV2+401
V2IW -112v'2 - 2lill -190V2 + :3011

From this parameterization. we finally obtain lilc parameterization of the original cubic j.

III



Parameterizing Monoids

.\ Clll've f of deg;ree /I with a point of llluitiplicit.\· II - I is a monoid. Every conic section is
a monoid. alld evpry singular cuhic curve is a lIIonoiu. An analogous definition for monoida!
surfaces is discussed later.

:-"lonoids are especially easy to pararne!erize. flrovided we know where the (n - I)-fold
[loiul. is alld have hrollght it to the orill;in. [I i): Of else if the point is at infinity, ill a principal
dir('ctioll. W~ explain the parameteriza.tion method assllll1inl!; the singularity is at the origin.
Examples of mOlloicls in this form illclude tIle circle

,r:! + i - :Lr = n

t hroll~h I hE' origi ll. the cllspidal Cll hi ..

and the alpha curve,
,/,'1 + .1 2 _ I} =0

hOI_h with t,hl::' sing;lIlarity at the orie:;in.
When llLl::' (II - l)-fol<1 Jloint is at thl::' origin. the implicit monoid equation is

II n (.r.y) - 1I,,_d.l',y) = 0

where h" has ollly t,NIDS of degree n. and h"_1 has only terms of degree n - I. This is readily
verified in the three f.>xamples.

II. is easy to see that the parallleterizat,ioll of the monoid is given by

.r( .~.I) s
II" 1(."'/)

II ,,( .~. t)
!Jt$,tl

th. ... [(s,t)

hllls,l)

This is a projE'ctivp parameterization that is rlLanged to the normal parametric form by
pit-Iter seltitlg s :::: I or setting t = I.

The rnmwid parameterization is derived by considering a pencil of lines through the
origin. Every line can he expressed parametrically as

x(,1) Y( A) 1,\

and is determined by a unique ratio .~ : I. With $ = 1. we obtain the usual form

y = '.1'

~ow P"clt line intersects the monoid in aile "dditioual point. and this point IS therefore
Illliquel.\· associated with the ratio.~ : t of the line.

11



In the example of Lite alpha curve. ,1':3 + ,1'2 - ,1/2 = O. we have

":l(-l: • .II)

II'2{.r . .II)

lIs (projecri\'e) pa.rameterization is therefore

y(.~. f )
/'1 _ ,,,,2

8:1

Wit.lt ,~ = I we obtain the nsual parameterization

.'It t)

Uecallse the parameterization is so easy to Iind.lllolloids have also been called dual/arms
in tIle CA(;D literature: e.g .. [ITI.

2.2 Algebraic Surfaces

The parameterization of implicit alp;E'hraic snrfaces is much more complicated than curve
parameterization. For one. a dlaracterizatioll of v..·heu an implicit surface has a parametric
form is technicall,v fInite complicated. and is not readily explained in geometric terms. There
is no known general a(goritlun for determinine; whether a given implicit surface can be
parameterized. and if so. how. fortunatE'ly. Illonoidal surfaces can be parameterized in a
\'f>r,V f;impIe manuel' witl, a clear geometric iutuition. and these surfaces include all quadrics.

Monoidal Surfaces

.\11 alg;!:'braic snrface j(,r.y.::) = 0 of deg:ree 11 That has an (11 - I)-fold point is a mORoidal
surface. :,,[olloidal surfaces include all quadrics. cubic surfaces with a double point, and
Steiner surfaces. [1IJ.

Bezout's theorem states that a line inter!iert!i a surface of degree n in exactly n points,
ilssuming we admit complex intersections (I,nd intersections at infinity. and account for in­
tl"rsection multiplicity, It follows that a monoid could be parameterized by an extension of
the simple parameterization algorithm described before:

Simple Parameterization Algorithm 2

1. Let PI be a point on the mouoidal surface of multiplicity n -1. and consider
all lines through Pl' Each Hne is determined by a pair (s.l) of slopes in two
principal directions. or. alternatiwl:--'. by a unique ratio T: s : t of direction
cosines.

[2



2. Determine (:1:(8,l). Y{8.f) . .:(s.t)). t.he additional intersection point of each
line with the monoidal surface. as function of 8 and t. thereby deriving a
parameterization .

.\I.I!;ebraicall.\'. things are extremel.v simple when the singular point is at the origin! for
Ihellll\e implicit {,([lIation has the form

11,,(:1: . ./1,':) - h,,_d·l'..'I.=) = 0

where h" has ani .... terms of degree II. and ",,-1 has only terms of degree It - 1. The
parameterization is Lhen

.r(r.8.t)

!J(r ..~.1)

hn d,·.~~.t),.
hn{r.s.l)

h" II /" ..~.I),

.:( I' .~~. t)

!In (,..8 .Il

I h,,_dr.s./)

"nIl', s ./)

This is a I'rojPctiVE' parameterization that is changed to the normal parametric form by
sf't.ting one of the parameters r. ,~. or t to l.

