Bicycle Safety Feasibility Study

Study Components

- Safety Analysis
- Network Analysis Tool
Safety Analysis

- Crash Reports
 - Fatal: Indiana ’04-'05
 - Injury & PDO: Tippecanoe County ’04-'05
 - Some Reports Incomplete
- Bicycle Volumes Unavailable

Crash Reports

- 23 Fatal Crashes (Indiana ’04 -’05)
 - 14 Fatalities Not at Intersections
 - Common Causes Cited
 - Poor Lighting (10)
 - Erratic/Unsafe Cyclist Behavior (8)
 - Hit and Run Incidents (3)
Crash Reports

• 38 Injury & PDO (Tippecanoe County)
 ▪ Most Crashes at Intersections
 ▪ Common Causes Cited
 ▪ Illegal Cycling on Sidewalks (3)
 ▪ Cyclist Traveling Wrong Way (3)
 ▪ Failure to Yield to Oncoming Bicycle Traffic (4)
 ▪ Cyclists Ignoring Traffic Control Devices (5)

Crash Reports

• Potential Methods to Improve Safety
 ▪ Improve Lighting in High Volume Areas
 ▪ Enforce Sidewalk Ordinances
 ▪ Change Motorist Perception
 ▪ Shared Use Lane Markings
 ▪ Colored Bike Lanes
Measuring Safety

• Available Measures
 ▪ Bicycle Compatibility Index (BCI)
 ▪ Bicycle Level of Service (BLOS)

• Predicting User Perceptions Using Physical Properties

• No Bicycle Volume Factor

Bicycle Level of Service

(Sprinkle Consulting Engineers, Inc.)

• Prescribed Route Cycled by 150 Riders
• Riders Quantified Segment Comfort
• Linear Regression Fit to Factors
Bicycle Level of Service

BLOS = $a_1 \ln(\text{Vol}_{15}/L) + a_2 \ln[\text{SPD}_p (1 + \text{HV} \%) + a_3 \ln(\text{COM15} \times \text{NCA}) + a_4 (\text{PC}_5)^2 + a_5 (\text{We})^2 + C$

- $BLOS =$ perceived hazard of the shared-roadway environment
- directional traffic volume in 15-min time period,
- number of through lanes
- posted speed limit
- % heavy vehicles
- frequency per mile of uncontrolled vehicular access (e.g., driveways and on-street parking spaces)
- trip generation intensity of the land use adjoining the road segment
- pavement surface condition
- average effective width of outside through lane

Bicycle Level of Service

- Requires Detailed Information
 - Trip Generation
 - Complicated Access/Parking Variable
 - Pavement Conditions
- Not Practical for Network-Wide Use
Bicycle Compatibility Index
(UNC Highway Safety Research Center)

• 202 Cyclists Viewed Videos of 67 Locations
• Cyclists Gave Perceived Comfort Level
• Linear Regression Fit of Factors

\[BCI = C - a_1BL - a_2*BLW - a_3CLW + a_4CLV + a_5OLV + a_6SPD + a_7PKG - a_8AREA + AF \]

- LB < BCI < UB
- Bicycle Lane or Paved Shoulder present?
- Width of Bicycle Lane or Paved Shoulder
- Curb Lane Width and Vehicle Volume
- Other Lane Vehicle Volume
- 85th Percentile Speed of Traffic
- Presence of a Parking Lane With More Than 30% Occupancy?
- Presence of Residential Roadside Development
- Adjustment Factors for Truck Volumes, Parking Turnover, Right Turn Volumes
Bicycle Compatibility Index

- Requires Simpler Inputs Than BLOS
- More Practical for Network-Wide Use

Network Analysis Tool

- Weighted Links
- Aggregate Links Method
- All-to-All Shortest Path Method
Link Weights

• Assumes Cyclist Makes Route Choice Based on Two Factors
 ▪ Link Length
 ▪ Perceived Safety (BCI)
Bicycle Level of Service

\[\text{BLOS} = a_1 \ln(\text{Vol}_{15}/L) + a_2 \ln[\text{SPD}_p(1+\text{HV}%)] + a_3 \ln(\text{COM15}^*\text{NCA}) + a_4 (\text{PC}_5)^2 + a_5 (\text{We})^2 + C \]

- **BLOS** = perceived hazard of the shared-roadway environment,
- **Vol** = volume of directional traffic in 15-min time period,
- **L** = total number of through lanes,
- **SPD** = posted speed limit (as a surrogate for average running speed),
- **HV** = percentage of heavy vehicles (as defined in the Highway Capacity Manual),
- **NCA** = effective frequency per mile of uncontrolled vehicular access (e.g., driveways and on-street parking spaces),
- **COM15** = trip generation intensity of the land use adjoining the road segment (stratified to a commercial trip generation of 15, multiplied by the percentage of the segment with adjoining commercial land development),
- **PC** = FHWA’s 5-point pavement surface condition rating, and
- **We** = average effective width of outside through lane (\(W_e = W_t + W_l - W_r \) where \(W_t \) = total width of outside lane (and shoulder) pavement, \(W_l \) = width of paving between the outside lane stripe and the edge of pavement, and \(W_r \) = effective width (reduction) due to encroachments in the outside lane.)

Bicycle Compatibility Index

\[\text{BCI} = C - a_1 \text{BL} - a_2 \text{BLW} - a_3 \text{CLW} + a_4 \text{CLV} + a_5 \text{OLV} + a_6 \text{SPD} + a_7 \text{PKG} - a_8 \text{AREA} + AF \]

- **BL** = Presence of a Bicycle Lane or Paved Shoulder
- **BLW** = Bicycle Lane or Paved Shoulder Width
- **CLW** = Curb Lane Width
- **CLV** = Curb Lane Volume
- **OLV** = Other Lane Volume
- **SPD** = 85th Percentile Speed of Traffic
- **PKG** = Presence of a Parking Lane With More Than 30% Occupancy
- **AREA** = Presence of Residential Roadside Development
- **AF** = \(f_t + f_p + f_n \)
- **f_t** = Adjustment Factor for Truck Volumes
- **f_p** = Adjustment Factor for Parking Turnover
- **f_n** = Adjustment Factor for Right Turn Volumes