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Abstract

We present methods for parameterizing huplicit curves and surfaces and for implicit-
1zing parametric curves and surfaces. based on computationai techniques from algebraic
geometry, After reviewing the basic mathematical [acts of relevance. we describe and
illustrate state-ol-Lhe-art algorithms and insigits for the conversion problem.
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1 Introduction

Tltese notes contain the slides of the course {(‘nifying Parametric and Implicit Surface Repre-
st ntations for Computer Graphics. given at SIGGRAPH 90. They begin with commentaries
and references tlat introduce the materiai to individuals who have not actended this course,

Ol necessity, the subject is mathematical. using many concepts from elementary algebraic
soometry. [lie coucepts do have an intuitive interpretation that can guide the reader nsing
those concepts even though he or she may not be aware of some of the finer points. Those
intuitions are only sketched here. but can he found in much detail. for instance. in [13], in
C'hapters 5 through 7.

The material is organized as [ollows: Alter reviewing some basic facts from mathematics,
methods lor parameterizing implicit curves and surfaces are presented. concentrating on how
to deal with monoids. Monoids allow an especially easy conceptual approach. but one can
appreciate some ol the technical complexities when stwdying the method in the case of cubic
CUTYEeS,

Therealter. we discuss how to convert from parametric 1o implicit form. Many authors
hiave discussed these techniques. and only a very limited perspective is developed here. A
hroader description of the subject is found in [I3]. in Chapters 5 and 7. and also in [15},
where Lhe probiem ol feithfulness is conceptualized and discussed. In particular. resultants
are covered in detail in Lhe theses by Sederberg {17} aud by Chionh {9]. We do not discuss
multivariate resultant formulations. but refer to (9] for {urther reading on the subject.

('onversion between implicit and parametric form is. in general, an expensive computa-
tion. [t is therelore worth considering alternatives. One such approach is to view parametric
curves and surfaces as manifolds in higher-dimensional spaces. Such a view no longer has
to distinguish between implicit and parametric representations. and the methods it develops
apply to both equally weil. We will not discuss this approach here. and the reader is referred
for details to [L4. L5}

Basic Mathematical Facts

Recall that a plane parametric curve is defined by two [unctious
r = h(s)
y = Iols)

and that a permmetric surface is defined by three functions

o= I(s.t)

¥y = h—g(s.f]

> = h;;{s.t]
2



We can think of a parametric curve as a. map {rom a straight line with points s to a curve
it the (z.y)-plane. and of a parametric surface as a map from a plane with points {s.t) to
a surface in {x.y.z)-space.

The tuactions /g wiil be polynomials or ratios of polynomials in s and {. Accordingly,
we speak ol infegral or rational parametric curves and surfaces whenever the distinction is
critical. Ordinarily. the curves or surfaces are restricted in the literature to a domain: e.g.,
to the interval {0.1] or to the square {0.1] < [0. 1]. Here. we do not so restrict parametric
rurves and surfaces.

Typically. the functions /iy, are presented in a particular basis: for instance. in the
Bernstein-Bezier hasis. and this allows relating the coefficients of the functions h. with an
intuitive understanding ol the shape ol the curve thev define. A suitable basis also affords
A wealth of techniques lor combining patches ol parametric curves or surfaces into larger
surfaces. and to modifv the shape ol the larger surface locally or globally. in an intuitive
manner. See, ey.. (5. 11].

An oemplicit curve is delined by a single equation

flr.y)y=0

awd au implicil surface is delined by a single equation
fle.y.zy=0

Thus. the curve or surface points are those that satis{y the implicit equation. so that we no
longer think of curves and surfaces as the result of a mapping. We will restrict the function
[ 1o polynomials.

Since we restrict the fiy to polvnomials. or ratios of polynomials. and restrict the f
lo polynomials. we are dealing with algebraic curves and surfaces. Algebraic curves and
surfaces inciude virtuaily all surtaces studied and used in geometric and solid modeling, and
in computer-aided geometric design. Algebraic geometry provides us with the {ollowing key
facts about algebraic curves; e.g.. [20):

Every plane paramelric curve can be erpressed as an implicil curve. Some. but
not all. tnplicti curves can be expressed as paramelric curves.

Similarly, we can state of algebraic surfaces

Every plune paramelric surface can be expressed as an implicit surface. Some,
but not all, implicit surfaces can be erpressed as parametric surfaces.

This neans. that the class of parametric algebraic curves and surfaces is smaller than the
class of implicit algebraic curves and surfaces. There is even a rigorous characterization
ol what distinguishes a parameterizable algebraic curve or surface from one that is not
parameterizable. Roughly speaking. a curve is parameterizable if it has many singular
points: that is, many points at which the curve intersects itself or las cusps. We will not go
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[igure I: The Projective Line

into those details. because the characterization is very technical. and the computations that
would be needed to test whether a curve or sur{ace is parameterizable are quite complex and
time-consuming; (3.

We wiit discuss special curves and surfaces that can e parameterized fairly easily. They
include the [ollowing cases.

¢ All conic sections and all quadratic surfaces are parameterizable.
¢ Cubic curves that have a singular point are parameterizable.
» Monoids are parameterizable.!

All parametric curves and surfaces have an implicit form. and we will discuss several
approaches for finding the implicit [orms. llowever. it is possible that a parametric surface
does not contain certain points found on the corresponding implicit surface. Some of the
tmissing points can be recovered by considering the surface parameterization projectively. but
not all missing points can be so recovered. Except for certain special cases. the conversion
between implicit and parametric form is expensive, and one does not invoke the conversion
algorithms lightly.

Ordinarily, we deal with affine spaces in which points may be fixed using Cartesian
coordinates. On the affine line. a point has the coordinate (z,); on the affine plane. a point
has the coordinates (z;,z;); and in affine space. a point has the coordinates (z;,z3,z3). In
contrast. projective spaces add another coordinate p, and consider a point defined by the
ratio of its coordinates. For example. the projective line has points (zg,z1), and forall A # 0
both (zg,£1) and {Azg,Az;) are the same point. The coordinate tuple (0,0) is not allowed.

The projective line can be visualized as the pencil of lines through the origin, embedded
in the affine plane. as shown in Figure 1. Ilere. Lhe projective point (s.£) corresponds to the

'Monoids are defined later.
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Figure 2: Parameterizing the Unit Circle

line
Ly = 8A
o= 1A

To each affine line point (x), there corresponds the projective line point (1.2;). Visually,
the alfine line is viewed as the points obtained by intersecting the pencil with the line zo = 1.
The projective line has one additional point. with coordinates (0, 1), correspouiding to the
line 2o = 0. This point is said to be at infinity.