As an example. consider the sphere with radius 1 and center (1,0.0)

It is parameterized by

Setting r = 1. we obtain

.1~(T·.S.l)

!I(T·.S.l)

=(r.s.lj

:1:( s.l )

y{s.t)

=(,.1)

r'~ + ..,l + t l

21'8

r2+.~2+ll

2rl
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Quadric Surfaces

Quadrics c<tn be parameterized as mOlloidal surfaces. Any point ou tIle quadric suffices. The
<ll~ehraic llIClhod discussed for conic sections C<l1L be generalized [1]: First. we find a point
Oil the quadric at infinity. next. we chan!?:e coordinates 10 move this point into a special
position. and tllen we pick up a stalldard parameterization that is strncturally like the one
,2;ivPIl hefore. [or mOlloidal surfaces whose sin.e;ularit.\· is at the origin. TIte ill'o,erse coordinate
rransformatiOIl. fina(ly. maps the sta.nda.rd parameterization to a parameterization of the
orie;inal qua_uric surface.

Jacobi"s al.e;oriLitm can also he used for I]uadric snrfaces. Here. the coelficients of the
quadric surface

<11'(' writt.en as [hI' s.nnmetl"ic lll<ltrix

rt I I 1/12 (/1:'1 Ill_I

rt I'l I/'!'l II !.1 II·!·I

(Il.l {/'!:'I O'l.1 (h·1

"L4 f/·!·l (1.14 (lH

<lud t,his matrix is diagollalized Ilsing the usuall'otations. From the diagonal form. a standard
parameterization is determined that is mapped hack to a parameterization of tile original
quadric hy the inverse rotations. The stalldarcl parameterization depends on the signs of the
diagonal entries and Oil the rank of the matrix, For details see [13). p. 180.

3 Implicitizing Rational Curves and Surfaces

Existence of the Implicit Equation

Given a parametric curve with rational coordinate functions (hds).h 2(s)), its implicit equa­
tion should he a polynomial f{:t:.y) = 0 snch that f(hd8).h2('~))== O. Moreover. the degree
of f should be as small as possible. To understand the existence of the implicit equation, it
is IIseful to [earn alJOnt transcendental field extensions.

Let A' be a subfield of a larger field E .'~ Consider a set S of elements in E that are not in
fl. The extensIon field Ie = [{(5) generated hy S is the smallest subfield of E containing
Sand h-. If every element of 5 is tIle root of a pol,vllomial f(x) with coeffirients in f{. then
[l' is an algebraic c.J:len.<;ion. Otherwise. I~" if; <l_ lmnscendenl(ll extension, For example. let
II he t-lle field or rational numbers. £ the field of real numbers. and let 5' contain ouly the

~.-\ field j:;. a set wit.h audition. subtraction. 1II1lIliplica.tion, and di\'i:;.ioll, for the properties tha.t must be
satisfied see [19],
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lIumher if. Then the extension field A'{rr) is" transcendental extension. On the other hand.
with S = {h} Wf' obtain the a.lgebraic f'xtension field ll{ v'2). since ../2 is a root of x2 _ 2.
S{'P <lIsa [I:IJ. Chapter I.

('onsider a. transcendental exrension of A· b.v (l finite set of elements of E. say S =
{.I·I· .1'2· ...../:r}. It is then known that ever..... ele-ment in the pxtension field cau be expressed
as <l rational polynomial expression in the .1';. Tllis pE'rmits us to consider purely symbolic
pxrensions of A- in which the elemems of ./,i are .~ymbols. The resulting extension field is the
rnfiOllfl{ fl1lldion field of K, and is denoted Il(.I'\ /:,,).

The cardinality of S is called the frn.fl.'1(-'C"ndenc.'I dEgrEe of the extension. and a theorem
from ale;ebra asserts that the transcendpllc..... de~ree is unique. This implies that if Ill, •.•• Ur+1

<Ire arhitral'.v elements in tIle extension Iield. Ihen they must satisfy a polynomial equation
f( Ill· .... ur+ I) = 0 where the coefficients of [ a re in A'.

\\.p explain why (.he implicit f'<[nation of a, rarional curve exists. followinl!; [9J. Consider
I Itl' ratioual function field C(8) of the ('Ql\Ipl£.'x lIumbers C of the transcendental element s.
IJecause the curve is given b.v

WE' shonld think of.r and y as elements of C(8). But the lranscendency degree of C(s) is I,
so .1: and.lf must sa.tisf,v a polynomial f2quation f(.I:.yJ = O. The simplest such equation is
t.he implicit equation of the rational curve.

The same argument shows tile existence of an implicit equation for a. rational surface:
Let

!I

hd~~.t)

h2(.<:;.1)

h·l ( ·~.ll

be tIll' parametric surface. Then J:. y. and:: at'e elements of the field C(s. t), oftranscelldency
de~we '2. So. they must satisf.y a. polynomial (,<[Ilation [(:c.y.::) = O.

Implicit Forms Vs. Base Points

\Ve usuall.\· think of a parametric cun·e as a. mapping from the line to a plane curve. and
of a parametric surface as a mapIling from the plane to a surface in 3-space. Suppose we
have started with a parametric surface. fOil lid its implicit equation. and compare the point
sets rlefined byead!. Then it turns out that ev{'ry point Oil the parametric surfa!;e also lies
Oil the implicit stlrrace. but not necessarily \·ice-\'ersa. Consider as example the parametric
sltrface

1.'5



The implicit equation of tlle surface is

Since

covery point of tIle parametric surface is also Ott tlte implicit surface. Now tlte points

(O.Il.U)

are all the implicit surface. But when II f:. O. those points are not on the parametric surface.
because z ::: 0 forces .9 ::: O. a.nd therefore <'lIsa .lI = O. It follows that the parametric surface
(QuId be <'l proper subset of the implicit surface.

