Performance of Roadside Sound Barriers with Sound Absorbing Edges

Luc Mongeau, Sanghoon Suh, and J. Stuart Bolton
School of Mechanical Engineering, Purdue University
Co-Sponsored by:
Indiana Department of Transportation, Toll Road Division
Joint Transportation Research Program
Safe Quiet and Durable Highways

Sound Barriers

Diffracted path

Diffraction at the edge of the barrier

Straight path

Shadow zone

Traffic noise

Barrier

Receiver

Purdue University Herrick Laboratories
Example: Cantilevered barrier at Dordrecht, the Netherlands

Barrier Effectiveness

Each additional 1 m height = 1.5 dB(A) additional attenuation

Line of sight blockage = 5 dB(A)

from www.fhwa.dot.gov
Barrier Problem

Numerical Simulation
Rigid Barrier with Reflecting Ground
Metrics of Barrier Performance

- Noise Reduction (NR)
- Insertion Loss (IL)
- Transmission Loss (TL)

Insertion Loss

- Difference between the SPL's at the receiver without and with barrier

\[IL = L_{p, \text{without}} - L_{p, \text{with}} \]
Motivation

- Highway sound barriers often used to solve community noise problems
- Barriers expensive (approx $20/ft^2 of barrier installed)
- Barrier performance and cost directly proportional to height
- Are there ways to enhance performance, reduce costs?
Objectives

- **Investigate relatively novel barrier concepts:**
 - non-uniform edge geometries
 - absorbing materials
- **Develop and validate boundary element method for sound barrier performance predictions**
 - Design optimization
- **Investigate new metrics to compare performance of different barrier concepts**

Rationale

- **Most existing models approximate: based on geometrical acoustics (“ray theory”)**
 - or semi-empirical
- **Model often not amenable to complex barrier shapes**
- **Comparing barrier at one single location introduces a bias**
- **Novel concepts and FEM models not new**
 - work still needed for assessment
Methods

- **Laboratory Experiments**
 - small barrier models in anechoic room
 - random and impulsive input signals
 - time windowing eliminate effects of spurious reflection
 - Fourier methods to calculate TF’s
- **Boundary Element Predictions**
 - LMS Sysnoise (MSC Patran pre-processor)
 - Indirect variational method
- **Field Measurements**
 - Full scale tests on actual barrier

Novel Concept:
Sound Absorbing Barrier Top
Laboratory Experiments

- Scaled Model (1:10)
- Initial Assessment of Novel Concept Performance

Barrier configurations

- i) Rigid linear extension
- ii) Rigid T-shape
- iii) Sound absorptive treatment (soft top)
Microphone Locations

Dimensions in cm

Experimental setup
Local insertion loss comparisons

• Insertion Loss with Sound Absorbing Top Better
• Varies with Receiver Location

Insertion loss distribution at 6300 Hz (1/3 octave band)
Spatially-averaged insertion loss

Shape Optimization
Space-averaged insertion loss

Purdue University Herrick Laboratories

QUASH

• closed-cell foam made of polyolefin
• good sound absorption at low and medium frequencies
• does not absorb water as much as conventional materials like fibers, polyurethane foams, and melamine foams
• UV tolerant
• Performance comparable to that of Fiberglas, depending on frequency
Space-averaged insertion loss

![Space-averaged insertion loss graph](image)

Conclusion from Scaled Model Studies

- The Addition of Sound Absorbing Materials on Barrier Top Improves Performance
- Advantage over other design concepts
- Shape of the “soft top” has an effect on the barrier performance
- Circular shape optimal
- Use of QUASH promising for outdoor implementation
On-site measurements

- Preliminary measurements at three locations
- Measurement site: east of York Rd. and on the south side of bypass in South Bend, IN
- Chosen for relatively level, grassy terrain, distant from residential and commercial buildings
- Measurements were done before and after the absorptive material installation to evaluate the effectiveness of add-on device

Map of the measurement site

- Community park
 - Fairly large open space
 - Grass covered
 - Nearby Residents
 - Existing barrier gaps
Instrumentation

- Four Bruel & Kjaer 12.6 cm (½ in.) microphones (Type 4089 and 4090)
- Bruel & Kjaer Pulse analyzer (1 hour one-third octave band measurements)
- Davis Weather Wizard III weather station (direction and speed of the wind and temperature)
- Traffic classifier (numbers and average speeds of cars, mid-size and heavy trucks over one hour)

TNM simulations

- TNM: “Traffic Noise Model”, available from the Volpe Center, commissioned by FHWA
- Goal to approximate SPL from existing barrier to assess benefits from barrier attachments
- Geometry of simulation input from road plan giving grade and curvature, as well as dimensions of wall
- Traffic density data obtained using a traffic classifier
Measurement locations (top view)