The projective plane has the points (.tp,xq.22), (0.0,0) is not allowed. For all A # 0.
(Zo.2(.22) and (Azo,Azy, Azz) are the same point. Again, one may embed the projective
plane into affine J-space by considering the projective plane as the bundle of all lines. in
3-space. through the origin. The affine plane is a subset. obtained by intersecting the bundte
with the plane ro = 0. The additional points correspond to the pencil of lines through the
origin that lie in the plane zg = 0. and lorm the line at infinity. The coordinates of these
points are ol the form (0,z, ;).

Projective geometry leads to simplifying many theorems by eliminating special cases.
For our purposes. projective curve parameterization has the advantage that all points on a
parametric curve can be reached with finite parameter values without exception. This will
not necessarily be the case for projectively parameterized surfaces.

2 Parameterization

2.1 Plane Algebraic Curves

A Geometric View of Parameterization

The geometric idea underlying parameterizing a plane algebraic curve is illustrated by the
unit circle. 22 + y2 — 1 = 0. We pick one point on the cirele, say p; = (—1,0), and consider



all lines through this point. A line through p; has the equation y = fx + ¢, where ¢ is the
intercept wich the y-axis. The lines are indexed by f: that is. to each value of ¢ corresponds
a specilic line Lhrough py. Each line intersects the circle in pp and in one additional point
p(1).% The coordinates of p(t) are obtained in three steps:

l. Substitute {z + / {or y in the ciccle’s equation. obtaining the equation
Hfle st Lt -1=0

2. Solve this equation for 2. obtaining

3. Observe that ) is the abscissa of the point p. and that @3 the abscissa of the point
p2. Clearly. £ is a [unction of 2. The corresponding ordinate g, is obtained from the
line »quation as yy = taz + 1 and is

2t
L4 t*

i =

Note that (i, yz) is the familiar parameterization of the unit circle.
The method just illustrated can be thought of as the following procedure. Let f(z,y) =0
be the curve to be parameterized.

Simple Parameterization Algorithm 1

L. Pick a point py on the curve f, and consider all lines through p,, indexed
by the parameter {. These lines form a pencil.

2. Tor each line of the pencil. compute the “other™ intersection point with
f. expressing its coordinates as functions of {. These functions are the
parameterization.

This simple method works unchanged for every conic section. but not necessarily for curves
of higher algebraic degree. The reason it works for conics is a consequence of Bezout’s
Theorem that states that a line intersects a couic in just two points. With one of these two
points fixed as py, there is just one additional point., and that point is uniquely associated
with £. Il f were a cubic curve. a line would intersect f in general in three points. Fixing

*As a fine point. observe that the line r + | = 1) also contains the point p1 = (—1,0) and intersects the
circle only in py. Ilere. p; counts as a doubfe point. since the line is tangent to the circle. The point p; is
therefore the additional paint in which this line inlersects the circle. and corresponds to ¢ = £20. Ounly a
projective parameterization reaches this point from a finite parameter value.



one of them on the curve. would leave two adcitional intersection points. pz and pa, both
associated with the same value ol {. and so the curve would not be properly parameterized
by our algorithm.

To make the method work for cubics requires choosing a special point: that is, a point
such that lines through it intersect the cubic in just one additional point. Such a special
point exists only on singular cubics. and is acrually fhe singular point itself. Nonsingular
cubics do not have such a point. and cannot he so parameterized. Indeed. it can be proved
that a ronsingular cubic cannot be parameterized at all.

Modified in this way, choosing a special curve point py. will our simpie method of param-
elerizing curves work for all those curves that possess a parametric form? Not unless ather
modifications are made that we do not discuss. But rhere is an interesting class of curves
hat can be so parameterized, namely the class ol monoids, to he discussed later.

Parameterization of Conics

(‘onic sections are parameterized by (he method described before. using anv curve point.
However. i1 may he inconvenient to pick an arbitrary point on the conic. The computations
simplify il the point is picked snch 1hat i1 is 1he origin. or else at infinityv. in a principal
direction? This way require a change of coordinates.

Let the conic equation be

anz? + 2y + a2y’ + 238 + 2asay + azz = 0
Ve first look for a point “at infinity™ by computing the roots ol the quadratic form
an et + ang’ + 200y = 0
The roots are given by

"\ —
£ = —ﬂ!zﬂ:\/ﬂ[z—ﬂ”rby)_ ¥ =

They are either two reai roots. possibly equal. or they are conjugate complex. In the complex
case. the conic does not have points at infinity, and is an ellipse or a circle. [n that case we
must find a point at finite distance. and use rhereafter the method for monoids described
|ater. Otherwise we have a point at infinity. and proceed as follows,

Let {u.#] be one of the two real roots. \We substitute

o= X kuy § = th
in the conic cgqualion. It is easy 1o see that 1he resulting equation is of the form

mlery +dv+ (e ) =0

*See {1). or [L3}. p. LTT.



where ¢{.) is a quadratic polynomial tn .| alone. This conic is parameterized by

—(t)
cf +d

() = g1ty =
Because ol the substitution. therelore. the original conic is parameterized by

(t) = {+uylt) yty = eple)

There is another method for parameterizing conics. based on linear algebra. due to Jacobi
in the previous century. We sketch it briefly: see {13} p. 170 for details. The advantage of
Jacohi’s algorithm is that it generalizes directly to guadratic surfaces. and that it is well
hehaved numerically.

The conic equation,

ﬂ“.?.‘?' + 2a154y + ﬂg-;_y" + 2etyq + 2ag3y + a3z = 0

can be writton as Lhe bilinear form

ftyy fa g £
(x gy )| ary an axy y | =0
fiy3  flea finn L

An iterative algorithm can be devised that applies rotations to the coefficient matrix and
diagonalizes it. After diagonalization. the resulting conic has a standard parameterization.
ol the torm?

L - ¢ 2
L)y = o —s ytty = p2 m
L+¢

L+ #*

The numbers pt; and gz depend on the euntries by of the diagonalized matrix; that is,

jin = VI /bl and gz = /22/033]. By applying the inverse rotations. this standard
parameterization is mapped to a parameterization of the original conic.

Parameterization of Cubic Curves

The difficulty of parameterizing a cubic curve is to find out whether the curve has a singuiar
point, and if so. where it is. The singularity could be apparent and at the origin. as in the
cuspidal cubic

‘More precisely, the parameterization depends on the signs ol the diagonal entries. We assume here that
the first two diagonal entries have equal sign oppoesite to the sign of the third entry.



that is parameterized by

oty = f* gy =
The singularity could be at infinity. as in the case of
v — 3 2P —r=0
parameterized by
v o= | y = -1ty
Bur fhe cubic could also be nonsingular and kave no parameterization. as iu the case of
y-rt =0

The lollowing alporithm from [2] solves the parameterization problem of cubic curves. De-
<pite the relative complexity, the algorithm is related to tlie simple parameterization proce-
dhure discussed in geometric terms belore. Ve illustrate the method with an exarmple {rom
[13) p. LRL.