[Il e;eneral. it is known that the implitit SllrrUe Il\<'lY contain finitely many isolated points
alld curvf'S r,hat <Ire "missing" in t.he paramet-ric form of rhe surface. Some of these points
('all bf' recon'red by changing tlte parameterizat-ioll to a projective one. We did this for the
lInit tirde. ill order to reach the point (-l.0). and for the unit sphere. to reach (-LO.O).
But lIot <Ill points can be so reco~·ered. and. ill particular. 1I0t the points missing ill the
f'xample just. shown.

COllsider the rational surface

The polynomials hI. define four curves all the (.~.l)-plane. A base point is a common in­
tNspctioll (t'o.lul of tlte four curves. Such pa_rameter values (.~o.to) do not define a surface
point. Cllionlt [9] discusses the relationship lH'tween base points and "missing points" on
1he ,,<lramet ric snrface.

Sylvester's Resultant

Syl\'esr_er's resultant is a simple method for eliminating a variable from two algebraic equa­
tions. and it can be used to find the implicit equation of a parametric curve or surface. Given
two polynomials

f(x) = (lnXn + n7l _1.l: n- 1 + +ao

g(x) brnx lll + bm_l.r"l-1 + + bo

16



it can be shown that f and g have a common root iff the (m + II) X (m + n) determinant

"0 o

"0

o
o

R.
o "0

bm 0"'_1 bo 0 0

is zero: sel' [l9). st'ction 130, The determillal\[ is the S.vlvester resultant. Here. the Uk and
hI,- arE' assumed to be numbers,

TIle S,dvE's[E'r resultant can hp used for two \Ilnlti\'ariate equations: that is. under the
<lsslllllption t.hat. the fl.k and bk are poi,vllolllial.'i in the remainin~ variables. In this case.
[he S,vlve!'itN resultant R is a polynomial ill these remaillin~ variables. The solutions of the
('quation R = 0 either extend to a common solution of the original equations f = o. g = O. or
are a solution of t,lle system a" = 0, bm = O. or else are a common solution of the coefficient
polynomials of f or of g.

The Sylvester resultant can bE' llsed for implicitizing parametric curves and surfaces,
sllbject to certain limitations. Briefly, tile rational cun'p

(
htl"j h,I,'I)
"o(s)' hots)

is considered as the intersection or two surfaces in 3-space given uy

J:ho{s) - "ds) 0

yho(s) - h2('~) 0

Elimination of s using the Sylvester resultant delivers the implicit equation. or a multiple of
the implicit equation due to the possibility t.llat the lead coefficients vanish.

Parametric snrfaces could be implicitized similarly. forming the equations

;I:ho(s,tl - hd·~.t.) 0

gha(·5. t I - h·li";.t) 0

:;lIo(s,t 1- h1i·~.t) 0

and elimillatine; first s. say. and tllen t, .-\lteI'lHttively. <t number of other resultant formula­
tions haw been proposed for eliminating UOI h \'ariables a.t once. See [9] for details.
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Grabner Bases

For inlee;ral rational cur...es and surfaces. Grahner bases ale;orirhms I>rovide an alternative for
illl[llicilizill~ [larameuics witlwut the introduction or ~xtralleous factors. These a.Jgorithms
are \-Pry liophisticated and are VPry I!;eueral: see [fi. I. 1:3. V.i. 16]. Certain spE'cializations
"xilil tlutt improve their pe-rformance si.l?;nificantly.

We sketr.h some of the ideas that ?;o inlO Grallller l)asE'S al~orithms. for a lllore detailed
pxplanatioll and man.v examples ami applicar,iolls spe [n]. Chapter /. Consider the set
1l[.I:I' I: r ] of all lIlultiva,l'iate polynomials ill .1:, I: r and with coefficients in the field
fl. for our purposes. w~ consider the field of complex numbers..\n idEal f is a subset of
I'OI .... nolllials in /\'[.1:\ ......L· r ] [,hat is rlosed ullder addition and subtraction. and also ullder
llluitiplicatioll with other polynomials t.hat art' lIot n('cessaril~' in l. .-\. basic t.heorem asserts
Thar. wp call find a fillite set. 1, ..... /" of pol~·l1omia,ls ill 1 such that e...ery other polynomial
'I Ilr [ran lH' wriltell as an aJ~ebraic cOlllbiuiltiOlL or ,hI' II:; that is.

TIll>!"!' aI"{' mall.\' ideal hases. not llecessa.ril.\· of I.he same cardinality. A Grobner l>;'Isis is an
itlpal hasis wi1.11 :'i[lI'cial propertiE'!i that pl:'l'mit ;'IliswE'l'ing; basic questions about tile i(leal
lIsin.e; simple algorithms. Every ideal has a Grabner basis. and t.his hasis depends Oll certain
orderinl!;s of t.erms. for example. ill the elilll;lIaliol1 ()/'{/el·;lIyG we first arrange the variables
in a fixed sequence. say

alld declare that a term u comes earlier ill lhe ordering than another term v provided that
/. ronta.ins a. \·a.riable that is litter in the \'i\l'iable sequence than every variable occurring
in It. So. with .1: -< .'J -< 2. the term u = .I •.

l y2 would precede the term v = cI:YZ. If the
highest occurring \'al'iables in the two terms are the same. then the degree of that variable
df't,ermines t.he order. and ties are broken by recursivel.v considering subtenns derived by
dl'I"'tit1e; the highest variahle from boHt [.enlls. Thus .rIOy·! -< .r:y3 and x 2y:;2 -< .cy2z 2.

