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Figure 4-26: Superdex200 10/30 GL elution profiles of RbsA (blue) with antibodies either 
singly (A) or in combination (B). 
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Figure 4-27: A) Superdex200 10/30 GL elution profiles of vanadate-trapped RbsABC (blue) 
and in the presence of antibodies (color-coded above). B) Superdex200 10/30 elution 
profile of RbsB (red) and in the presence of NBR51 (blue). 
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4.7 Discussion 

 Crystallization trials of ribose transporter complexes have yet to produce 

diffraction-quality crystals despite extensive screening in a variety of media, from 

detergents to lipids. While protein crystals have been achieved, the identity of these crystals 

has yet to be determined. This awaits the growth of hardy, harvestable crystals that can be 

tested by X-ray diffraction methods. Optimization trials are currently being pursued to 

improve the quality of these crystals.  

 The inability of RbsABC to tolerate different detergents is disappointing, if 

unsurprising. The only detergent that appeared to produce a well-behaved elution on size-

exclusion chromatography was C12E8. Additional optimization may result in a condition 

where this detergent can be used for RbsABC crystallization. While DDM remains the 

most popular detergent for membrane protein crystallization and more crystals obtained 

with this detergent than not, the success rate as a whole is pedestrian at best and wanting 

for better methods. Newer, lipid-like detergents are available that may be worth pursuing. 

Screening RbsABC in different LCP lipids is also currently in progress. Alternatively, 

cloning RbsABC from other organisms may prove to be a more successful pursuit, and 

these experiments should be attempted in the near future. 

 The results from phage display sorting are promising, and have at least produced 

three high-quality binders for the NBD, RbsA, for which no structure currently exists. 

Unsurprisingly, it appears these antibodies recognize regions of RbsA involved in protein-

protein interactions, based on the absence of antibody binding to ribose transporter 

complexes, and thus these sites are expected to be highly antigenic. Crystallization trials 
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of RbsA-Fab complexes will soon be pursued in the hopes that some crystals can be 

obtained. Further characterization of these current binders will also be pursued.  

 The question of whether RbsA binds one or two antibodies remains unanswered. 

Analytical ultracentrifuge experiments and multi-angle light scattering are both available 

tools that can address these ambiguities. These extend the size of RbsA significantly and 

may aid crystallization trials. 

 In addition, epitope mapping using purified sABs will soon be pursued to identify 

other unique phage binders to reformat and clone into expression vectors. These will 

provide additional crystallization reagents and hopefully produce a handful that can 

recognize and bind specifically to the RbsABC complex. No antibodies from the current 

batch that were expressed and purified recognize the transport complex. It appears NBR51 

does not recognize RbsB, and likely interacted with the detergent or transport complex by 

non-specific hydrophobic interactions. This is not an uncommon property of these 

antibodies (Dominik, 2015). ELISA results pointed to the potential of MBC subpopulations 

that appeared to recognzie complexes. Attempts to express two clones from this group 

failed. Several others remain and will be cloned and expressed in the hope that some can 

be produced in quantities sufficient for crystallization experiments. 

 An additional possibility will be to pursue a new selection. Nanodiscs had 

previously not been optimized at the time selection was pursued. Unsurprisingly, binders 

from that selection are poor-quality and do not specifically recognize any ribose transporter 

proteins. Indeed, the most successful selection appears to be for RbsA alone, which 

produced 45 high-quality binders that have no cross-reactivity with other proteins. 

Currently only 5 of these were produced in high quantities, and more will be cloned, 
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expressed, and purified as needed. The nanodisc selection experiments will be pursued 

again in the near future to obtain high-quality crystallization chaperones for RbsABC. 

 Ultimately, the difficulty in crystallizing RbsABC may arise from conformational 

heterogeneity. Antibodies may resolve this issue. In addition, identifying high-quality 

binders for RbsABC may extend the range of the complex for structural studies by cryo-

EM. The current complex size is 150 kDa; binding one or two antibodies extend the 

complex into a size range that make these experiments somewhat practical. These options 

will be pursued with enthusiasm in the near future in the hopes of finally obtaining a high-

resolution map of the complex. 
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CHAPTER FIVE: A MODEL FOR RIBOSE TRANSPORT 

 
 
 

5.1 The Ribose Transport Cycle 

 The ultimate goal of this study is to better understand the function of this unusual 

ABC transporter at high resolution. While we still await a crystal structure to provide this 

level of detail, assembly experiments and EPR data have provided sufficient mechanistic 

information required to construct a transport model for the ribose transporter. In the search 

for general principles of ABC transporter function, perhaps this knowledge can be applied 

to other unusual ABC systems.  

