ROLLER COMPACTED CONCRETE
Tuesday, March 25, 2008

94th Annual Purdue Road School
www.purdue.edu/jtrp · Purdue University

WHAT WE WILL DISCUSS
• Background of RCC
• What about local use?
• Ready Mixed Roller Compacted Concrete
• Questions

RCC BACKGROUND

Definition
“Roller-Compacted Concrete (RCC) is a no-slump concrete that is compacted by vibratory rollers.”

• Zero slump (consistency of DGA)
• No forms
• No reinforcing steel
• No finishing
• Consolidated with vibratory rollers

Concrete pavement placed in a different way!

Benefits of RCCP
• Economical
• High load carrying ability
• Eliminates rutting and spans weak subgrades
• Excellent freeze-thaw durability
• Simple, fast construction
• High production with minimum labor
• Light surface for better night time visibility

Intermodal Yards
Logging Yards

Distribution Centers

18 acre distribution center in Austin, TX

10 years after construction

Warehouse Facilities

Big Jobs…

- We know we can do big jobs
 - Pug Mill
 - High Density Asphalt Paver
- What about smaller jobs
 - Conventional paver
 - Ready Mix Plant

UNION COUNTY

YOU HAVE GOT TO TRY…
Union County

- Wanda Hartman & Southeast Cement Association RCC Seminar
- She believed it could be done with local equipment
- Teamed with IMI & Union County Crews

Useful Information… But?

Can we obtain enough compaction through a conventional county owned asphalt paver and roller?

HENRY COUNTY

- Chad Hayes of Busters Cement
- Joe Wiley Henry County Highway Administrator

Henry County

- Project was completed quickly.
- We did not have a proctor
- We did make some cylinders
- Wanda calls it “Black Cold Patch”

- Perform a test pour at Buster’s landfill access road
- Do a full scale analysis of the system
Steps

- Buster’s determined their rcc mix design (confidential)
- Buster’s had engineering firm run a proctor on the mix design
- RCC batched into ready mix trucks and placed into county dump truck for transportation
- RCC placed with Henry County equipment
- Density tested via nuclear gauge

RCC Mix Design

- Buster’s proprietary design
- Cement
- Flyash
- Aggregates from readily available sources
- Nothing “special” or readily available from any ready mix producer
- No batch water

Proctor

![Proctor Graph]

Batching

- Buster’s older plant in New Castle
- Placed into ready mix truck
- Transported into Dump trucks

READY MIX TO DUMP TRUCK
DUMP TRUCK TO JOBSITE

CHECK DEPTH OUT OF THE PAVER

DENSITY OUT OF PAVER

CALIBRATED TO PROCTOR

ROLL WITHOUT AND WITH VIBRATOR ON
DENSITY AFTER ROLLING

<table>
<thead>
<tr>
<th>Lift (in)</th>
<th>Wet Density (pcf)</th>
<th>Dry Density (pcf)</th>
<th>Moisture (%)</th>
<th>Proctor (%)</th>
<th>Roller (y/n)</th>
<th># Passes w/o Vibrator</th>
<th># Passes w/ Vibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>117.8</td>
<td>109.7</td>
<td>7.4</td>
<td>74</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>116.1</td>
<td>109.4</td>
<td>6.2</td>
<td>74</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>144.9</td>
<td>136.5</td>
<td>6.2</td>
<td>92</td>
<td>Yes</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>148.8</td>
<td>138.8</td>
<td>7.3</td>
<td>94</td>
<td>Yes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>147.4</td>
<td>137.8</td>
<td>7</td>
<td>93</td>
<td>Yes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>161.9</td>
<td>151.3</td>
<td>7</td>
<td>102</td>
<td>Yes</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

* Tested at joint

First Run

<table>
<thead>
<tr>
<th>Lift (in)</th>
<th>Wet Density (pcf)</th>
<th>Dry Density (pcf)</th>
<th>Moisture (%)</th>
<th>Proctor (%)</th>
<th>Roller (y/n)</th>
<th># Passes w/o Vibrator</th>
<th># Passes w/ Vibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>118.7</td>
<td>111.9</td>
<td>6</td>
<td>76</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>114.4</td>
<td>108.6</td>
<td>5.3</td>
<td>73</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>143.1</td>
<td>135.2</td>
<td>5.8</td>
<td>91</td>
<td>Yes</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>147.3</td>
<td>138.9</td>
<td>6</td>
<td>94</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>153.2</td>
<td>145.2</td>
<td>5.5</td>
<td>98</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6*</td>
<td>149.0</td>
<td>140.1</td>
<td>6.3</td>
<td>95</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

* Tested at joint

Second Run

<table>
<thead>
<tr>
<th>Lift (in)</th>
<th>Wet Density (pcf)</th>
<th>Dry Density (pcf)</th>
<th>Moisture (%)</th>
<th>Proctor (%)</th>
<th>Roller (y/n)</th>
<th># Passes w/o Vibrator</th>
<th># Passes w/ Vibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>118.7</td>
<td>111.9</td>
<td>6</td>
<td>76</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>114.4</td>
<td>108.6</td>
<td>5.3</td>
<td>73</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>143.1</td>
<td>135.2</td>
<td>5.8</td>
<td>91</td>
<td>Yes</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>147.3</td>
<td>138.9</td>
<td>6</td>
<td>94</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>153.2</td>
<td>145.2</td>
<td>5.5</td>
<td>98</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6*</td>
<td>149.0</td>
<td>140.1</td>
<td>6.3</td>
<td>95</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

COMPRRESSIVE STRENGTH

SPLIT TENSILE
SPLIT TENSILE

Testing Data
(56 day: 28 dry, 28 fog room)

<table>
<thead>
<tr>
<th></th>
<th>Load (lbs)</th>
<th>Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>251,500</td>
<td>8,900</td>
</tr>
<tr>
<td>Sample 2</td>
<td>231,380</td>
<td>8,180</td>
</tr>
<tr>
<td>Average</td>
<td>241,440</td>
<td>8,540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Split Tensile</th>
<th>Load (lbs)</th>
<th>Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>86,620</td>
<td>765</td>
</tr>
<tr>
<td>Sample 2</td>
<td>90,125</td>
<td>790</td>
</tr>
<tr>
<td>Average</td>
<td>88,373</td>
<td>778</td>
</tr>
</tbody>
</table>

Split Tensile = 8.4 *√Compressive

GOOD RESULTS

CONCLUSIONS
1. Ready Mix Plants can produce quality roller compacted concrete
2. County highway asphalt pavers & rollers can provide enough energy to obtain 98% of the modified proctor
3. Split Tensile = 8.4 *√Compressive
4. This is a viable market

QUESTIONS?