Gi ....en a set or algebraic eqllations. the (~r6bller haliis of the ideal generated by the occur­
rine; polynomials. with respect to the elimination ordering. defines all equivalent system that
is in t-rianl!;ular form and can be solved much more easily. The basis will contain the implicit
form of a parametric curve or surface. provided the snrface is integrally parameterized.

The term ordering influences the time rE'quired to construct a Grabner basis. The elimi­
[la-tion ordering just discussed produces a basis best-suited to many CAGO applications. but
requires more time than oasis cOllstructioll \\·it,ll respect to certain other orderings. Basis
cOll\"ersion all!;orithms exist that allow first computing a Grabner I>asis F with respect to
<lily orrlerin.e;. and t.hen [lOst-processing; F tn reveal some of the information explicit in the
oilliis F' with respect to the elimination onlerillg. Combined. the two steps often are much
more elncient t han the outright COllstrunion or the hasis P. The approach is especially

"a.1so c<J.l]ed le:ticographic orderin!!:



appropriate for implicitizing parametric curves and surfaces. for details see [13J. Section
,.S.

Experience with Elimination Algorithms

:<.Ian.\· resultant formulations have 1I0t been implemented so that no experimental data cau
1)(' cired ill supp0l't of their possihle practicalit~·. We llave experimented wit.h implicitiz<Ltion
oj" curves and surfaces 1lsing

1. S.vlvester·s resultant.

'2. Crobner lJa.~es with the elimination order. a.nd

:1. Basis (,Oil version.

Three surface implicitization probletlHi wpre solved. llsine; illtC'gral para.metric surfaces of
degref> rwo. Ihree. alld bicubic. The parallll'lric C]l1adric is

y

The parametric cubic is

The> lJiruhic :mrface is

'I

:1· .J-I + .jsi +.~ + S

I.~J -:ll + 1

:38(S - If.! + IJ +:H

-:3.S(Sl - .)S + ;,),.1 _ :1($,) + l)sl - 95 + 1)t2

+t(GsJ + 9s l - U~.5 +:l) - :35(S - 1)

The running times are shown in the tahle. :\11 computations were done on a Symbolics
:Uj.SO Lisp lIIachine with lGMB main memory and 1:20 MB virtual memory. Note that the
lIardware speed of the machine is less than aile i\HP. Methods 1 and 2 are the standard
implementations of resultants and Gr6bner bases offered by Macsyma 414.62. Method 3
was wrilten at Purdue. An entry 'X. iudicates rhat the computation could not be completed
due [0 insufficient virtual memory. The t<lllle !'ihow!'i clearly that t\Iethod 3 improves effi­
ciency !'iigllifir.antl~·. hut overall the times are much slower than one would require for routine
npplicatiolls. Future work is required 1_0 illlpro\'(' \.he situation.
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Problem ~rl"thocl I \IE'thod "2 ~lethod :J

quadratic :n .J.) (;--
cubic IO'~ '" :ll5

hicubic '" C'C 10'~

Table 1: Ililplicitization Times in Seconds
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5 The Slides

I. Basic Facts

LA. Definitions Recalled

LB. Theorems on Conversion

I.e. Projective Parameterizations

Plane Parametric Curve

x = hl(s)

Parametric Surface

x = h,{s,t) y= h,{s,t) z = h,{s,t)

The hk are polynomials or ratios of polynomials.
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Implicit Curve
f(x,y) = 0

Implicit Surface
f(x,y,z) = 0

Typically f is a polynomial in the power base.

Nota Bene

• Parametrics are often restricted to a domain,
but not here.

• Many properties of parametrics depend on the
basis in which the hk have been expressed, and
are valid within a given domain only. 'We as­
sume a basis in which the hk are uniquely writ­
ten.

Basic Theorems

• Every plane parametric curve has an implicit
form.

• Every parametric surface has an implicit form.

• Not every implicit plane curve has a parametric
form.

• Not every implicit surface has a parametric
form.
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50•••

The class of parametric curves and surfaces is smaller
than the class of implicit curves and surfaces.

but ...
An exact characterization of parameterizability IS

not simple.

Some Parameterizable Implicits

• All lines and all conic sections

• All planes and all quadratic surfaces

• Singular cubic curves

• All monoids

Methods for Implicitizing Parametrics

• Variable elimination via resultants.

• Elimination ideals via Grobner bases.

All methods are expensive except in certain special
cases.
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Example

The circle .:r2 + y2 - 1 = a is a conic section and can
be parameterized. The parametric form is

1 _ t2 2t
.«t) =-- y(t) = --,

1 + t' 1 + t

Parameter/Curve Point Correspondence
y

t=1

x,. ,. t=o

,t- -I

Other parameterizations of the circle can be obtained
with a fractional linear transformation of t; e.g.,

38 - 1
t=

8 + 1

yields

_4.52 + 48 382 + 28 - 1
«8) - Y(8)=" ?+1. -.582 -205+1 ·JS -_.5
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Parameter/Curve Point Correspondence

The parameterization does not "reach" the point
(-l. 0) IInless it is changed to a projective param­
eterization. by homogenizing the functions hk •

2st
Y -

- 52 + t 2

On surfaces. not all "missing points" may be so re­
covered.