 Assembly experiments have demonstrated that three different transport complexes 

can be isolated depending on the protein and cofactor combinations used (Clifton, et al., 

2015). In the absence of cofactors, the RbsBC complex is isolated, and RbsA is dissociated 

from the inner membrane complex. In the presence of non-hydrolyzable analogs or 

nucleotide and orthovanadate, the full transport complex RbsABC is isolated. In the 

presence of Mg-ADP, the RbsAC complex is isolated, with RbsB dissociating from its 

binding site on RbsC. Despite the unusual set of complexes and the single active NBD of 

RbsA, these complexes assemble in a canonical manner: one molecule of RbsB docks onto 

a transmembrane domain homodimer formed by RbsC, which associates with one molecule 

of RbsA consisting of two NBDs (Clifton, et al., 2016).  
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 SDSL EPR experiments of RbsB show that in the cofactor-free RbsBC complex, 

the lobes of RbsB remain at least partially together in the closed state of the protein. In the 

vanadate-trapped full complex, the lobes of RbsB are driven completely apart, a state where 

ribose is released following hydrolysis. Finally, the Mg-ADP bound state of the transport 

complex shows the lobes of RbsB close together once again, a conformation that likely 

drives RbsB dissociation from the transport complex. These results are consistent with the 

assembly experiments and provide a pathway for ribose release from RbsB due to ATP 

hydrolysis (Erramilli, Simon, Clifton, & Stauffacher, 2016). 

 SDSL EPR experiments of RbsA now demonstrate that the NBDs of RbsA undergo 

closure in the vanadate-trapped RbsABC complex. Further, the presence of RbsB promotes 

subdomain rotation, providing the structural basis for RbsB stimulated hydrolysis activity 

of RbsA. This transmembrane signalling, where the SBP regulates the hydrolysis cycle of 

the NBDs, is typical for ABC importers and demonstrates canonical behavior for the 

consensus site of RbsA. During this process, it appears ATP is bound but not hydrolyzed 

at the degenerate site, which may provide cooperativity for ATP hydrolysis in RbsA. This 

RbsB- and ribose-stimulated hydrolysis and cooperativity are demonstrated in ATPase 

activity assays from nanodiscs. 

 Post-hydrolysis, the NBDs dissociate in the Mg-ADP bound conformation. This 

likely represents the inward-facing state of the transporter, but could also represent the 

outward-occluded conformation. This ambiguity cannot be resolved with a high-resolution 

crystal structure. RbsA then appears to dissociate from RbsC when the bound nucleotide 

is removed. Whether this state is physiological remains unclear. Given cellular ATP 

concentrations, it is likely that nucleotide is rapidly recycled, and may briefly result in a 
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full or partial dissociation of RbsA from RbsC. This would resolve a significant conflict in 

this system: how RbsA traffics to and associates with the cell membrane in the absence of 

RbsC. If the need for this is obviated by rapid nucleotide exchange, then the model is 

complete until higher resolution information can be obtained. 

 Assuming rapid exchange of nucleotide and a constant association of RbsA with 

RbsC, a transport model can be described as follows. Ribose-bound RbsB docks onto the 

Mg-ATP bound state of the inner membrane RbsAC complex, likely in an intermediate 

conformation resembling the pre-translocation state of the maltose transporter or the 

cytoplasmic-occluded conformation of BtuCD. This docking promotes domain closure in 

RbsA and ATP hydrolysis by the single active site, and simultaneously drives the lobes of 

RbsB apart, releasing ribose to transporter. Here the transporter is clearly in the outward-

facing state, with the NBDs of RbsA tightly associated, the coupling helices of RbsC fully 

engaged with their complementary Q-loops, and RbsB stably forced into an open 

conformation. The γ-phoshpate is then released, destabilizing the NBD-NBD interactions 

of RbsA and leading to an inward-facing or outward-occluded state. This results in 

conformational changes in RbsC sufficient to transport ribose into the cytoplasm. RbsB 

follows the conformational changes of RbsC, with its lobes pinching together until its 

interaction with RbsC is destabilized and it dissociates. The transport cycle is completed, 

nucleotide is exchanged, and the transporter awaits a freshly-loaded RbsB to initiate the 

next cycle (FIGURE 5-1).  
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5.2 What about RbsC? 