We are given the cubic

J =285 4 20zy” + Tty + 032 4 2897 4 6wy + Ty + 32/2

[ts degree form consists of all cubic terms. The first step is to find a real root of the
degree [orm. so as 10 apply a coordinate transformation to f that eliminates the y*-term.
Since the degree form is cubic, it has at least one real root. Here. (—2.1) is a root of
Wyt + 2z y’ + Tty + 232,

[t the second step, we use the root (#.v) to perform the substitution

o= e+ ouy ¥y =

Note that this substitution is exactly as in the conic parameterization. In our example, we
obtain

Ao — Dy + et + 4o+ Dy + (2] +321)/2 = 0
The transformed curve equation has the form

R0y + hala gy + halzy) =0

where /ry is a linear polynomial. i, a quadratic polynomial. and A3 a cubic polynomial. In
step 3. we multiply with f; to bring the equation into the form

Pty + Pl e )] + ha{zy) = 0



where by = /1 iy — h3/4. Note that /iy has decree 1. So. we lave

e = Wyt + 4o = Db+ + g+ el = + 322 = 3e/2 =0
which can be rewritten as
20e0 = D+ 0 + 4o+ D (7 4+ D24 o =+ 30 = 300)/2 =0

[n Step 4. we substitute g3 for the quadratic lorm (h {2 )y1 + fra(x1))2. In the example.

yz = 2Axy — Dy + (63 + 4y + 1), whence
g3 = () + 170 4 3308 + 192, + 2)/2

The righthand side ol this equation is a polvuomiai of degree up to 4. It can be proved

that 1he original cubic is nonsingutar if aud ouly if the righthand side is of degree 3} or 4 and

lias no muitiple roots. Note that a wonsingular cubic cannot be parameterized. Otherwise.

tie multiple root A can be used to traustorm the equation into a quadratic equation. by the
suhstitntion

i
= —/—
o 1\
In Step 5. Lherefore. we juvestigate Llie roots ol 1he righthand side. If a double root is present,
we make this substitution. In the example. the righthand side has the double root T = —1,

a0 we set i3 = yof{e, + 1} and obtain
2y§ = .::f + 15 +2

[[ Step 5 succeeds. the substitution transforms the equation into a quadratic one, and
this quadratic equation is parameterized in Step 6 using the methods discussed before.
Therealter. the various substitutions are inverted. transforming the conic parameterization
fo a parameterization of the original cubic. [n our example. the conic is parameterized by

’a’. D]

2 1?4150+ 2
(L) = ) = -—
204 15 V2(2L + 15)

Since g3 = g/ + 1), we thus obtain
(12 + 150420012 + 2t + 13)
- V22§ 15)
Now iy = 2(xy — Lhyy + 22 + day + L. from which we obtain
V24 D+ (RVZH IT)8 4 (60V2 + 43)12 + (442 + 199)¢ + (109v2 + 26)
V243 + 2202 — 128t — 510)
Note that we can cancel (£ — | + 3v/2). wheunce
_ V24 DB 6V + 1202 + {30V2 + 200 + (11VZ + 40)
= V242 Z {12V - 26) - (90v2 + 30)) |
From this parameterization. we finally obrain the parameterization of the original cubic f.

In=

h=

10



Parameterizing Monoids

A awrve f ol degree n with a point of multiplicity » — L is a monoid. Every conic section is
1 monoid. aud every singular cubic curve is a monoid. An analogous definition for monoidal
surfaces is discussed later.

Alonoids are especially easy to parameterize. provided we know where the {(n — 1)-fold
point is and have hrought it to the origin. [LT]: or else il the point is at infinity. in a principal
direction. We explain the parameterization metlod assuming the singularity is at the origin.
Lxamples of mouoids in this form include rhe circle

>

Py =2 =0

through (he origin. the cuspidal cuhic.

and the aipha curve,

botlt with the singularity at the oriein.
When tlie {# = 1)-lold point is at the origin. the implicit monoid equation is

hotr.y) = haglae.y) =0

where /1, ltas ouly terms of degree n. and A, —; has ouly terms of degree n — L. This is readily
verified in the three examnples.

[t is easy fo see that the parameterization of the monoid is given by

shn—!("“-tl -')'tq.r) — rh'n—l[‘snr)

hu(s.t) hn(s,t)

Tlsd)y =

This is a projective parameterization that is clanged to the normal parametric form by
either setting s = | or setting { = 1.

The monoid parameterization is derived by considering a pencil of lines through the
origin. Lvery line can be expressed parametrically as

2{A) = =X wWA) = A
and is determined by a unique ratio s : /. With £ = L. we obtain the usual form
y=1r

Now each line intersects the monoid in one additionai point. and this point is therefore
uniquely associated with the ratio s : ¢ of the line.

11



[ the example of the alpha curve. +* + .r? — 4> = 0. we have

ey = 2
hafe.y) = y° =
[ts (projective) parameterization is Lherefore
’2 — .‘i) fz — s
r{s.t) = S — yls ) = ;__T'_
X 5"

With ¢« = | we obtain the usual parameterization

() = t*—}| gty = A=

Because the parameterization is so easy to lind. monoids have aiso been called dual forms
in the CAGD literature; e.g.. {17]-

2.2 Algebraic Surfaces

The parameterization of implicit algebraic surfaces is much ore complicated than curve
parameterization. [or one. a characterization of when an implicit surface has a parametric
lorm is technically quite complicated. and is not readily explained in geometric terms. There
is no known general algorithm for determining whether a given implicit surface can be
parameterized. and il so. how. Fortunately. monoidal surfaces can be parameterized in a
very simple manner with a clear geometric intuition. and these surfaces include all quadrics.

Monoidal Surfaces

An algebraic surtace f(.t.y.2) = 0 of degree » that has an {n — |)-fold point is a monoidal
surface. Monoidal surfaces include all quadrics. cubic surfaces with a double point, and
Steiner surlaces, [IT].

Bezout’s theorem states that a line intersects a surface of degree n in exactly » points,
assuming we admit complex intersections and intersections at infinity. and account for in-
tersection multiplicity. It follows that a monoid could be parameterized by an extension of
the simple parameterization algorithm described before:

Simple Parameterization Algorithm 2

L. Let ; be a point on the monoidal surface of multiplicity = — 1. and consider
all lines through p,. Each line is determined by a pair (s.¢) of slopes in two
principal directions. or. alternatively. by a unique ratio r : 5 : ¢ of direction
cosines.

2



2. Determine {x(s,2). y(s.f}. 2(s.1)). the additional intersection point of each
line with the monroidal surface. as [unction of s and ¢, thereby deriving a
parameterization.