Parameter/Curve Point Correspondence

26



Missing Points Example

The parametric surface

I = st

has the implicit form

y = st1.

This surface contains the line x = :; = 0 that is not
reached by the parametric form.

Nonparameterizability Example

The cubic y2 - .z:3 + X = 0 cannot be parameterized
unless square root functions are used.

J

~
-'\-/ 0 +' <

\
Projective Coordinates

The affine point (XI. X2) corresponds to the projec-
tive point (AxQ, AXil AX2), where Xo = 1 and A is not
zero.

This sets up a correspondence between lines in 3-
space and points in the Cartesian plane.

Points with Xo = 0 are permitted. but not the point
(0,0,0). Such points are called points at infinity.

27



---------. x,

Projective - Affine Correspondence
Xo -..t)

.."...,'
.",

/

- ;>---/
- -... I /---......

--A!-'
/i' -

Having projective coordinates simplifies many theo­
rems by eliminating special cases.

The affine implicit curve f(x,y) = 0 corresponds to
the projective implicit curve F(w,x,y) = 0, where

F=wnf(~, y)
w w

and n is the degree of f.

The projective line has points (..\s, ..\t), where>. =f:. 0,
and sand t not both zero.

A projective curve parameterization is one in which
the coordinate functions are homogeneous in sand
in t.

28



Projective. Affine Correspondence
x.

(tl

Example

The unit circle is parameterized by

W(.9 1t) = S2 + t 2

x(', t) = s' - t'

Y(" t) = 2st

When .9 and t are integer, we obtain the rational
points of the unit circle.

A projective surface parameterization is a map from
the projective plane to the surface.

There may be some points that are not reached by a
projective surface parameterization; they are called
base points.

Valuations are a method for reaching all surface
points.
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End of Part I

II. Parameterizing Implicit Algebraics

ItA. Curves:

Geometric Idea

Conics, Cubics

Monoids

II.B. Surfaces:

Monoids, Quadrics

IT.A Curve Parameterization
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How to Parameterize A Circle
y

~
~[<),Yl'»)
t

•P

Line equations are y = t(x + 1)
Substitution into circle yields

x'(1 + t') + 21'x + t' - 1 = 0

Solutions are -1 and

1 - t'l
x(l) =--

I +I'

Resulting Parameterization is

l-e
x(l) =-­

1+ t'
2t

y(l) = 1+ t'
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Algorithm

1. Fix a. point p on the conic. Consider the pencil
of lines through p. Formulate the line equa­
tions.

2. Substitute for y in the conic equation, solve for
£(t) .

;3. Use the line equations to determine y(t).

Hyperbola Example,

p

Implicit equation: xy - 1 = 0

Lines are: y = (x + l)t - I

Substitution yields: x(x + I)l - J: - 1 =: a
[nteresting root: x(t) = l/t

Parameterization: x(t) ::::: lit

y(t) = t

32



How to Find a Point on a Conic

Intersect with a line - requires solving a quadratic
equation.

Easiest with line at infinity, but that may yield com­
plex points.

Otherwise. find extrema by intersecting with a par­
tial.

Algebraic Method for Conics

nux2 + 2U12J:Y + a22yl +2Ut3,l; + 2U23Y + U33 = 0

1. Find the roots of degree form

They are

Y = au

2. If (u,v) is a real root, then substitute

The effect is to cancel the y2 term.

:3. Set x(l) = I. Compute y(t) for transformed
COnIC .

.t-. Backtransform.
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Given:

Degree form:

Root:

Substitution:

Example

x2 _ y2 + 2x + y + 4:

.1:2 _ y2

(-l,l)

X=XI-Vl

Y = YI

Result: I~ + 2.rl + 4: - vd2xI + 1) = 0

Parameterization: x( = t

y, = (t' + 2t + 4)/(2t + 1)

Backtransformation: x(t) =
t2 _ t - 4

2t + 1

y(t)=
t' + 2t + 4

2t + 1

Jacobi's Method

l. Write the conic as the bilinear form

( a"
a"

"13 )( X )
(x y 1) "" a" a23 Y =0

a13 a" a33 1

2. Diagonalize by applying rotations B = RART

:J. Backtransform a standard parameterization of
the diagonal form.
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t.;ancel p In che subma.crlX

(: :)
with

where

R = (
cos(a)

-sin(a)

,in(a) )

co,(a)

tan(2a) =
2p

m. - n

But observe...

Suppose R has canceled a12 with matrix R. Then a
subsequent rotation R', canceling a13 say, may rein­
troduce a nonzero a12.

It can be proved that ai2 +ai3 +a~3 is reduced with
every rotation.

