Pavement Underdrain to Achieve Longer Life Pavement Structure

Tommy E. Nantung
INDOT Research and Development Division
Sources of Moisture

Through permeable surface

From edge

Capillary action

Vapor movements

Seepage from high ground

Rising water table

Water table
Surface Infiltration

- **Major source of moisture into pavement**
- **Typical values of infiltration ratios for older pavements**
 - HMA pavement: 33 to 50 percent
 - PCC pavement: 50 to 67 percent
Moisture-Related Damage

- Moisture-related damage falls into three categories
 - Weakening of pavement layers
 - Degradation of pavement material (stripping and erosion of HMA, erosion of other materials, D-cracking of PCC)
 - Loss of bond between layers (pavement stripping)
- All three types of damage can occur simultaneously
Moisture-Related Damage

- More damage when pavement is saturated (e.g., rainy seasons and spring thaw)
- More damage when weakened pavement is subjected to heavy axle loads
Variation of Resilient Modulus with Moisture Content

Resilient Modulus MR, ksi

% Saturation, S

100% AASHTO - T99

95% AASHTO - T99
Moisture-Related Distresses PCC

- Pumping
- Faulting
- Corner cracking
- Transverse cracking
- D-cracking
- Alkali-silica reaction
Pumping
Faulting
Corner break

Punch-out
D-cracking
Moisture-Related Distresses - HMA

- Rutting of unbound layers and subgrade
- Potholes
- Alligator/ fatigue crack deterioration
- Pumping of fines
- Stripping of asphalt
Rutting
Alligator (fatigue) cracking
Pumping
High-severity pothole
AC stripping and erosion
Approaches to Addressing Excess Moisture

- Prevent moisture from entering the pavement
 - Pavement geometry (slopes and ditches)
 - Crack sealing/resealing (HMA)
 - Joint and crack sealing/resealing (PCC)
Crowned Cross Slopes

- 3.7 m (12 ft)
- 1.9 m (6 ft)
- 18.5 m (60 ft)

Layers:
- PCC slab
- Treated base
- Aggregate base
- Subgrade

Shoulder:
- 2%
- 4%

Grading:
- 1:6
- 7:4
Approaches to Addressing Excess Moisture

- Use non-erodible base materials
 - Granular pavement base (open graded)
 - Cement-treated base (CTB), open graded
 - AC-treated base (ATB) with adequate asphalt binder fortified with anti-stripping agents (INDOT specified PG 76-22)
Approaches to Addressing Excess Moisture

- **Other design features that reduce PCC pavement moisture damage**
 - Dowels
 - Tied shoulders
 - Widened lanes
 - Thick granular base (with granular subbase for underdrain)
Approaches to Addressing Excess Moisture

- Quickly remove infiltrated moisture by incorporating drainage systems in pavements
- INDOT Permeable base permeability
 - Granular open graded +/- 8,000 ft/day
 - Stabilized open graded +/- 3,000 ft/day
- FHWA recommendations
 - Time-to-drain of less than 2 hours
 - Permeability values in excess of 300 m/day (1000 ft/day).
Approaches to Addressing Excess Moisture

- Combination of approaches can be used for pavements under heavy traffic
 - Minimize infiltration of moisture
 - Pavement preservations
 - Use non-erodible base materials
 - Granular base (stabilized and non-stabilized)
 - Use design features that reduce moisture damage
 - Provide dowel, ditches, etc.
 - Provide subsurface drainage
Permeable Base

Thick granular/ stabilized open graded permeable base
Permeable Base

- Open-graded drainage layer
- Can be treated or untreated
- Could be daylighted or edgedrained

Cement -treated permeable base
JPCP cross section

9” – 15” JPCP

3” Open graded stone

6” - 12” Dense graded stone

14” Soil treatment

Soil subgrade
HMA pavement cross section

1.5” Surface
2.5” Intermediate
3”+ Dense graded base
3” Open graded base
3” Dense graded base
14” Soil treatment
Soil subgrade
Separator Layer

- A dense-graded aggregate layer or a geotextile layer with low permeability (suitable permeitivity)
- Used along with a permeable base
- Maintains separation between the subgrade and the permeable base
- Deflects surface infiltration towards the edgedrains
Pipe Edgedrains

- Perforated metallic or plastic pipes
- Run along the pavement length
- Interceptor water exiting the pavement

Longitudinal pipe edgedrain
Prefabricated Geocomposite Edge drains

- **PGED**
 - Also called “panel” or “fin” drains
 - Rigid plastic core wrapped with a geotextile
 - Lower hydraulic capacity than a pipe
 - Used in limited retrofit applications
Outlet Pipes

- Short metallic or plastic pipes connected to the edgedrains
 - New project 6” pipe, retrofit is 4” pipe
- Perpendicular to the roadway
- Spaced at regular intervals
 - INDOT is <400 feet, typically 300 feet
- Carry water from edgedrains to the side ditches/storm drains
Side Ditches/ Storm Drains

- Carry water from the outlet pipes and surface runoff away from the pavement
- Should have adequate depth
- In urban locations storm drains are used instead of side ditches to collect water
Types of Subsurface Drainage Systems
Typical Drainage Systems

- **Permeable base system**
 - Permeable base
 - Separator layer
 - Longitudinal edgedrains or daylighting
 - Outlet pipes and ditch or storm drain
Permeable Base System with Edgedrains

- Pavement
- Permeable base
- Shoulder
- Separator layer
- Longitudinal pipe edgedrain
- Rigid outlet pipe
- 150 mm (6 in) outflow
- Ditch
Daylighted Permeable Base

- Pavement
- Shoulder
- Embankment
- Permeable base
- Separator layer
- Subgrade
- Fabric separator
- Ditch
Other Types of Subsurface Drainage Systems

- Longitudinal edgedrain systems with
 - Erodible or non-erodible base
 - Pipe drains or geocomposite drains
 - Outlet pipes and ditch/storm drain

- Non-erodible base with porous concrete shoulder (for PCC pavements)

- Daylighted dense-graded bases (DGAB)
Example Section with Geocomposite Edgedrains

AC/PCC pavement
Aggregate base
Subbase/Subgrade
Sand Backfill

Shoulder
Geocomposite drain

25 mm (1 in)
100 mm (4 in)
Non-erodible Base with Porous Concrete Shoulder

- **PCC pavement**
- **Nonerodible base**
- **Separator layer**
- **Porous concrete**
- **AC Shoulder**
- **Slotted pipe**
- **Geotextile**
Structural Benefits of the Drainage Systems
Subgrade Resilience Modulus

SR-67: A-4 or A-7-6
(Lime Modified Subgrade)

US-231: A-4
(Lime Modified Subgrade)

SR-545: A-4 or A-6

SR-42: A-4 or A-6
Modulus of Subgrade Reaction (k)

SR-61: A-4 or A-6
US-6: A-3 or A-2-4
I-164: A-4 or A-6
US-30: A-6
SR-51: A-3
HMA Equivalent Thickness
PCC Equivalent Thickness

- Drained
- Undrained

Equivalent Thickness

- I-184
- US-30
- US-8
- SR-51
- SR-61
Common Mistakes in Pavement Underdrain
Summary

- Surface infiltration represents a major source of moisture in the pavement
- Moisture can be detrimental to pavement performance
- Drainage systems should be designed to remove moisture from pavement before damage occurs
Summary

- Pavement drainage system provides significant structural benefits to the pavement structure
- Subsurface drainage is a viable option to address moisture problems
- Various subsurface drainage alternatives exist
QUESTIONS???