Algebraically. things are extremely simpte when the singular point is at the origin, for
then 1he implicit oquation has the form

(. sy =l {v.y.2) =0

where £, has only terms of degree n. and /,_; has only terms of degree n — I. The
parameterization is then

hoy(r.8.0)
}' ————————————————

oliroed) =
hn(.i"'..‘_-'.a‘:]
;!I— .
wr.os ) = s ]
halr.s.t)
dAroty = o trmrend)

holr.s.t)

This is a projective parameterization that is changed to the normal parametric form by

setting one of the parameters r. 5. or { to L.
As an example, consider the spliere with radius 1 and center (1,0.0)

PP+ -2=0

It is parameterized by

(r.s.1) 2
ELTL =
r? st 4ol
2rs
ylr.st) = -5
rt 49 4 tt
2ri
sir.sl) = =
AL A L
Setting r = L. we obtain
2
I{s.t) = —
L s+t
25
ys.l) = —————
L+ 8% +¢2
2
{s.t) =

|+ & 4 14

13



Quadric Surfaces

Quadrics can be parameterized as monoidal surfaces. Any point on the quadric suffices. The
algebraic method discussed for conic sections cau be generalized {1]: First. we find a point
ou the quadric at infinity, next. we change coordinates ro move this point into a special
position. and then we pick up a standard parameterization that is structurally like the one
given before. [or monoidal surfaces whose singularity is at the origin. The inverse coordinate
transformation. finally. inaps the standard parameterization to a parameterization of the
original quadric surface.

Jacobi's algorithm can also he used [or quadric surfaces. Here. the coefficients of the
riuadric suriace

ap 4 2090y + 2ai303 + 20138 + ooy~ + 2ays + 2aaay + 03z F ey g = 0

are written as the symoeetric matrix

LR I L I L+ S L
flyg thpy tray tiny
3 My Iy

g4 fag dny  (Lyq

and this matrix is diagonalized using the usual rotations. From the diagonal form. 2 standard
parameterization is determined that is mapped back to a parameterization of the original
quadric by the inverse rotations. The standard paranieterization depends on the signs of the
diagonal entries and on the rank of the matrix. l'or details see [13}, p. 180.

3 Implicitizing Rational Curves and Surfaces

Existence of the Implicit Equation

(riven a parametric curve with rational coordinate functions (41{s). ha(s)), its implicit equa-
tion should be a polynomial f(z.y) =0 such that f(h (<), h2(s}} = 0. Moreover. the degree
of f should be as small as possible. To understand the existence of the implicit equation, it
is useful to [earn about transcendental field extensions.

Let A" be a subfield of a larger field £.* Consider a set & of elements in £ that are not in
I, The extension field ' = K'(S) generated by § is the smallest subfield of £ containing
S and K. If every element of S is the root of a polynomial f(z)} with coefficients in &'. then
K" is an algebraic crtension. Otherwise. A” is a. lranscendental extension. For example, let
K he the field ol ratioral numbers. £ the fieid of real numbers, and let S contain ounly the

"\ field is a sev with addition. subtraction. multiplication. and division. For the properties that must be
satisfed see [19].

L



number 7. Then the extension field A'(x)is a transcendental extension. On the other hand.
with § = {\/E} we obtain the algebraic extension field K{+/2). since v/2 is a root of z2 — 2,
See atso (13), Chapter 7.

("onsider a transcendental extension of A by a finite set of elements of F, say § =
{ey.02 e}, Tt is then known that every element in the extension field can be expressed
as a rational polynoinial expression in the .r;. This permits us to consider purely symbolic
oxtensions of & in which the elements of $ are symbols. The resulting extension field is the
rational function field of K, and is denoted Kioy.....e,).

The cardinality of § is called the franscendency degree of the extension. and a theorem
Irom aigebra asserts that the transcendency degree is unique. This implies that if U]y eeee ol
are arbitrary elements in the extension leld. (hen they must satisfy a polynomial equation
Sy, ey ) = 0 where the coefficients of Jarein .

We expiain why the implicit equation of a rational curve exists. tollowing {9]. Consider
the ratioual function field C(s) of the cotpiex numbers C of the transcendental element s,
Because the curve is given by

S

(s)
y o= hais)

we shonld think of x and y as elements of C(s). But the transcendency degree of C(s)is I,
50 & and y must satis{y a polynomial equation f{ 2.¥) = 0. The simplest such equation is
the impiicit equation of the rational curve.

The saine argument shows the existence of an implicit equation for a rational surface:
Lat

X

h{e.1)

y ha(s.t)

T o= hy(s. iy

be the parametric surface. Then 2. y. and = are elements of the field C(s.1), of transcendency
degree 2. So. they must satisfy a polynomial cquation f(zr.y.z)=0.

Implicit Forms Vs. Base Points

We usually think of a parametric curve as a mapping from the line to a plane curve, and
ol 2 parametric surface as a mapping from the plane to a surface in 3-space. Suppose we
have started with a parametric surface. found its implicit equation, and compare the point
sets defined by each. Then it turns out that every point on the parametric surface also lies

on the implicit surface. but not necessarily vice-versa. Consider as example the parametric
surface

-

(s, st &%)



Tlhe implicit equation of the surface is
-z =0

Since
(st)d — (st2¥(s%) = 0

every point of the parametric surface is also on the implicit surface. Now the points
{0.u.0)

are on the implicit surface. But when u 3 0. those points are not on the parametric surface.
because = = 0 forces 3 = 0. ancl thereiore also y = 0. It [ollows that the parametric surface
could be a proper subset of the impiicit surface.

[n general. it is known that the implicit surface may contain finitely many isolated points
and curves that are “missing™ in the parametric form ol the surface. Some of these points
can be recovered by changing the parametarization to a projective one. We did this for the
nuit circle. in order to reach the point {—1.0). and for the unit sphere. to reach (—1,0.0).
But not all points can be so recovered. and. in particular. not the points missing in the
rxample just shown,

("onsider the rational surface

(hl(s.a‘} ha(s.f) h,q(-s-‘.t])
hols.t) hols.t) hols.t)

The polvnomials hy define four curves on the (<.¢)-plane. A base point is a common in-
tersection {sp.fy) of the four curves. Such parameter values (sq.{g} do not define a surface
point. Chionh [9] discusses the relationship hetween hase points and “missing points” on
the parametric surface.

Sylvester’s Resultant

svivester’s resultant is a simple method for eliminating a variable from two algebraic equa-
tions. and it can be used to find the implicit equation of a parametric curve or surface. Given
two polynomials

flz) = @z +ap_1t" 1+ Fag
_q(::) = bml.m +bm_|.i.‘"l_l + +bg



it can be shown that f and g have a common root iff the {m + n) X {(m + n) determinant

dp COp_y -+ fg 0 SRR |
0 fin e My fip - 0
R — 0 -+ 0 fy tp_y --- ag
ll:’m bm-—-l e Ii:'{]' 0 e 0
0 bn - Iy h -+ 0
] st 0 bm bm-l Tt bCI

is zero: see {19}, section 130. The determinant is the Syvlvester resuitant. Here. the @z and
;. are assumed to be numbers.