Let

( A01:2~)o 0 A3

be the final diagonal form.
If some of the '\k are zero, then the original conic is
degenerate.
If all '\1. have the same sign, the original conic is
Imagmary.
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Otherwise, assume without loss of generality that
)'1 > O. If ..\2 is also positive. then the parameteriza­
tion is

where

x(t)

y(t)

1 _ t'
- ~l 1 +t'

2t
= 1l2 1 +e

If A2 is negative. then the parameterization is

Again

x(t)

y(t)

1 + t'
- Jil-1 '

-I

2t
= lIz--

1- e

Example of Jacobi's Method

Parabola y2 - 2x = 0
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Rotation angle 7r14 gives matrix

P = (~ ~ -~1
a 0 a

where a = v'2/2.

Then

RPR
T

= (~~ ~ )

o 0 -I

with parameterization

but
(Xl y, z,)R = (X y z)

so the parabola is parameterized by

X _ J2.'
y = 2st

z = J2t'
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In affine coordinates. and with t = 1. therefore.

x = S'l

!?y = V.!.S

The more familiar form

y = S

is obtained with t = V2

Cubic Curves

Only singular cubics are parameterizable. For exam-
ple, xJ + x2 _ y2 = a 'j

(lI(t) , )'L+»

:38



Line equations:

Substitution:

Roots:

y = tx

x' +x'(l - I') = 0

X=O

Therefore:

x( t)

y(t)

I' - 1

t3
- t

Problems with Cubic Curves

An algebraic algorithm for parameterizing cubics has
to

1. determine if there is a singularity,

~. and if so, find it.

Algebraic Method for Cubic Curves

I. Eliminate y3 term.

2. Transform cubic to the form

y' = h,(x)

where h4 is degree 4.

:J. If hot has a double root, then cubic can be pa-
rameterized.
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1. How to Eliminate the i'-term

<t) Find a real root of the degree form. say (u, v).

b) Substitute

2. Transformation to y'!' = h.. (.z:)

Cubic has form hdx)y2 + hz(.t)y + h.1 (x) = 0

<t) i\lultiply with hi (x):

hb2 + hthzy +h 1h3 = 0

(h1y + thz)Z - th~ + ht h3 = 0

h) Substitute

1
y, = h,y + -h,

2

3. Parameterizing y' = h.(x) = (x - A)'9(X)

a) Substitute Y3 = y/(x - A).

b) Parameterize the conic Y5 = g(x).

c) Backtransform the parameterization.

40



A Worked Example

28y3+26xy'+7x'y+x3/2+28y'+ 16xy+Ty+3x/2 ; 0

Degree form is

28y3 + 26xy' + 7x'y + x3/2

and has the real root (-2,1).

Substitute

Y = Yl

Yields

-I(x, - I )yi + -I(xi + 4xI + I)YI + (x; + 3x,)/2 ; 0

Multiply with (XI - 1) and regroup, obtaining

(2(xl - I)YI + (xi +4xI + I))'

- (xi + 4xI + I)' + (x1- x; + 3xi - 3x.)/2

Substitute

y, ; 2(xl - I)YI + (xi + 4x, + I)

Result is

y;; (x1 + 17x; + 33xi + 19x, +2)/2
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Here. -1 is double root of righthand side, Substitute

Result is
2yi = xi + 15xI +:2

which is parameterized by

·I:t - Y3 =
/2+1.')/+'1

";2(2/+15)

Backtransformation yields

(t' + 15t + 2)(t' + 21 + l:3)
y, = - V2(2t + l5)'

and YI =

_ (./2+ I )1" +(8.;2+ I 7)tl+(60v'2+45It2 +(o.lo.l./2+ 19911+( 109,)2+26)
';2(4t3+2212 128t-5101

Yl simplifies to

...I2+1\!J+ 6..12+12 t2 + 3OV2+21H+ ll,J2HO
../2(412_(12 2 26)/ (90 2+30))

because of the common factor (t - 1+ :3)2),



Generalizations

Conceptually, we parameterize using a pencil of lines.

(y-a)=t(x-b)

through the curve point p = (a. b).

Cubics mandate that p is a special curve point. Will
the method work in general. when p is suitably cho­
sen"!

No. but there is a class of algebraic curves that may
be treated in this way. These are monoids.

Monoid Definition

A monoid is an algebraic curve of degree n that has
a point of multiplicity n - i .

• All conics are monoids.

• All singular cubics are monoids.

If the special point is known. monoids are easy to
parameterize.

Implicit Equation of Monoids

If the (11. - i)-fold point is at the origin, the implicit
equation of the monoid is of the form

hn(x,y) - h._dx, y) = 0

where hll has terms only of degree Tl. and hrl _ l has
terms only of degree n - 1
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Examples

Circle: I' + y' - (2x) = 0

Hyperbola: IY-(X+Y) =0

Parabola: y'-(x)=O

Alpha curve: x3 _ (y2 _ 0(;2) = 0

Cusp: I 3 _ (y') = 0

Parameterizing a Monoid

Monoid equation "n(x,y) - "n_dx,y) = 0

Parameterization ,*) = "._I(1.t)

".(l,t)

( ) "n_dl,t)y t = t
".(l,t)

So easy, that monoids are also called dual forms.

Example

The circle through origin

(x' + y') - 2I = 0

has the parameterization

x(t)
2

1+ t'l.

y(t)
2t

1 + t'
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II.B. Surface Parameterization

The general problem is algorithmically unsolved.

The pencil-of-lines approach generalizes La a bundle·
of-lines approach. where the bundle centered at p =
(a. b. c) consists of all lines. through p, indexed by s
and t:

y - b = s(x -a)

z - C - t(x - a)

Jacobi's algorithm also generalizes to quadrics.