 The RbsB and RbsA data complement each other and provide a structural 

mechanism for linking ribose release from RbsB with stimulation of ATP hydrolysis in 

RbsA. The observations from these experiments, however, stand in contrast to what is 

currently known about RbsC. 

 RbsC has a predicted ten transmembrane helices per monomer, based on cysteine 

scanning mutagenesis. Its closest homolog is BtuC, with which it shares 25% identity. 

Comparison of the model generated from cysteine scanning mutagenesis with the structure 

of BtuC shows a conservation of structure that is reasonable (Stewart & Hermodson, 2003). 

For instance, the coupling helix of RbsC, defined by a conserved EAA motif found in all 

ABC transporters, lies between TM helices 6 and 7. This is a typical feature of Type II 

ABC importers. Type I importers typically contain the coupling helix between TM helices 

4 and 5. In addition, the scanning experiments reveal a large loop between TM helices 5 

and 6. In the structure of Type II importers, this loop forms a short TM helix, termed 5a, 

that forms the periplasmic gate for these transporters. Since it is primarily located within a 

solvent-exposed vestibule that forms the receiving site for the transported substrate, it is 

expected that this region have solvent accessible cysteines. Thus, it is likely the gating for 

RbsC occurs in a highly similar manner as BtuC and other type II importers  

Given the similarity, this exposes a conundrum that cannot be resolved by the 

current structural understanding of type II importers. While rigid-body motions of the 

TMDs drive the conformational changes for maltose transport (and other type I importers),. 
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Figure 5-1: Transport cycle for ribose transporter. Grey bar is cell membrane. Ribose is 
brown pentagon, ATP is blue circle, and ADP is purple circle. RbsB is green, RbsC is red, 
and RbsA is colored by catalytic domain (orange) and helical domain (light blue). Left to 
right: RbsB captures ribose and delivers it to RbsC, which stimulates RbsA to bind ATP 
while driving open RbsB simultaneously, releasing ribose to the outward-facing 
translocation channel. ATP is bound at both consensus and degenerate sites. ATP is 
hydrolyzed by the consensus site, and interactions stabilizing the helical and catalytic 
domains in the consensus site are destabilized. As the helical domain disengages, this 
drives RbsC to an inward-open conformation and simultaneously resulting in RbsB 
dissociation. Nucleotide is then recycled and the cycle begins again. 
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 the conformational changes of type II importers are typically limited to rotations of 

the gating helices to allow alternating access of the translocation channel to the periplasm 

and cytoplasm. These movements facilitate substrate delivery down a channel that lacks a 

clear binding site, unlike the maltose transporter and other type I importers. 

 The lack of rigid body movements of type II TMDs also limits the conformational 

changes possible for their cognate binding proteins. Typically, the SBPs for these systems 

also undergo limited conformational changes to bind and release their substrates. Their 

affinity for these substrates is typically lower compared to SBPs found in type I importers. 

On the other hand, the SBPs bind the TMDs with low nanomolar affinity. Consequently, 

substrate release is driven by the increased affinity of the SBP with the TMD. This is 

accomplished by a slight rotation of the lobes away from one another. 

 While the RbsB-RbsC interaction is patterned in a type II manner, it is clear both 

from crystal structures of RbsB and the EPR data that RbsB undergoes fairly significant 

conformational changes during the transport cycle, from ribose binding to subsequent 

release. No obvious pathway exists for the TMDs of a type II system to undergo such 

significant changes, which would certainly require rigid body rotations.  

 It is also clear that RbsA undergoes fairly significant conformational changes. Here, 

however, both type I and type II importers are similar. Cytoplasmic gating in the latter 

system, provided by coupling helices and TM helical translations, drives fairly large 

conformational changes, similar to those observed in type I importers. The inward rotations 

reported from EPR experiments by RbsA support this model. How hydrolysis at a single 

active site of RbsA fuels conformational changes in RbsC remains unclear.  
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5.3 Type I, II, Or Something Else? 