The Sylvester resultant can be nsed for two multivariate equations: that is. under the
assumption that the ap and by are poivnomials in the remaining variables. In this case.
the Sylvester resultant f is a polvnomial in these remaining variables. The solutions of the
equation £ = 0 either extend to a cominon solution of the original equations f =0, g = 0. or
are a solution of the system a,, = 0. b,, = 0. or else are a common solution of the coefficient
polynomials of f or of g.

The Sylvester resultant can be used for implicitizing parametric curves and surfaces,
suhject to certain limmitations. Briefly, the rational curve

(hl(sl h-z[é‘})
ho(s) ho(s)

is considered as the intersection ol two surfaces in 3-space given by

tho(s)—My(s) = 0
vhols) = ha(s) = 0
Elimination of s using the Sylvester resultant delivers the implicit equation, or a multiple of
the implicit equation due to the possibility that the lead coefficients vanish.
Parametric surfaces could be implicitized similarly. forming the equations

tho(s,ty—h{s.t) = 0
yhol(s.t) — ha{s.1) ]

shols. .ty = ha{s.t)y = 0

and eliminating first s. say. and then ¢. Alternatively. a number of other resultant formula-
lions have heen proposed for eliminating both variables at once. See [9] for details.
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Grobner Bases

F'or integral rational curves and surfaces. Grébner bases aigorithms provide an alternative {or
implicitizing parametries without the introduction ol extraneous factors. These algorithms
are very sophisticated and are very general: see [i. 7. 13. 15, 16]. Certain specializations
sxist that nnprove their performance significantly.

Ve sketch some of the ideas that go into Grébuer bases algorithms. For a more detailed
explanation and manv examples and applicarions see [13]. Chapter 7. Consider the set
Nley.....kr] of all multivariate polvnomials iu ... and with coefficients in the field
{U. For our purposes. we consider the field of complex numbers. An ideal [ is a subset of
poivnomials in K'ley. ..o that is closed under addition and subtraction. and also under
winltiplication with other polvnonuals that are not necessarily in . A basic theorem asserts
thar we can find a finite set fi..... f,, of polynomials in / such that everv other polvnomial
g ol f can be written as an algehraic combination ol 1the fg; that is.

g=wf1+uafat -+ g fu. e € K[xye )]

There are many ideal hases, not necessarily of the same cardinality. A Grébner basis is an
ileal basis with special properties that permit answering basic questions about the ideal
using simple aleorithms. Every ideal has a Grobuner basis. and this hasis depends on certain
orderings of terms. For example. iu Lhe elimination ordering® we first arrange the variables
in a fixed sequence. say

Ly 2 ap < - <y

and declare that a term u comnes earlier in the ordering than another term v provided that
r contains a variable that is later in the variable sequence than every variable occurring
in . So, with & < y < z. the term u = +Yy? would precede the term » = xyz. If the
liighest occurring variables in the two terms are the same. then the degree of that variable
determines the order. and ties are broken by recursively considering subterms derived by
deleting the highest variable from both terms. Thus #'9y% < ry® and z%yz? < ry?z2.
Giiven a set ol algebraic equations. the Girobuer basis of the ideal generated by the occur-
ring polynomials. with respect to the elimination ordering. defines an equivalent system that
is in triangular form and can be solved much more easilv. The basis will contain the implicit
form of a parametric curve or surface. provided the surface is integrally parameterized.
The terin ordering influences the time required to construct a Grobner basis. The elimi-
nation ordering just discussed produces a basis best-suited to many CAGD applications. but
requires more time than basis construction with respect to certain other orderings. DBasis
conversion algorithms exist that allow first commputing a Grébner basis F with respect to
auny ordering. and then post-processing £ to reveal some of the information explicit in the
hasis £ with respect to the elimination ordering. ('ombined. the two steps often are much
more efficient than the outright construction ol the basis F’. The approach is especially

“also called lexicographic ordering



appropriate for implicitizing parametric curves and surfaces. Tor details see [13). Section
TR
Experience with Elimination Algorithms

Many resultant formulations have not been implemented so that no experimental data can
he cired in support of their possible practicality. We have experimented with implicitization
ol curves and surfaces nsing

1. Svlvester’s resultant,
2. Grobuer bases with the elunination order. and
3. Basis conversion.

Tliree surface implicitization problems were solved. using integral parametric surfaces of
clegree rwo. three. and bicubic. The parametric quadric is

B st st =285 =50+ 4

y o= st — st N 4T

o= Ust 4 125 = 150+ 34
The parametric cubic is
r o= =Pt s
go= 187 34|
o= 2V —Sui 4 =P
The Ineubic surface is
o= 3t =1 (s = 1) s
y = 3ds(s— 1P+ £+ 31
o= =3s(st =35+ 57 — 3D + 6552 — 95 4 [ )42
+4(6s% + 952 — 18s + ) — 3s(s — 1)

The running times are shown in the table. All computations were done on a Symbolics
3630 Lisp machine with 16MB main memoryv and 120 MB virtual memory. Note that the
hardware speed of the machine is less than one MIP. Aethods | and 2 are the standard
implementations of resultants and Grobner hases offered by Macsyma 414.62. Method 3
was written at Purdue. An entry x indicates rhat the computation could not be completed
due to insulficient virtual memory. The table shows clearly that Method 3 improves effi-
ciency significantly. but overail the times are much slower than one would require for routine
applications. [uture work is required 1o improve the situation.

19



Problem | Method | | Method 2 | Method 3

quadratic 21 2 G
cubic 103 X 315
bicubic x x< L0?

Table L: linplicitization Times in Seconds
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5 The Slides

I. Basic Facts

I.A. Definitions Recalled
I.B. Theorems on Conversion

[.C. Projective Parameterizations

Plane Parametric Curve
= hy(s) y = ha(s)
Parametric Surface
T=hy(s,8)  y=hals,t) == hals,t)

The h; are polynomials or ratios of polynomials.
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Implicit Curve

flz,y) =0

Implicit Surface

flz,y,2)=0

Tyvpically f is a polynomial in the power base.

Nota Bene

Parametrics are often restricted to a domain,
but not here.

Many properties of parametrics depend on the
basis in which the f; have been expressed, and
are valid within a given domain only. We as-
sume a basis in which the Ax are uniquely writ-
ten,

Basic Theorems

Every plane parametric curve has an implicit
form.

Every parametric surface has an implicit form.

Not every implicit plane curve has a parametric
form.

Not every implicit surface has a parametric
form.
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50...

The class of parametric curves and surfaces is smaller

than the class of implicit curves and surfaces.
but...

An exact characterization of parameterizability is

not simple.

Some Parameterizable Implicits

All lines and all conic sections

All planes and all quadratic surfaces

Singular cubic curves

All monoids

Methods for Implicitizing Parametrics
» Variable elimination via resultants.

o Elimination ideals via Grobner bases.

All methods are expensive except in certain special
cases.