Bundle-or-Lines Idea

Pick a (special) point, on the surface. as center of
line bundle.

Determine the additional intersection as function of
sand t.



Example

The unit sphere has the equation

x2 + y2 + z2 _ 1 = 0

Choosing p = (-1,0,0), we substitute y = s(x + 1)
and z = l(x + 1), obtaining

.e'( I + " + I') + 2x(,' + I') - (I - 5' - I') = 0

Resulting Parameterization

1 _ 52 _ f2
.r:{s,l) = 2 2

1+, + 1
2,

y (" 1) = ----7----,
1 + 52 + t 2

21
Z ( s, 1) = ----7----,

1+5
2 +t2

Monoids

The bundle·of-lines method works for any surface on
which there is a point such that (almost) every line
intersects the surface in one additional point. Such
surfaces are monoids.

A monoid is an algebraic surface of degree n with an
(n - i)·fold point on it.
ivlonoids include all quadrics. cubics with a double
point. and Steiner surfaces.
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Implicit Equation of Monoids

If the (n - I)-fold point is at the origin, the implicit
equation of the monoid is of the form

h.(x,y,z) - h._,(x,y,.) = 0

where hn has terms only of degree n. and hn _ , has
terms only of degree n - 1

Parameterizing a Monoid

?\Ionoid h.(x,y,.} -/1._d.',y,.} = 0

Parameterization ,r(s,t) =
hn _ L(l.8-,l)

h.(l,s,t)

(t) h._dl.s.t)y 8, = 8-
h.(l,s,t)

_( t) _I h. ,(l,s,t).. 8, _.
h.(l,s,t)

Examp e

(x' + y' + z') - 2x = 0

has the parameterization

x(s, I)
2

-
1 + 52 + t2

y(s,l)
25

=
1+82 +[2

.(s, t)
2t

1+$2+ t2
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End of Part II

Part III

lILA. Existence of an Implicit Form

lILB. Sylvester1s Resultant

III.C. Grobner Bases Methods

III.D. Some Experiments

Why should there be an implicit form?

Indeed. given rational functions h((s) and h2(s), why
is there a polynomial q(x,y) such that

q(h" h,) =O"?



Fields

A field is a set of "numbers'! which we can add.
subtract. multiply and divide. Examples: Complex
numbers, real numbers, rational numbers.

If a field J( is a subset of another field E. then E is
an extension field of J(.

Extension by Adjoining an Element

Let It C E. and sEE - J(. 'vVe construct the exten­
sion field A"($) by adding to It all elements required
1.0 make [, U {s} a field.

The extension is either algebraic or tran..<;cendental.

Transcendental Field Extensions

[((8) is transcendental if there is no polynomial p(x)
with coefficients in [( such that oS is a root.

For instance, R(lI") is a transcendental extension.

Of course, we can extend J( with several transcen­
dentals. e.g., K (81,82, ... , 8 m ),
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The general element in the transcendental extension
[{(St' ...• sm) has the form

p(St' ...• .::m)
u=

q{St'.··.sm)

where p and q are polynomials with coefficients in f{.

Algebraic Dependence

Let K 1 be a transcendental extension of K. obtained
by adjoining finitely many Sk.

The elements Ut. •.. , Ur in Ie - f{ are algebraically
dependent if there is a polynomial q(Xl' ...• I r ) with
coefficients inK such that the Uk are a root of q.

Otherwise the Uk are algebraically independent.

Transcendency Degree

The transcendency degree of J(' is a number d such
that any d + 1 elements in [(I - [{ are algebraically
dependent.

Theorem

The transcendency degree of J(' is unique.
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J:!JXlstence 01 llnpllcn: .r orm

Given the rational functions

x = hIts)

y = 1t,(8)

then x and yare elements in R(s), the transcendental
extension of R by s. But R(s) has transcendency
degree 1. so x and yare algebraically dependent: i.e ..

q(x,y) =0

The minimum deEree q is the implicit form.

Similarly, given the parametric functions

.x = htls,t) y = h,(8,t) == /',(8,1)

then x. y, and z are in R(s,t), of transcendency de~

gree 2. so they are algebraically dependent; i.e ..

q(x,y,=) = 0

Nota bene ...

The implicit form may contain points not found on
the parametric form.

·\1



Example

The parametric surface

x = st

has the implicit form

x 4 _ y2 Z ::; 0

This surface contains the line x = = ::; 0 that is
not on the parametric surface. except for the point
(0. O. 0).

III.B. Sylvester's Resultant

Variable Elimination

Given two polynomials

f(x) = anxn + an_lX
n

-
1 + +ao

g(x) = brnxm + bm_1x m - 1 + + bo

we want a criterion for a common solution.

Form the determinant R
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". an_I .. . "0 0 ... 0

0 ". .. .
"1 "0 . .. 0

o
R =

o b,

o
ba

o
o

o o bm bm _ l ••• bo

The determinant R is the Sylvester re.<mltant.

Theorem

R = 0 iff the two polynomials have a common root.

The Sylvester resultant "eliminates" the variable x.

