Why Noise Reducing Concrete Pavements?

- Road Traffic Noise – Dominant source of urban noise pollution
 - Tire-Road Interaction Noise most significant
- Conventional concrete is a good sound reflecting material
 - Used for Noise Barriers
 - Does Not Attenuate Sound
 - Noise Barriers impractical along bridges / urban highways

Noise Levels

From Bruel and Kjaer
Noise Components

Source of Tire-Pavement Noise

Presentation Outline

• Modifications to the material structure of concrete
 – Enhanced Porosity Concrete (EPC)
 • Mix composition, properties, characterization, modeling, testing
 – Concrete incorporating Inclusions
 • Inclusion materials, properties, energy dissipation
• Modifications to the surface texture
 – Tining, Grooving
 • Features of the textures, testing
Conventional Concrete and Sound

- Conventional concrete is a very good sound reflecting material
 - Air-borne sound reflected
 - Noise barriers along highways
- Does little in dissipating sound inside an enclosure
 - Both air-borne and structure-borne sound not attenuated
 - Path difference between the direct and reflected rays minimal

Highway Noise Barriers

- Noise Barriers are Less Effective/Ineffective on Bridge Overpasses and In Urban Settings

Modification of the Material Structure
Quieter PCC Pavements

- Incorporate enough porosity in concrete so as to absorb sound

- Two Methods:
 - Increase the porosity of the non-aggregate component of the mixture
 - Enhanced Porosity Concrete (EPC)
 - Increase the aggregate phase porosity
 - Porous inclusions

Enhanced Porosity Concrete (EPC)

- Array of tortuous pores distributed in a rigid-framed matrix
- Dissipates energy through friction
- Reducing surface area and resulting slap sound
- Reduces horn effect

The Challenge

- Low Noise Surfaces
- Long-Term Durability
- Low Sprat/Good Visibility
- Safety/Skid Resistance
- Keep the Cost Low

Hans Arino, mid 19th Century
Salient Features

- Open porosity (~20-25%) achieved using
 - gap graded coarse aggregates
 - little / no sand
- Rapid drainage of water through interconnected voids
 - Minimizes wet weather spray, improves visibility
 - Minimizes glare

Influence of Porous Pavements in Reducing Noise

Focus of the Study

- Determine whether porous pavements can reduce the total noise level while avoiding potential problems associated with high-porosity pavements such as reduced durability
- Develop mixture proportions incorporating significant porosity to achieve noise reduction
- Quantify the noise reduction capabilities, physical, and mechanical properties of pervious concrete
Mixture Characteristics

• Three aggregate sizes - #8 (2.36 – 4.75 mm), #4 (4.75 – 9.5 mm) and 3/8” (9.5 – 12.5 mm)
• Gap graded mixtures
• Single sized aggregate mixtures
• Binary Blends (any of the 2 above sizes)
 – Replacement in steps of 25%
• Aggregate-cement ratio of 1:5.67
• w/c 0.33
• Sand / Silica fume addition

How to Quantify Porosity?

Sectioned, epoxied specimen

Scanned

Thresholded

White Pixels: Total Porosity

Painted black

Recanned

Thresholded

Black Pixels: Inaccessible Porosity

Accessible porosity = Total porosity – Inaccessible porosity

Pore Size Estimation

• Using Image analysis
• Maximum and minimum size of each feature
• Average pore size – misleading
• Median pore size – representative of the sizes in the system – characteristic pore size
• Not extremely accurate – gives an estimate of sizes – good for comparison
Porosity and Pore Sizes

Single Sized Aggregate Mixtures

Porosity and Pore Sizes

Blended Aggregate Mixtures

An Effective Tool to Screen Potential Sound Absorbing Mixtures
Acoustic Absorption of EPC Mixtures

150 mm Thick Specimens

- Single Sized Aggregate System
- Blended Aggregate System

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption coefficient</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- **100% #4**
- **100% #8**

Thickness and Absorption

- Frequency at maximum absorption coefficient depends on the specimen thickness

\[f_{\text{peak}} = \frac{n \cdot c}{4 \cdot t} \]

- **Blend of 75% #4 and 25% #8**

Summary of Absorption Trends

- Porosity and pore size significant
- Materials with higher porosity and pore size are not necessarily more efficient acoustically
 - Lesser tortuosity
 - Lesser frictional losses
- An optimal pore size exists depending on the mixture
- Blending of aggregates
 - #4 and #8: smaller pore sizes; most effective
 - #8 and 3/8": smaller aggregates fills the pores – effective at some proportions
 - #4 and 3/8": less effective; effective at some proportions
Modeling Acoustic Absorption

