Evaluating Truck Rollover at Roundabouts on High-Speed Roads

Thomas Hall
Lyles School of Civil Engineering
Purdue University
101st Road School
March 10th, 2015
Team

Center for Road Safety
• Andrew P. Tarko - PI
• Thomas Hall
• Mario Romero
• Cristhian Lizarazo

Indiana Department of Transportation
• Mike Holowaty
• Ed Cox
• Shuo Li
• Jim Sturdevant
• Alissa Bowen
• Derek Weinberg

FHWA
• Rick Drumm
Presentation Outline

• Background and objectives
• Previous roundabout experiences
• Research methods
• Development of heavy vehicle overturning model
• Overview of study and data extraction
• Results
 - Inward vs. outward roundabout circulatory superelevation
 - Effect of aggressive driver behavior on rollover propensity
 - Effect of driver perception error on rollover propensity
• Final remarks and next steps
Background

• Roundabouts are emerging in the United States, primarily due to their capacity and safety benefits

• According to NCHRP 672 – *Roundabouts: An Informational Guide*, for 55 study roundabouts converted from stop (46) and signal (9) controls:
 - 76% reduction in injury crashes
 - 35% drop in total crashes
 - European countries have experienced similar reductions

• Safety benefits due to a variety of factors:
 - Less conflict points, both in number and severity
 - Lower speeds
 - Enhanced pedestrian safety
Background

• Roundabouts traditionally used on low-speed roads (less than 45 mph)

• Becoming more common on high-speed roads, or **those with approach speeds greater than 45 mph**

• Frequently used on the edges of towns and cities for transition from high to low speeds (see NCHRP 737)

• Safety research is limited for roundabouts on high speed roads with considerable truck traffic
Objectives of Research

1. Examine previous studies and crash data

2. Better understand drivers’ safety-related behaviors in roundabouts, particularly related to heavy vehicle rollover

3. Propose recommendations and design remedies
Isebrands (2011) examined 19 rural roundabouts on high-speed roads, converted from stop (18) and signal (1) controls:

- 88% reduction in injury crashes
- 63% drop in total crashes

Before-and-after crash analysis of 12 Wisconsin roundabouts on high-speed roads revealed the following:

<table>
<thead>
<tr>
<th>Category</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total crashes</td>
<td>30% decrease</td>
</tr>
<tr>
<td>Fatal</td>
<td>100% decrease</td>
</tr>
<tr>
<td>Incapacitating injury</td>
<td>75% decrease</td>
</tr>
<tr>
<td>Non-incapacitating injury</td>
<td>60% decrease</td>
</tr>
<tr>
<td>Possible injury</td>
<td>67% decrease</td>
</tr>
<tr>
<td>Property damage only</td>
<td>9% decrease</td>
</tr>
</tbody>
</table>

Before Installation: **121 crashes**
After Installation: **85 crashes**

Kansas Roundabout Experience

- Since 2000, half of the heavy vehicle crashes at roundabouts on high-speed roads involved rollover
- Excessive speed given the conditions commonly cited in crash reports
- Most rollovers occurred after vehicle traversed the truck apron, causing load shifts or overcorrective steering which flipped the truck

Source: Kansas Department of Transportation
International Roundabout Experience

- United Kingdom experiences 50-60 injury rollovers per year on its roundabouts

- Roundabout factors correlated with rollover include:
 - Lengthy, high-speed approaches
 - Small entry deflection
 - Low circulating traffic volume
 - Excessive visibility
 - Large decrease in radius within roundabout
 - Sudden changes in roadway crossfall

Source: United Kingdom Highways Agency
Research Methods

• Establish pertinent model for rollover
• Collect video data from roundabouts
• Extract information on vehicle speeds and paths
• Determine the critical rollover speed and compare to the actual speed
• Identify critical behavior factors and scenarios
Heavy Vehicle Rollover

• Vehicle factors influencing rollover:
 - Speed
 - Center of gravity height
 - Track width
 - Suspension
 - Tires

• Load factors influencing rollover:
 - Overall weight
 - Lateral weight distribution
 - Longitudinal weight distribution

Source: NCHRP 505 – Review of Truck Characteristics as Factors in Roadway Design and Heavy vehicle stability guide and New Zealand Transport Agency
Articulated Vehicle Rollover
Rollover Condition:
\[(\vec{n}_3) \cdot (\vec{F}_a + \vec{F}_c + \vec{F}_g) > 0\]

Where: \(\vec{n}_3 = \) unit normal vector to rollover plane determined by \(\vec{af}\) (or \(\vec{ad}\)) and \(\vec{ac}\)

\(\vec{F}_a, \vec{F}_c, \vec{F}_g\) are the counteracting forces of longitudinal acceleration, centrifugal acceleration, and gravity

Based on original derivation from unpublished research note (Tarko, Hall, & Lizarazo, 2014)
Proximity to Rollover