The resultant can be used for multivariate polyno­
mials. but then it introduces extraneous factors:

Theorem

R _ a iff there is a conunon solution of the two
equations, or of the two lead coefficients. or of all
coefficients of one or the other polynomial.
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Example

x - st y _ st2 .: _ S2

Step 10 Eliminate oS

-I x 0

0 -t X zt2 _ .r;2

-1 0 z

-I' Y 0

a _t2 y = ::t-l -!/
-1 0 z

So. we now have two polynomials



Step 2: Eliminate t

o =
o 0

o 0

= 0

o ,

o

o
o
o

o

o
=
o
o

o
o

o
2-y

o

o
o
o

-x'
o

-y'

So. we obtain

as implicit form.

Here. Z2(y2= - .1:"') is an extraneous factor.

III.C. Grabner Bases

Computations in Ideals
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Intuition

Given a system of linear equations. manipulations
such as LV·decomposition derive an equivalent linear
system that is easier to solve.

Likewise, given a system of nonlinear equations, a
Grabner basis is an equivalent system of nonlinear
equations that is easier to solve.

Technically

Grabner bases deal with polynomial ideals. Ideals
come up as follows.

What is a Unique Surface Representation?

f(x,y,z) = O?

5f(x,y,z) = 0"
g(x,y,z)f(x,y,z) = O?
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The unique representation is an ideal...

Also true for curves, surface intersections. and so on.

Ideals

An ideal I is a set of polynomials such that

1. If p and q are in I, then so is p - q.

2. If pEl, and q is any polynomial, then pq 15

also in I.

Ideal Bases

All ideals are finitely generated; that IS, there are
polynomials

ft,h,,,·,fm

in I such that every other polynomial in I can be
written

q = ltdl +u2h + ... umfm

where the Uj are polynomials.
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A Grabner basis is an ideal basis with special prop­
erties.

In particular. a GB with respect to the "elimination
ordering'~ allows solving a system of nonlinear equa­
tions in an especially simple manner.

Example 1

Vole are given the nonlinear system

11: x 2 + y2 - 1

h: y' +,' - 1

13: =2 + x 2 - 1

These polynomials generate an ideal I with a GB

9, x' -2

9' : y2 _ 2

93 -, -2-

So, x = ±V2/2. y = ±.,J2/2, == ±V2/2,

.18



Example 2

Given

Z2 + 2yz + 2xz + y2 + 2xy + :r2
- I 0

z2 _ 2yz - 2xz +y2 +2xy + x 2 - 1 0

z2 _ 2yz + 2xz + y2 - ?xy + x 2 - 1 0

z2 + ?yz - 2xz + y2 - 2.xy +.1:2 - I 0

z2 + y2 _ x-I _ 0

GB is

xy = °
y3 _ Y = °

xz = 0

yz = 0

z2 + y2 _ X _ 1 = 0

x = -1:
Substitution gives y = 0, which in turn gives z = 0

x = 0:
y3_ y =O.soy=O.-l,+l. Each (x,y) pair extends
to one or more solutions in z.

Final set is

(-1,0,0), (0,1,0), (0,-1.0), (0.0,1), (0,0,-1)
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Implicitization with Grabner Bases

Grabner bases can be used to construct the implicit
form of integrally parameterized curves and surfaces.

The method does not introduce extraneous factors.

Example

Given
.t' _ st Y _ st2 :;; _ .~2

the Grebner basis wrt the elimination ordering is

.4 _ y'.
,,," "',
tx - y,tyz - ,t3,t2=- ,t'2,

sy - .r:2,sx - tZ,st - .r.s2
- =

The Grobner basis discloses the implicit form, plus
inversion formulae that show that the surface is faith­
fully parameterized.

GO



Grabner bases are always wrt a particular term or­
dering.

For some orderings, basis computations can be much
faster, but the resulting basis does not reveal as much
information explicitly.

Given some Grabner basis, there are conversion al­
gorithms that reconstruct the missing information.

Such conversion algorithms are extremely important
for efficiency.

I1I.D. Some Experiments

How expensive is implicitization?
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Comparison of three implicitization algorithms:

1. Sylvester's resultant.

2. Grobner bases with the elimination order, and

:3. Basis conversion.

Implicitization for a parametric quadric, a paramet­
ric cubic, and a bicubic.

All computations on a Symbolics 3650 under Genera
7.2. Macsyma 414.62, with 16MB main memory and
120MB swap space.

The parametric quadric is

..t = 3t2 + 4052 +st - 2s - .jt + ":I:

Y = 6.' - .t +8t +7

z - 9.t + 12. - 15t + :34
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The parametric cubic is

;1: = _t3 + 3st + 8 3 + s

y = ts' - 3t + I

z = 2t3 - 5st + t - S3

The bicubic surface is

x = 3t(t-I)'+(8-1)3+:ls

y = 3s(s - I)' + t3+ 3t

z = -38(8' - 58 + 5)!3 - 3(83+ 6s' - 98 + l)t'

+t(6s3 + 9.' - 18. + 3) - :ls(. - I)

Implicitization Times in Sec.

Problem Method I Method 2 Method 3

quadratic 21 22 6

cubic 10' 00 315

bicubic 00 00 10'

63



Conclusions

\Ve need both faster machines and faster algorithms.

Basis conversion improvement seems to suggest a
route of specializa.tion, and of paring down the in­
forma.tion tha.t is computed.

End of Part III
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