24




Example

The circle 2* + y2 — 1 = 0 is a conic section and can
be parameterized. The parametric form is

Parameter/Curve Point Correspondence

y A
=1

t= -1

Other parameterizations of the circle can be obtained
with a [ractional linear transformation of ¢; e.g.,

3s — 1
t=
s+ 1
yields
(s) —45% +4s (s) 352+ 25 — 1
Ils} = ——— = e ——
552 — 2541 y 582 — 2541
25




Parameter/Curve Point Correspondence

The parameterization does not “reach” the point
(—1.0) unless it is changed to a projective param-
eterization. by homogenizing the functions A.

s — ¢ 2st
= y = ———
TT e YT are

On surfaces, not all “missing points” may be so re-
covered.

Parameter/Curve Point Correspondence

26




Missing Points Example
The parametric surface

r=st y=st¥ =3
has the implicit form
x° — yzz =0

This surface contains the line £ = z = 0 that is not
reached by the parametric form.

Nonparameterizability Example

The cubic y* — r® + z = 0 cannot be parameterized
unless square root functions are used.

iky

Projective Coordinates

The affine point (z;,z;) corresponds to the projec-
tive point (Azg, Az, Azz), where zo = 1 and X is not
zero.

This sets up a correspondence between lines in 3-
space and points in the Cartesian plane.

Points with x5 = 0 are permitted. but not the point
(0,0,0). Such points are called points at infinity.

27




Projective - Affine Correspondence

Having projective coordinates simplifies many theo-
rems by eliminating special cases.

The affine implicit curve f(z,y) = 0 corresponds to
the projective implicit curve F(w,z,y) = 0, where

and » is the degree of f.

The projective line has points (As, Af), where A # 0,
and s and ¢ not both zero.

A projective curve parameterization is one in which
the coordinate functions are homogeneous in s and
in £.

28




Projective - Affine Correspondence
Xp &

Xo=1

——
wirk
el

h 4

)

o

Example

The unit circle is parameterized by
w(s,l) = s*+ ¢
z(s,t) = s2—1?
y(s,t) = 2st

When s and ¢ are integer, we obtain the rational
points of the unit circle.

A projective surface parameterization is a map from
the projective plane to the surface.

There may be some points that are not reached by a
projective surface parameterization; they are called
base points.

Valuations are a method for reaching all surface
points.

29




End of Part I

II. Parameterizing Implicit Algebraics

[I.A. Curves:
Geometric Idea
Conics, Cubics
Monoids

II.B. Surfaces:

Monoids, Quadrics

II.A Curve Parameterization

30




How to Parameterize A Circle
47

(28, y (£))

Line equations are y = ¢{(z + 1)
Substitution into circle yields

21+t + 2824+ -1=0

Solutions are —1 and

Resulting Parameterization is

1-¢
it} =
2(t) 1412
2t
) =
y(t) 142

31



Algorithm

L. Fix a point p on the conic. Consider the pencil
of lines through p. Formulate the line equa-

tions.

R

z(t).

. Substitute for ¥ in the conic equation, solve for

3. Use the line equations to determine y(t).

Hyperbola Example
y .

(e, y ()
4
/ TR

[mplicit equation: zy—1=10
Lines are: y=(x+1)—1
Substitution yields: z{(z+ 1}t -2 —-1=0
Interesting root: z{t) = L/t
Parameterization:  z(t) = 1/t

y(t) =t

32




How to Find a Point on a Conic

Intersect with a line — requires solving a quadratic
equation.

Easiest with line at infinity, but that may yield com-
plex points.

Otherwise, find extrema by intersecting with a par-

tial.

Algebraic Method for Conics

ayz? + 2a120y + aogy? + 2a13k + 2a23y + azz =0

L.

Find the roots of degree form
2 9 2
anz” + 2anry + any
They are

- — a2
T = —apz £ Vaj —anag;

¥y = an

-

. If (u,v) is a real root, then substitute

T = It upn

¥y = vy

The effect i3 to cancel the y? term.

. Set z(t) = ¢. Compute y(t) for transformed

conic.

Backtransform.

33




Example

Given: -y 2ty +d
Degree form: -yt
Root: (—=1,1)
Substitution: =1 — i

¥=i4

Result: zf+2z,+4—y (22, +1)=0
Parameterization: ;=1

y= (2420 +4)/(2t + 1)

. 2 —t—4

Backtransformation: z(t) = ———
£ 4244

t) =
vit) 2t+1

Jacobi’s Method
1. Write the conic ag the bilinear form
a1 @12 Q13 T
(x y 1) 12 G2 @93 y | =0

d13 23 Qg

[

. Diagonalize by applying rotations 8 = RART

3. Backtransform a standard parameterization of
the diagonal form.
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Cancel p in the submatrix

m p
p n
with
cos(ox sin{o
g [ cosle) sinia)
—gin(a) cos(a)
where
2
tan(2a) = 4
m - n

But observe...

Suppose R has canceled @, with matrix R. Then a
subsequent rotation R’, canceling a;; say, may rein-
troduce a nonzero @,;.

It can be proved that a2, + a2, + a2, is reduced with
every rotation.

Let
M 0 0
0 X 0
0 0 A

be the final diagonal form.

If some of the A, are zero, then the original conic is
degenerate.

If all Ay have the same sign, the original conic is
imaginary.
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Otherwise, assume without loss of generality that
M > 0. If A; is also positive, then the parameteriza-
tion is

1 —1¢*
z(t) =
(¢) Hy 1+ 22
(1) 21
v = 2 l+ tg
where
1 = yf|A1] Aal fa = y/| A2/ Asl

[f A, is negative. then the parameterization is

1 + ¢
z(t) = m -2
2t
y(t) = 1 T
Again
1 = y/|Ar/ Asl 2 = \f|A2/ Aal

Example of Jacobi’s Method
Parabola y> -2z =0

00 -1
P = 01 @
-1 0 0
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Rotation angle 7 /4 gives matrix

where a = /2/2.

Then

with parameterization

a 0 —a
01 0
0 a
1 0 0
0 1 0
0 0 -1
s —¢*
25t
S'Z + t!

but

(zrn 21)R=(zy 2)

so the parabola is parameterized by

&

V252

2st

V212
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In affine coordinates, and with ¢ = }. therefore.

The more famiiiar form
z = s5°/2
y = s

is obtained with { = /2

Cubic Curves

Only singular cubics are parameterizable. For exam-
ple, 2+ —y*=0 .y

(x(8), yi4)

¥
*

18




Line equations: y =iz

Substitution: 42}l -t =0
Roots: r=10

z{t) = £ — |
Therefore: y(t) = B —t

Problems with Cubic Curves

An algebraic algorithm for parameterizing cubics has
to

1. determine if there is a singularity,

2. and if so, find it.

Algebraic Method for Cubic Curves

L. Eliminate 4° term.

| 2

. Transform cubic to the form
¥ = ha(2)
where h, is degree 4.