- Idealized model
- Electro-acoustic analogy

\[L_p \quad L_a \]

Rigid boundary

Direction of sound propagation

Specimen length = \(n(L_a + L_p) \)

Model Parameters

- Equating unit cell porosity to overall porosity

- Approximating pores as spherical (so that \(L_p = D_p \))
- \(L_p \) and \(D_p \) from image analysis
- Choosing pore to aperture size (\(D_p/D_a \)) ratios to calculate aperture length (\(L_a \))

Model Predictions and Experiment

- Aggregate proportion
- Maximum absorption coefficient
- Model predictions vs. Experimental values
Simulated Influence of Pore Geometry

- 3 pore diameters and a set of \(D_p/D_a \) values
- Optimal \(D_p/D_a \) value for each \(D_p \) where \(\alpha \) is max.
 - High \(D_p/D_a \): small aperture size, more energy reflected
 - Small \(D_p/D_a \): large aperture size, air trapped in pores
 - Both cases: lower absorption

Characterizing the Pore Structure

- Electrical Impedance Spectroscopy (EIS)
- For a porous medium filled with an electrolyte, effective electrical conductivity (\(\sigma_{\text{eff}} \)) depends on
 - Conductivity of individual phases (\(\sigma_i \))
 - Relative volumes of the phases (\(\phi_i \))
 - Connectivity and distribution of the phases (\(\beta_i \))

Typical Measurement Results

- Electrolyte – Sodium Chloride solution
 - \(\sigma_{\text{NaCl}} \) (1%) 1.56 S/m
 - \(\sigma_{\text{NaCl}} \) (3%) 4.40 S/m
 - \(\sigma_{\text{NaCl}} \) (1%) 12.40 S/m
- Latex membrane coating the specimen to contain the electrolyte
- Stainless steel plates as electrodes
- Frequency – 1 MHz to 1 Hz, 250 mV AC Signal
- Nyquist Plots
Modified Parallel Model

- Parallel Model - Rule of Mixtures
 \[\sigma_{\text{eff}} = \sigma_{\text{pore}} \phi_{\text{pore}} + \sigma_{\text{solid}} \phi_{\text{solid}} \]

- Modified by incorporating the connectivities of the constituent phases
 \[\sigma_{\text{eff}} = \sigma_{\text{pore}} \phi_{\text{pore}} \beta_{\text{pore}} + \sigma_{\text{solid}} \phi_{\text{solid}} \beta_{\text{solid}} \]

- Introducing a new term: Modified Normalized Conductivity (\(\sigma_N \))
 - since \(\phi_{\text{solid}} \beta_{\text{solid}} = 1 \)

\[\sigma_N = \frac{(\frac{\sigma_{\text{eff}} - \sigma_{\text{solid}}}{\sigma_{\text{pore}}})}{\phi_{\text{pore}} \beta_{\text{pore}}} \]

Pore Connectivity Factor (\(\beta_{\text{pore}} \))

- Accounts for constrictions in the pore space
 \[\beta_{\text{pore}} = \frac{(\sigma_{\text{eff}} - \sigma_{\text{solid}})}{\sigma_{\text{pore}}} \]

- Influences acoustic absorption coefficient

- Pore connectivity can be used to characterize acoustic absorption behavior of EPC

Porosity and Pore Connectivity Factor

- Connectivity factor generally increases with porosity

\[L/5 \leq \beta_{\text{pore}} \leq (L + 4 L/4) \]

\[\beta_{\text{pore}} = \frac{(L + 4 L/4)}{L} = 2.0 \]

\[\beta_{\text{pore}} = L/L = 1.0 \]

Two systems of same porosity But different connectivities
Quantifying Water Flow through Pervious Concrete

- Falling Head Permeameter
- Measures coefficient of permeability under saturated conditions
- Darcy’s Law
 \[k = \frac{A_i}{A_f} \log \left(\frac{h_1}{h_t} \right) \]

Permeability, Porosity, Pore Size

- Permeability not a function of porosity and pore size alone
- Pore connectivity also needs to be considered

Relating Pore Structure and Permeability

- Kozeny-Carman Equation
 \[k = \frac{\phi^3}{K_{r^2} S_e^2 (1 - \phi)^3} \]
- Relating electrical conductivity to hydraulic conductivity
- Modified Kozeny-Carman Equation
 \[k = \frac{1}{F_e S_e^2} \left(\sigma_{\text{eff}} - \sigma_{\text{void}} \right) \left(\frac{\phi_{\text{pore}}}{(1 - \phi_{\text{pore}})^2} \right) \]
 \[\text{Hydraulic connectivity factor } (\beta_H) \]
Linking the “Connectivities”

