What Are the Basics of a Good Road?

Soils

Vincent Drnevich, P.E., Professor
School of Civil Engineering, Purdue University
March 10, 2004

Topics

- Ten Commandments for Good Roads
- Types of Soils
- Permeability
- Capillarity
- Compaction
- Frost Action and Potholes
- Selection of Soils for Roads
- Improvement of Soils for Roads
 - Stabilization
 - Geotextiles
- Summary and Conclusion

Ten Commandments for Good Roads

(from: Vermont Local Roads Program)

1. Get Water Away from the Road*
2. Build on a Firm Foundation*
3. Use the Best Soils Available*
4. Compact Soils Well*
5. Design for Winter Maintenance
6. Design for Traffic Loads and Volumes
7. Pave Only Those Roads That Are Ready*
8. Build From the Bottom Up*
9. Protect Your Investment
10. Keep Good Records

*6 of the 10 are related to soils

Types of Soils

- Boulders – Larger than 12-inches
- Cobbles – 3 to 12 inches
- Gravels – approx. ¼ to 3 inches
- Sands – 0.003 (#200 sieve) to ¼ inch
- Silts - smaller than #200 sieve but no strength (cohesion) when dried
- Clays - smaller than #200 sieve but significant strength (cohesion) when dried

Determine Soil Types (Sieving)

- Put Soil in at top
- Cobles - soil retained on 3” sieve
- Gravel - soil retained on #4 sieve
- Coarse Sand - soil retained on #10 sieve
- Fine Sand - soil retained on #200 sieve
- Silt and clay - soil passing the #200 sieve

Silts and Clays (referred to as “fines”)

are Easily Identified by Behavior

- Silts – exhibit no plasticity; crumble when rolled into a thread; when dry, can easily broken by hand into a powdery form
- Clays – exhibit plasticity; can be rolled into a thread without crumbling; when dry forms hard lumps which cannot be readily broken by hand

From Das, B. (2002)
Classification of Soils (AASHTO)

- **Granular Soils** – Soils that have less than 35% silts and clays
 - Drain well – depends on amount of clay and silt
 - Good support for pavements
- **Silt-Clay Soils** – Soils that have more than 35% silts and clays
 - Generally prevent drainage
 - Behavior strongly determined by the amount of water in the soil (wet → mud; dry → very strong)
 - Generally not good for pavement support

Permeability

- Ability of soil to allow water to flow through it.
 - Gravel: ~ 10,000 ft/day (2 mi/day)
 - Sand: ~ 10 ft/day
 - Silt: ~ 0.01 ft/day (1/8’/day)
 - Clay: ~ 0.00001 ft/day (1/2”/year)

Gravels and sands allow water to be drained from beneath pavements assuming that there is a place for the water to drain.

Capillarity

- How water is absorbed in a soil (analogous to how a sponge attracts water)

 Height of Rise:
 - Small Gravel: 0.1-0.4 feet
 - Coarse sand: 0.5 feet
 - Fine sand: 1-3 feet
 - Silt: 3-30 feet
 - Clay: 30-90 feet

From Das, B. (2002)

Compaction

- Increasing density of soil
 - Increases strength of soil – reduced likelihood of failure
 - Increases stiffness of soil – reduces deformation and settlement
- Depends on the water content of soil at the time of compaction
 - Some water in soil aids in compaction
 - Too much water in soil impedes compaction

Compaction Specifications for Highway Embankments (Percent of Max. Density)

<table>
<thead>
<tr>
<th>Condition 1</th>
<th>Condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(High Water for Foundation)</td>
<td>(Overlying Embankment)</td>
</tr>
<tr>
<td>Height of Fill</td>
<td>Height of Fill</td>
</tr>
<tr>
<td>Unit Weight</td>
<td>Density</td>
</tr>
<tr>
<td>Weight of Fill</td>
<td>Unit Weight</td>
</tr>
<tr>
<td>Density</td>
<td>Weight of Fill</td>
</tr>
</tbody>
</table>

Effects of Water on Well Compacted Soils

Do you want this soil beneath your pavements?

Keeping Water from Soils Beneath Pavements

- Design road to minimize ground water access to the soils beneath the pavement
- Good pavement maintenance minimizes the water getting into the soils beneath the pavement
- Provide for removal of water from beneath pavements
 - Free draining base material
 - Place for water to drain – side ditches

Freeze-Thaw and Potholes

What causes potholes?

- Water
 - If water is not drained from beneath pavements, it freezes and expands
 - The depth of freezing could go well into the subgrade
 - Thawing occurs from the roadway downward
 - Upon thawing the frozen soil surrounds the thawing soil beneath the pavement
 - Loose saturated soil provides very little support for the pavement

Common Pavement Profile

Prolonged Freezing Temperatures in Water-Saturated Soils Form Ice Lenses and Cause Pavement Heave

Water drawn into the zone of freezing from groundwater by capillarity

Thawing Occurs from Top Down - Saturated Soil in Thawed Zone Cannot Drain Bathtub Effect = Little Support for Pavement

Plowed snow
Selection of Soils for Roads

- Subgrade – natural soil at the site
 - If soft or loose soil, compact it or stabilize it
- Subbase – first layer above the natural soil
 - Should prevent clays and silts from penetrating into the base layer.
 - Dense-graded aggregate is frequently used (Indiana #3s)
- Base – layer immediately below the pavement
 - Open graded, free draining material (# 8 or #9 aggregate
 - Attention to removing water at edge of pavement into drainage ditches

Use of Geotextiles

- Many types exist
 - Filter fabrics placed on subgrades prevent silts and clays from migrating into the base materials and contaminating them
 - Geogrids are geotextiles that act like reinforcing steel does in concrete

Details at Pavement Edges –
Collect water that gets beneath pavement and get rid of it

Summary and Conclusions;
Basics of Good Roads - Soils

- Build roads on good soils; if soils are not good, compact and/or improve them
- Use a subbase to prevent subgrade soils of contaminating the pavement base
- Use a free-draining base material and make sure that water drains away from the pavement
- Maintain the road to:
 - Reduce water infiltration through the pavement
 - Allow base layer to drain

References

- http://personal.syr.edu/~skbhata/CIE584/dave/index1.htm
- http://personal.syr.edu/~skbhata/CIE584/dave/index2.htm
- http://www.mtcsg.com/