Critical rollover speed:

\[(\mathbf{n}_3) \cdot (\mathbf{F}_a + \mathbf{F}_c + \mathbf{F}_g) = 0 \quad \Rightarrow \quad v_{cr} = \sqrt{\frac{(\mathbf{n}_3) \cdot (-g \mathbf{u}_g - a \mathbf{u}_a)}{(\mathbf{n}_3) \cdot (\frac{1}{r} \mathbf{u}_c)}} \]

Where: \(\mathbf{u}_a, \mathbf{u}_c, \mathbf{u}_g \) = unit normal vectors in direction of forces

\(r \) = instantaneous radius of vehicle path

Difference between critical rollover speed and actual vehicle speed determines proximity to rollover:

\[\Delta v = v_{cr} - v \]
Typical Specifications

Trailer
- Length: **48’**
- Width: **8’6”**
- Height: **13’6”**
- Average box length: **47’6”**
- Average box width: **8’3”**
- Average box height: **9’2-1/2”**
- Weight: **12640 lb**

Tractor
- Weight: **20,000 lb**

Sources: University of Michigan Transportation Research Institute, YRC Freight, and WB McGuire
Tractor-trailer Combination

- Legal gross weight in US without permits is **80,000 lb**

- Trailer loading is unknown, so both unloaded and fully loaded are considered for the same trailers

Source: Truckers Report
Study Roundabouts

- Focus is on roundabouts on high-speed roads with considerable heavy vehicle presence
- An examination of similar nearby low-speed roundabouts conducted for comparison

<table>
<thead>
<tr>
<th>Roundabout</th>
<th>Number of approaches</th>
<th>Highest approach speed (mph)</th>
<th>Inner radius (ft)</th>
<th>Number of lanes and width</th>
<th>Approach curve radius (ft)</th>
<th>Super-elevation (%)</th>
<th>Year built</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 25</td>
<td>3</td>
<td>55</td>
<td>56</td>
<td>2 x 16 ft</td>
<td>121</td>
<td>-2 to 2</td>
<td>2012</td>
</tr>
<tr>
<td>Concord Rd/Maple Point Drive</td>
<td>3</td>
<td>30</td>
<td>60.5</td>
<td>1 x 16 ft</td>
<td>90 to 93</td>
<td>2</td>
<td>2012</td>
</tr>
<tr>
<td>SR 32-38/Promise Road</td>
<td>4</td>
<td>55</td>
<td>58</td>
<td>2 x 16 ft</td>
<td>100</td>
<td>2</td>
<td>2011</td>
</tr>
<tr>
<td>SR 32-38/Union Chapel Road</td>
<td>3</td>
<td>55</td>
<td>58</td>
<td>2 x 16 ft</td>
<td>100</td>
<td>2</td>
<td>2011</td>
</tr>
</tbody>
</table>
Data Collection

- Camera position allows for extraction of approach and circulatory speeds and trajectories of same vehicle.
Data Extraction

• Path estimation tool developed in Purdue Center for Road Safety

• Extraction of trajectories by marking the same points on vehicle in successive frames

• Stabilization to reduce effects of wind

• Software calculates the coordinates of up to seven points at different locations on vehicles

• Calibration mode for determining vehicle dimensions
Data Extraction: Vehicle Path

Points marked incrementally at semi-trailer tires to determine path

Additional information regarding environmental conditions, heavy vehicle type, and lane position
Data Collection

- 42-foot pneumatic mast
- Two high-resolution dome cameras

Other features:
- Computer
- Two flat screen monitors
- 8 channel video recorder with 4 terabytes of storage capacity

Purdue Mobile Traffic Lab (MTL)
Approach curve vs. Circulation

Distribution of minimum Δv for studied vehicles

Cumulative Percent

Δv (mph)
Inward vs. Outward Superelevation

- Outward circulatory superelevation design commonly used in the United States
- However, inward design may offer benefits in reducing rollover risk
- Both scenarios should be compared to quantify whether safety advantage is substantial
- Assumption: Limited changes in pavement elevation do not affect behavior as represented by path and speed selection

Source: Gingrich and Waddell, 2008
Inward vs. Outward Superelevation

Minimum Δv at circulation, trailers assumed unloaded
Inward vs. Outward Superelevation

Minimum Δv at circulation, trailers assumed loaded
Inward vs. Outward Superelevation

Comparison of Mean Minimum Δv (mph) for Superelevation Scenarios

<table>
<thead>
<tr>
<th>Superelevation</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2% inward vs.</td>
</tr>
<tr>
<td>3% inward</td>
<td>2% outward</td>
</tr>
<tr>
<td>Mean Minimum Δv</td>
<td>1.94</td>
</tr>
<tr>
<td>Unloaded</td>
<td></td>
</tr>
<tr>
<td>16.67</td>
<td>16.19</td>
</tr>
<tr>
<td>Loaded</td>
<td></td>
</tr>
<tr>
<td>9.63</td>
<td>9.28</td>
</tr>
</tbody>
</table>