 Three types of bacterial ABC importers have recently been identified. These 

include two models of canonical ABC importers based on structure-function studies of the 

maltose (type I) and vitamin B12 (type II) transporters. A third type of importer, the ECF 

transporters, have recently been included in ths family as a separate class of importer. These 

are very different structurally from the former two classes and operate by a different 

alternating access mechanism, though also fueled by ATP-hydrolysis in dimeric NBDs. 

 Is this type-setting sufficient, or can these proteins even been described in terms of 

types? As studies of increasing sophistication of the two types have been conducted, the 

major difference appears to be structurally. In both cases, regulation of hydrolysis is driven 

essentially by the binding protein, linking ATP utilization with transport in an efficient 

manner. The structures of the TMDs and SBPs used by each type provide the essential 

functional difference. Type I TMDs pair with SBPs from clusters with flexible hinge 

regions. This pairing results in rigid body rotations of type I TMDs to drive open the 

binding protein, releasing substrate into a well-defined binding pocket within the TMD. 

This transient site releases substrate as the TMD shifts from outward open to inward open, 

which also destabilizes its interaction with the SBP. 

Type II TMDs pair with SBPs from clusters with rigid hinges. The SBPs dock into 

grooves in the TMDs, inducing a slight rotation of SBP lobes to release the substrate into 

the translocation channel. Rearrangements of the gating helices allow the substrate to slide 

down the translocation channel. These gates are the basis for alternating access in these 

systems.  
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 It appears the ribose transporter has a mismatch of type I SBP with type II TMD. 

How the SBP interacts with the TMD is an open question, and one that will require a high-

resolution structure to answer. Whether other such systems exist is a matter of improved 

knowledge of the TMDs of putative ABC importers. Few systems exist with a RbsA-type 

protein, and it remains to be seen whether the ribose transporter is a molecular oddity or 

provides clues that lead to a fundamental understanding of many other ABC transporters.
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A.1 Purification of TEV Protease 

 TEV protease was expressed from glycerol stocks procured as a gift from the 

Mesecar Research Lab at Purdue University. The protein was purified with TALON resin 

using the protocol from their lab. Following purification, TEV protease fractions were 

pooled and dialyzed overnight into 50 mM Tris-HCl, pH 8.0, 25% glycerol, 5 mM EDTA, 

2 mM DTT. The final concentration, determined by A280 using the estimated extinction 

coefficient, was typically 0.8 – 1.4 mg/mL TEV protease. The sample was transferred as 

1 mL aliquots into 1.5 mL Eppendorf Tubes, which were flash frozen in liquid nitrogen 

and stored at -80ºC. 

 
 
 

A.2 Summary of RbsA Catalytic Mutations 

 A full list of RbsA mutations and their impact on transporter function can be found 

on the following page. All mutations were produced by Huide Zhang by site-directed 

mutagenesis. Transport was assayed in liposomes using C-14 labeled ribose. Swarm 

assays were performed on solid media made with ribose as the sole carbon source. 

Chemotaxis was studied using a capillary-based technique that assayed cell migration due 

to ribose. Cell lines used for this study are indicated and stored at -80 ºC.
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Table A-1: Summary of RbsA Catalytic Mutations, adapted from Huide Zhang. 

pecies Position 
Ribose 
Swarm 
Plate 

Peak 
Chemotactic 

Response 

Ribose 
Transport 

ATPase 
Activity 

Complex 
Assembly 

(Mg-
ATP-
VO4) 

Wild-
type 

- 100 100 100 100 ABC 

K43R Walker A 0 - 5-10 0 BC 
S44A Walker A 0 - 10 0 BC 
Q86A Q-loop 0 10 85 60 BC 
S143A Signature 100 - 100 90 ABC 
D166A Walker B 100 - 10 0 BC 
E167Q Walker B 0 - 0 0 ABC 
E167A Walker B 0 10 10 10 ABC 
H199A H-loop 0 35 75 0 ABC 
H199R H-loop 0 0 0 0 BC 
R291A Walker A 40 - 40 75 ABC 
R291K Walker A 60 60 85 90 ABC 
L395P Signature 40 - - 30 BC 
L395V Signature 50 - - 50 ABC 
E421Q Walker B 10 - - - ABC 
E167Q/ 
E421Q 

Walker B 0 - - 0 ABC 
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