3. If hy has a double root, then cubic can be pa-
rameterized.

39




1. How to Eliminate the y’-term

a) Find a real root of the degree iorm. say (u,v).

b} Substitute

I, = 0 —Uvhn

N = uy

2. Transformation to y* = A,(x)

Cubic has form hy(z)y? + ho(2)y + his(z) =0
a) Multiply with & (z):

hiy? + hihgy + hiha =0
(h1y + $hy)* — h3 + hihy =0

b) Substitute

1
y2 = hyy + ;hz

3. Parameterizing y* = hy(z) = (z — A)?g(x)
a) Substitute y3 = y/(z — A).
b) Parameterize the conic y3 = g(x).

c) Backtransform the parameterization.
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A Worked Exampie

28y° +26zy° +Tzly+2°/ 2428y + 162y +Ty+32/2 = 0
Degree form is
28y° + 26xy” + Tzy + 2°/2

and has the real root (—2,1).

Substitute
T = T1—2)

Yields

Hzy — Dy +4(zd + 4z, + Dy + (23 +320)/2=0

Multiply with (z; — 1) and regroup, obtaining
(2(z1 — Dy + (22 + 42, + 1))?
— {z} 44z + 12 + (2} — 2 + 32 - 3z,)/2
Substitute
y2 = 2(z1 — Vg + (2} + 430 + 1)
Result is

y3 = (=1 + 1723 4+ 3321 + 19z, + 2)/2

41




Here. —1 is double root of righthand side. Substitute

i
-L'|+].

Ya =
Result is
2y = 2] + 15z, +2
which 1s parameterized by

P [y , —  _A415t47
1 2t4+15 Y3 V2 2t+15)

Backtransformation yields

(12 + 158 + 2)(#% + 2t + 13)
V22t + 15)2

2= -

and y, =

_ (VZHDO H(BVTH1T)B {6002 445) 12 + (44vZ+199M (10924 26)
V2(483 42207 —128{=510)

¥, simplifies to

(VZH 1 +(6V 24+ 1217 +{30v25 21) 14+ (1 12 +40)
V2[4t — (122 — 26— (90+/2430))

because of the common factor (t — 1 + 3v/2).
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Generalizations

Conceptually, we parameterize using a pencii of lines.

(y —a) =tz ~b)
through the curve point p = (. b).

Cubics mandate that p is a special curve point. Will
the method work in general. when p is suitably cho-
sen?

No. but there is a class of algebraic curves that may
be treated in this way. These are monoids.

Monoid Definition

A monotd is an algebraic curve ol degree n that has
a point of multiplicity n — 1.

e All conics are monoids.
e All singular cubics are monoids.

If the special point is known, monoids are easy to
parameterize.

Implicit Equation of Monoids

If the (n — 1)-fold point is at the origin, the implicit
equation of the monoid 1s of the form

hn(:ﬂ!y) - hn-l{-ray) =0

where %, has terms only of degree n. and k,_, has
terms only of degree n — 1

13




Examples

Circle: 24yt —(22) =0
Hyperbola: zy—(x+y)=0
Parabola: y:—(z)=0
Alpha curve: 13— (y* —4?2) =0
Cusp: 2= () =0

Parameterizing a Monoid

Monoid equation  h,(z,y) — ha_y{z,y) =0

Parameterization z(t) = _h““(l‘t)
ha(1,1)
hl‘l—l(l\t)

ty=¢ 21—
v{t) ha(l,8)

So easy, that monoids are also called dual forms.

Example

The circle through origin
(z* +y*) -2z =0

has the parameterization

(t) -
I = -
1+ ¢
2
! =
y(t) 146

14




I1.B. Surface Parameterization

The generai problem is algorithmically unsolved.

The pencil-of-lines approach generaiizes to a bundle-
of-lines approach. where the bundle centered at p =
(a.b.c} consists of all lines., through p, indexed by s
and {:

y—-h = s(z—a)
:—c¢ = t{r—a)

Jacobi’s algorithm also generalizes to quadrics.

Bundle-of-Lines Idea

Pick a (special) point, on the surface. as center of
tine bundle.

Determine the additional intersection as function of
s and ¢.

43




Example

The unit sphere has the equation
Prylei—1=0

Choosing p = {—1,0,0), we substitute y = s(z + 1}
and z = {(z + 1), obtaining

P+ +t) 2282+ ) - (1= =13 =0

Resulting Parameterization

1—s2—¢

I{s,f) = -
(s:4) 1+ 3% +¢2

23

b=

y(s,t) P

) 21

ZL 8, = -
( 1+ s+ 12

Monoids

The bundle-of-lines method works for any surface on
which there is a point such that (almost) every line
intersects the surface in one additional point. Such
surfaces are monoids.

A monoid is an algebraic surface of degree n with an
{n — 1)-fold point on it.

Monoids include all quadrics. cubics with a double
point. and Steiner surfaces.
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Implicit Equation of Monoids

If the (n — 1)-fold point is at the origin, the implicit
equation of the monoid is of the form

halz,y,2) — hnoy(2.y,2) =0

where h, has terms only of degree n, and h,_; has
terms only of degree n — |

Parameterizing a Monoid

Monoid he(z,y, 2} — ey (2., 2) =0
Parameterization x{s,t) = Pooi{lisit)
ha(l,s,t)
heo1(l.s.t
(s, t) = s otthnd)
ha(l,s,t)
(s, t) =1 M_i_).
hn(l,s,t)
Example

(2 +y?+:%) -2 =0

has the pararmeterization

9
r(s,t) = ——
) 1+ 82+ ¢

2s
y(s,l) = ———
y(s,t) T

‘) 2t
={s, —_—
{ L 4 52+ #2
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End of Part IT

Part II1

[II.LA. [xistence of an Implicit Form
III.B. Sylvester’s Resultant
[II.C. Grobner Bases Methods

[II.D. Some Experiments

Why should there be an implicit form?

Indeed. given rational functions k,(s) and hs(s), why
is there a polynomial ¢(z,y) such that

q’(hl, }!.2) =07
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Fields

A field is a set of “numbers® which we can add,
subtract. multiply and divide. Examples: Complex
numbers, real numbers, rational numbers.

If a field K is a subset of another field £. then £ is

an ertenston field of I,

Extension by Adjoining an Element

Let Y C £, and s € £ — . We construct the exten-
sion field A'(s) by adding to i' all elements required
to make A U {s} a field.

The extension is either algebraic or transcendental.

Transcendental Field Extensions
I{(s) is transcendental if there is no polynomial p(x)
with coefficients in A" such that s is a root.
For instance, R(r) is a transcendental extension.

Of course, we can extend I with several transcen-
dentals. e.g., K'(31,52,...,5m).
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The general element in the transcendental extension
K(sy,....8n) has the form

p(S1, .- 8m)
U= ———

4(51s e-eSm)

where p and ¢ are polynomials with coefficients in iy

Algebraic Dependence
Let &’ be a transcendental extension of A", obtained
by adjoining finitely many s.