Estimate is bounded by the assumed unloaded and loaded cases
Findings

• Circulation more critical location for rollover; may focus analysis here

• While the inward design slightly raises Δv, it introduces other challenges, namely:
 - Relatively abrupt crossfall change between approach and circulation (linked to rollover)
 - More complex and costly drainage

• The safety advantage afforded by inward superelevation is small; it cannot be recommended given its shortcomings

• No strong basis to discontinue the common practice of outward superelvation
Aggressive Driver Behavior

• Certain drivers are prone to aggressive behaviors, such as traveling at excessive speeds

• Drivers classified as aggressive and non-aggressive based on speed far from the roundabout’s influence

• Compared minimum Δv at roundabout for aggressive and non-aggressive drivers
Aggressive Driver Behavior

![Graph showing cumulative percent of trailers assumed loaded and unloaded relative to speed difference (Δv) in mph. The graph includes data for trailers assumed loaded and unloaded, separated by 50th-percentile lines. The graph is labeled with 'Cumulative Percent' on the y-axis and 'Δv (mph)' on the x-axis. The speed far upstream is indicated as 800 ft.]
Aggressive Driver Behavior

- No obvious connection between aggressive driver behavior and rollover risk at the roundabout

![Plot Area](image)

- Speed far upstream (800 ft)
 - Below 25th-percentile
 - Above 75th-percentile

Cumulative Percent

\[\Delta v \text{ (mph)} \]

- Trailers assumed loaded
- Trailers assumed unloaded
Driver Perception Error

• On the roundabout approach, high-speed may indicate a driver misperception on safe traversal of the roundabout

• Studied impact of this driver perception error on rollover risk
Driver Perception Error

Approach speed 250 ft upstream

Approach speed 100 ft upstream
Driver Perception Error

Mean Minimum \(\Delta v \) at roundabout circulation (mph) based on Approach Speed

<table>
<thead>
<tr>
<th>Approach speed classification</th>
<th>250 feet</th>
<th>100 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 50th-percentile</td>
<td>10.87</td>
<td>11.28</td>
</tr>
<tr>
<td>Above 50th-percentile</td>
<td>10.51</td>
<td>10.10</td>
</tr>
<tr>
<td>t-statistic</td>
<td>-0.90</td>
<td>-3.21</td>
</tr>
</tbody>
</table>
Driver Perception Error

Approach speed
250 ft upstream
- Below 25th-percentile
- Above 75th-percentile

Approach speed
100 ft upstream
- Below 25th-percentile
- Above 75th-percentile
Driver Perception Error

Mean Minimum Δv at roundabout circulation (mph) based on Approach Speed

<table>
<thead>
<tr>
<th>Approach speed classification</th>
<th>Distance upstream</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 feet</td>
</tr>
<tr>
<td>Below 25th-percentile</td>
<td>11.08</td>
</tr>
<tr>
<td>Above 75th-percentile</td>
<td>9.97</td>
</tr>
<tr>
<td>t-statistic</td>
<td>-1.88</td>
</tr>
</tbody>
</table>
Preliminary Findings

- Drivers with excessive (errant) speed on the approach come closer to rollover threshold at the roundabout
 - More pronounced effect at 100 ft upstream of yield line

- Approaching a roundabout at a speed higher than 30 mph at 250 ft upstream of the yield line is associated with a higher risk of rollover

- Countermeasures
 - Warning truck drivers whose approach speeds are higher than the critical one (speed trap with vehicle classification, variable message sign)
 - Better driver training
Other Findings

• Literature review and crash reports found the truck apron design may also be causing problems

• Should incorporate more forgiving design
 - Easily mountable
 - Marking with texture and color different from pavement
Next Steps

• Expand sample of heavy vehicles and roundabouts

• Analyze rollover risk during poor weather and night conditions

• Comparative analysis of the rollover risk in roundabouts with low and high-speed approaches

• Recommend other design and signage improvements that can be cost-effectively implemented
Questions?
Data Summary

- **970 trajectories extracted**
 - 485 heavy vehicles
 - 485 non-heavy vehicles (cars, minivans, etc.)

Type of approach

<table>
<thead>
<tr>
<th>Type</th>
<th>Extracted Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed</td>
<td>479</td>
</tr>
<tr>
<td>Low-speed</td>
<td>491</td>
</tr>
</tbody>
</table>

Roundabout

<table>
<thead>
<tr>
<th>Roundabout</th>
<th>Extracted Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Road 25 near Lafayette, Indiana</td>
<td>254</td>
</tr>
<tr>
<td>Concord Road and Maple Point Drive in Lafayette, Indiana</td>
<td>256</td>
</tr>
<tr>
<td>State Road 32 and Union Chapel Road near Noblesville, Indiana</td>
<td>310</td>
</tr>
<tr>
<td>State Road 32 and Promise Road near Noblesville, Indiana</td>
<td>150</td>
</tr>
</tbody>
</table>