Acoustic and hydraulic properties of EPC can be characterized using one parameter:

Electrical conductivity

\[
k = \frac{1}{\beta_H} \left[\frac{\sigma_{eff} - \sigma_{solid}}{\sigma_{solid}} \right] \left(\frac{\phi_{pore}}{1 - \phi_{pore}} \right)
\]

Conclusions

- EPC results in higher acoustic absorption
- Blending of aggregates result in higher acoustic absorption than single sized mixtures
- Acoustic absorption depends on the porosity, pore size and geometry and pore connectivity
- A shape specific model to describe the acoustic absorption of EPC
- Quantifying the water flow through EPC
- Using a single measured characteristic (Electrical conductivity), information about acoustic and hydraulic performance of the EPC system could be deduced

TPTA Testing

- One porous concrete specimen shows higher SPL (Porous 3)
- Attributed to the irregular texture
- Grinding such specimens provides more similar SPLs as that of other porous specimens
Concrete Incorporating Inclusions

- Cellulose-Cement Composites
- Macro Nodule fibers (2 to 6 mm in size)
- Acts as porous aggregates

Acoustic Absorption

- Absorption spectra for macro nodules (75 mm thick specimens)

![Graph showing absorption spectra for macro nodules.](image)

Elastic Damping

- Complex modulus of a viscoelastic material:
 \[E' = E\cos\delta = E' \cos\delta + iE'\sin\delta \]
 \[E\sin\delta = E'', \quad E'' = E'\tan\delta \]
 \[E' = E'\cos\delta \quad \text{(Storage modulus)} \]
 \[E'' = E'\sin\delta \quad \text{(Loss modulus)} \]
 \[E' = \frac{E''}{\tan\delta} \quad \text{(Loss Tangent)} \]

- Combines storage modulus and damping capacity
- Best reflects the energy dissipating capacity of the material

![Graph showing E' and E'' vs. fiber volume for 7 day (wet), 14 day (wet), and 14 day (dry).](image)
Stiffness-Loss Relationships

- Relation between storage modulus and viscoelastic loss tangent
 - Stiff material with low to moderate loss tangent
- E'-tan δ relation heavily dependent on moisture conditions
- Increasing loss tangent and reducing stiffness with increasing fiber volume

Conclusions

- Cellulose-cement composites have moderate potential to absorb sound
 - Absorption coefficient increases with fiber volume
 - Related to fiber morphology
- Storage modulus and Loss tangent are inversely related
- Loss Modulus follows a Voigt composite relationship
 - Large reduction in stiffness, low loss tangent

Modification of the Surface Texture
Modeling the Effect of Tine Geometry

Influence of Tine Width

Influence of Tine Depth
Surfaces Tested on TPTA

Magnesium trowel
Broom longitudinal
Broom transverse
Astroturf longitudinal

Comparison of the Effects of Textures

- Different textures produce different noise levels and frequency spectra
- Rougher textures produce higher noise levels in both frequency and time averaging
- Exception is the ground surface that produces higher noise levels due to the lack of randomness in the surface

Effect of Multiple Tines

- The influence of having a series of tines versus a single tine is only seen at frequencies higher that 1500 Hz resulting in an increment on the noise levels
Characterizing Surface Textures

- A laser profilometer was used to characterize the surface texture
- Leveling done manually, to start with, followed by mathematical leveling
 - obtaining a trend line and subtracting on a "point by point" basis to obtain a level surface

Typical Texture Profiles

- Astroturf
- Broom Transverse
- Broom Longitudinal
- Magnesium trowel

Friction and Skid Resistance
Friction Results

Conclusions

- The influence of tine geometry modeled, and tested in the TPTA
- The geometry of the tined edges does not affect the noise generated as long as the size of the tine remains constant
- Tine width is a predominant factor in noise generation. Reducing tine and joint width results in a reduction in the overall sound level
- Concrete surface texture characterized using Laser Profilometer

Acknowledgements

Institute for Safe, Quiet and Durable Highways, Purdue University

Center for Advanced Cement Based Materials
Further Information

Contact:
Prof. Jan Olek or Prof. Jason Weiss
School of Civil Engineering,
Purdue University,
550 Stadium Mall Drive, West Lafayette,
Indiana – 47907

Phone: 765-494-5015
Fax: 765-496-1364
E-mail: olek@ecn.purdue.edu
wjweiss@ecn.purdue.edu