The elements uy,...,u, in K’ — K are algebraically
dependent if there is a polynomial g(zy,...,2.) with
coefficients in /A such that the u; are a root of ¢.

Otherwise the u; are algebraically independent.

Transcendency Degree

The transcendency degree of K’ is a number d such
that any d + 1 elements in K’ — A are algebraically
dependent.

Theorem

The transcendency degree of K’ is unique.




Kxistence of Limplicit Form

Given the rational functions
z = hy(s)
y = hafs)

then x and y are elements in R(s), the transcendental
extension of R by s. But R(s) has transcendency
degree 1. so £ and y are algebraically dependent: i.e.,

q(z,y) =0

The minimum deeree ¢ is the implicit form.

Similarly, given the parametric functions
z=h(s,t) y=has,t) 3 =ha(s.t)

then z. y, and z are in R(s,?), of transcendency de-
gree 2, so they are algebraically dependent; i.e..

q(z,y,z) =0

Nota bene...

The implicit form may contain points not found on
the parametric form.
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Example
The parametric surface
r = si y= st? =35

has the impiicit form

This surface contains the line x = z = 0 that 1s

not on the parametric surface. except for the point
(0.0.0).

IIT.B. Sylvester’s Resultant

Variable Elimination

Given two polynomials
f(z) = aua®+ap1z" '+t ap
¢(z) = bpz™ + by 2™+ -+ by

we want a criterion for a common solution.

Form the determinant R




an Gn_1 e to O ‘e 0
0 dn ay g 0
R 0 e 0 an @a—y - g
bm l()m—l E:'Gl U 0
0 bom e by bo e 0
0 - 0 {’m bm—-l P bu

The determinant R is the Sylvester resultant.

Theorem

A = iff the two polynomials have a common root.

The Sylvester resultant “eliminates” the variable z.

The resultant can be used for multivariate polyno-
mials. but then it introduces extraneous factors:

Theorem

£ = 0 iff there is a common solution of the two
equations, or of the two lead coefficients. or of all
coefficients of one or the other polynomial.




Example

r —st y — st s
Step 1: Eliminate s
-t =z 0
0 —t gi{=zt?-2
-1 0 =z
—t2 y 0
0 - y|=zt'-4
-1 0 =
So. we now have two polynomials
zt? — 2
zt-i _ yz
3




Step 2: Eliminate t

=0 -2 0 0 0

0 = 0 -5 0 0

0 0 = 0 -z 0

00 0 = 0 -z = e
=0 0 0 —y2 0

0 = 0 0 0 -y

So. we obtain
2tz —z1)? =0

as implicit form.

Here. z%(y%z — zV) is an extraneous factor.

ITI.C. Grobner Bases

Computations in Ideals




Intuition

Given a system of linear equations. manipulations
such as LU-decomposition derive an equivalent linear
svstem that is easier to solve.

Likewise, given a system of nonlinear equations, a
Grobner basis is an equivalent system of nonlinear
equations that is easier to solve.

Technically

Grobner bases deal with polynomial ideals. [deals
come up as follows.

What is a Unique Surface Representation?

f(a:,y,z) =07
5f(33,y,2) =07
9(z,y,2)f(z,y,2) =07
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The unique representation is an ideal...

Also true for curves, surface intersections. and so on.

Ideals

An ideal I is a set of polynomials such that
l. It p and g are in I, then so is p — gq.

2. Ifp € I, and ¢q is any polynomial, then pq is
also in 1.

Ideal Bases

All ideals are finitely generated; that is, there are
polvnomials

flaf2s ---1fm

in [ such that every other polynomial in [/ can be
written

g=u fr+upfat - tUnfm

where the u; are polynomials.
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A Grobner basis is an ideal basis with special prop-
erties.

In particular. a GB with respect to the “elimination
ordering” allows solving a system of nonlinear equa-
tions in an especially simple manner.

Example 1

We are given the nonlinear system
fir 4y -1
fg : y2 + 32 -1
for 224271

These polynomials generate an ideal I with a GB

gr: o2t =2
2

g2 Yy —2
.2

gz: z*—2




Example 2

Given

224 2yz 42+t + 2y 4+t -1 = 0
22—z —2zz 4yt + 2y’ -1 = 0
22 —2yz 42z 4yt —2zy+2t—-1 = 0
22+ -2z 4+ —2ry+ -1 = 0
Z2+pyi—zr—1 = 0
GB is
2+ = 0
zy = 0
y’-y =0
zz = 0
yz = 0
24+yi—-z-1 =0
r=-—I:

Substitution gives y = 0, which in turn gives z =

z =0:
y'—y = 0.s0 y = 0,—1,+1. Each (z,y) pair extends
to one or more solutions in z.

Final set is

(-1,0,0), (0,1,0), (0,-1.0), (0.0,1), (0,0,—1)
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Implicitization with Grobner Bases

Grobner bases can be used to construct the implicit
form of integrally parameterized curves and surfaces.

The method does not introduce extraneous factors.

Example

Given
r — st y — st T — 3

the Grobner basis wrt the elimination ordering is
ot —y’z,
tz — y,tyz — o3, 8%z — £,

sy —xl, sx —tz, 5t — 8% — =

The Grobner basis discloses the implicit form, plus
inversion formulae that show that the surface is faith-
fully parameterized.
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Grobner bases are always wrt a particular term or-
dering.

For some orderings, basis computations can be much
faster, but the resulting basis does not reveal as much
information explicitly.

Given some Grobner basis, there are conversion al-
gorithms that reconstruct the missing information.

Such conversion algorithms are extremely important
for efficiency.

OI.D. Some Experiments

How expensive is implicitization?
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Comparison of three implicitization algorithms:

1. Sylvester’s resultant.

I

. Grobner bases with the elimination order, and

J. Basis conversion.

Implicitization for a parametric quadric, a paramet-
ric cubic, and a bicubic.

All computations on a Symbolics 3650 under Genera
7.2. Macsyma 414.62, with 16 MB main memory and
120MB swap space.

The parametric quadric is

r = 324482 45t —25—5t+4
y = 68 —st+8t+7T
= O9f 4+ 125 — 15t + 34

4
I
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The parametric cubic is

~3 4+ 3st+ 5%+ s
ts? — 3t 41
= 2% —5st+t —s°

[
i

The bicubic surface is

r = 3tt-12+(s—12+13s
v = Is(s =12 +1343¢
z = —33(s® — 38 +5)t5 — 3(s® + 652 — 9s + 1)
+£(65% 4+ 952 — 185 +3) — 3s(s — 1)
Implicitization Times in Seec.
Problem | Method 1 | Method 2 | Method 3
quadratic 21 22 6
cubic 10° 00 315
bicubic o0 o) 105
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Conclusions

We need both faster machines and faster algorithms.

Basis conversion improvement seems to suggest a
route of specialization, and of paring down the in-
formation that is computed.

End of Part III
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