- Roadside
- 1st barrier: 5.5 m, 6.1 m
- Reference microphone
- 2nd barrier
 - Microphone 1: 7.5 m
 - Microphone 2: 15 m
- Microphones

TNM Model

- Westbound
- Eastbound
- Reference microphone
- Microphone 1
- Microphone 2
- Microphone 3
- Grass-covered ground

Purdue University Herrick Laboratories
Measured traffic data (8/31/02)

<table>
<thead>
<tr>
<th>Type of vehicles</th>
<th>1 PM – 2 PM</th>
<th>2 PM – 3 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td>789</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>95.6 kmph</td>
<td>95.6 kmph</td>
</tr>
<tr>
<td>Mid-sized trucks</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>88.8 kmph</td>
<td>90.0 kmph</td>
</tr>
<tr>
<td>Heavy trucks</td>
<td>44</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>95.0 kmph</td>
<td>90.3 kmph</td>
</tr>
<tr>
<td>W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td>944</td>
<td>899</td>
</tr>
<tr>
<td></td>
<td>99.6 kmph</td>
<td>99.8 kmph</td>
</tr>
<tr>
<td>Mid-sized trucks</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>95.3 kmph</td>
<td>98.0 kmph</td>
</tr>
<tr>
<td>Heavy trucks</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>90.0 kmph</td>
<td>96.6 kmph</td>
</tr>
</tbody>
</table>

A-weighted overall sound pressure level

<table>
<thead>
<tr>
<th></th>
<th>1 PM – 2 PM</th>
<th>2 PM – 3 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Microphone</td>
<td>78.3 dBA</td>
<td>75.8 dBA</td>
</tr>
<tr>
<td></td>
<td>78.8 dBA</td>
<td>75.3 dBA</td>
</tr>
<tr>
<td>Microphone 1 (7.5 m)</td>
<td>56.6 dBA</td>
<td>55.9 dBA</td>
</tr>
<tr>
<td></td>
<td>57.7 dBA</td>
<td>55.2 dBA</td>
</tr>
<tr>
<td>Microphone 2 (15 m)</td>
<td>55.1 dBA</td>
<td>55.7 dBA</td>
</tr>
<tr>
<td></td>
<td>56.7 dBA</td>
<td>55.0 dBA</td>
</tr>
<tr>
<td>Microphone 3 (30 m)</td>
<td>56.3 dBA</td>
<td>55.5 dBA</td>
</tr>
<tr>
<td></td>
<td>57.8 dBA</td>
<td>54.8 dBA</td>
</tr>
</tbody>
</table>

- TNM under-predicts SPL by 1 dB to 3 dB
- complex terrain, atmospheric factors possible reasons
Treatment of barrier gap

- **Horizontal edge treatment (initial plan)**

 ![Diagram of horizontal edge treatment]
 Requiring at least 100 m long treatment for the receiver at 25 m

- **Vertical edge treatment (final plan)**

 ![Diagram of vertical edge treatment]

Receiver location selection

- **Two diffraction paths: over the top and around the edge**

 ![Diagram showing two diffraction paths]

- **Receiver locations chosen where diffraction around vertical edge dominates**

 ![Diagram showing receiver locations]

Purdue University Herrick Laboratories
Measurement locations

roadside

1st barrier

5.5 m

6.1 m

reference microphones

absorptive treatment

microphones 1 2 3

5 m

2nd barrier

7.5 m

Picture of the Site
Design of add-on treatment

- Polyolefin plastic foam or QUASH

Purdue University Herrick Laboratories

Picture of Modified Barrier

Purdue University Herrick Laboratories
Absorptive treatment is more effective deeper in shadow zone.

Measurement results
Summary of Road Tests

- On-site preliminary measurements were performed
- The sound absorbing edge concept was effective at high frequencies
- A larger installation is required for more rigorous investigation

BEM Model Validation:
Straight rectangular barrier
Experimental validation

- *BEM models accurate*
 - more accurate than diffraction based models

- *Detailed experiments challenging even in controlled laboratory conditions, with*
 - known input signals
 - minimal environmental effects
 - high precision instrumentation
 - lots of post-processing

Effects of Complex Geometries

uni-radial | bi-radial | tri-radial

Surface in shadow region

Effects of Complex Shapes: Sound power over the shadow region

Conclusions

- **BEM models accurate**
 - allow design optimization for complex designs
- **Irregular top shapes don’t affect sound power in shadow region**
- **T-shaped barriers moderately better than straight barriers (for equivalent quantities of material)**
- **Benefits of absorbing material on barrier top verified in laboratory and on-site!**
 - no models yet
 - further work needed for concept to be implementation-ready