6-1-2008

Lithography on GaP(100) surfaces

Rosangelly Flores-Perez
Purdue University - Main Campus, rflores@purdue.edu

Dmitry Zemlyanov
Birck Nanotechnology Center, Purdue University, dimazemlyanov@purdue.edu

Albena Ivanisevic
Birck Nanotechnology Center, Purdue University, albena@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/nanopub

Part of the Nanoscience and Nanotechnology Commons

Flores-Perez, Rosangelly; Zemlyanov, Dmitry; and Ivanisevic, Albena, 'Lithography on GaP(100) surfaces' (2008). Birck and NCN Publications. Paper 332.
https://docs.lib.purdue.edu/nanopub/332

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Lithography on GaP(100) surfaces

Rosangelly Flores-Pereza, Dmitry Y. Zemlyanov, Albena Ivanisevic

Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States

Article info
Article history:
Received 7 February 2008
Accepted for publication 2 April 2008
Available online 8 April 2008

Keywords:
Gallium phosphide
Atomic force microscopy
X-ray photoelectron spectroscopy
Infrared spectroscopy
Microcontact printing (μCP)
dip-pen Nanolithography (DPN)

Abstract
Two types of lithographic methods were used to modify GaP(100) surfaces with commercially available alkanethiol molecules: microcontact printing (μCP) and “dip-pen” nanolithography (DPN). The patterned surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). The characterization was done in order to understand the quality of each type of pattern, its chemical composition, and the organization of the molecules on the surface. Differences between the two lithographic methods used to do lithography on the GaP(100) in this study were dependent on the chosen molecular “ink”.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction
Numerous researchers have utilized lithographic approaches in order to address problems with variable complexity [1,2]. In recent decades, patterning techniques such as microcontact printing (μCP) and “dip-pen” nanolithography (DPN) have been used on various materials and have utilized a number of molecular “inks” including biomolecules [1–7]. Among the various reports, one can find predominately examples of lithography on metal surfaces, and relatively fewer demonstrations on other types of inorganic substrates such as III–V semiconductor materials [3,4,6,7]. Moreover, a very limited number of studies have done a comprehensive comparison between μCP and DPN when the same molecular “inks” are used on III–V semiconductor surfaces [6,7].

III–V semiconductor surfaces such as gallium phosphide (GaP) are commonly used for high temperature devices and low-noise detection photodiodes [8,9]. Devices fabricated from this material have the potential to be part of a sensing platform. In order to assemble a functional sensor from such devices one needs to develop appropriate surface chemistry modification methods that facilitate the immobilization of analyte sensing moieties on the surface. Moreover the modification methods need to accommodate the size of the devices and enable site-specific localization of the sensing moieties. We recently characterized in detail the covalent attachment of alkanethiols on GaP(100) substrates [10]. These studies demonstrated high alkanethiol coverage and well-packed adlayers.

In this paper, we compare the molecular patterning of alkanethiol on GaP(100) surfaces using μCP and DPN. The adsorbates studied were octadecanethiol (ODT), 16-mercaptophexadecanoic acid (MHA), 11-amino-1-undecanethiol hydrochloride (MUAM) and mercapto-1-hexanol (MHL). The samples were characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) and X-ray photoelectron spectroscopy (XPS). The initial goal of the work was to prove a successful transfer of the molecules onto the surface using each lithographic technique. Subsequently, the analysis studied the structure and composition of the pattern on the GaP(100) surfaces. In this study, we discuss some notable similarities and differences among the bonding, stability, organization and friction of the patterns formed by the two lithographic techniques.

2. Experimental section

2.1. Reagents and materials

One-side polished, S-doped, n-type gallium phosphide (GaP 100) wafers were purchased from University Wafer (South Boston, MA). 1-Octadecanethiol (ODT, 98%), 16-mercaptohexadecanoic acid (MHA, 90%), and mercapto-1-hexanol (MHL, 97%) were obtained from Sigma–Aldrich. 11-Amino-1-undecanethiol hydrochloride (MUAM, 90%) was acquired from Dojindo Laboratories. SYLGARD 184 silicon elastomer base and curing agent were purchased from Dow Corning Corporation (Midland, MI).
2.2. Surface cleaning

Each n-type GaP:S wafer was cut into \(1 \times 1\, \text{cm}^2\) pieces. All samples were sonicated in pure water and ethanol for 10 min, and subsequently dried with nitrogen gas (N\(_2\)). Each surface was cleaned in NH\(_4\)OH for 30 s at room temperature \[11\]. After the cleaning treatment the surfaces were rinsed with water and dried with N\(_2\).

2.3. Microcontact printing (\(\mu\)CP)

The PDMS stamps were prepared according to the manufacturer's instructions. Prior to the stamping procedure we prepared 1 mM solutions of each alkanethiol. Prior to the stamping process each stamp was washed twice with ethanol for 15 min. Subsequently, the clean stamp was wiped using a Q-tip soaked into an alkanethiol solution. The stamp was allowed to rest for 5 min and subsequently brought into contact with the surface for 1 min. The surface was rinsed with ethanol after the stamping was done. Contact mode AFM images were collected using a Multi-Mode Nanoscope IIIa Atomic Force Microscope. Each sample was evaluated using a scan size of 30 \(\times\) 30 \(\mu\)m\(^2\) and scan rate of 3.05 Hz. Images were processed using the Nanoscope III 5.12r3 software.

2.4. “dip-pen” Nanolithography (DPN)

All the “inks” (alkanethiols) used in the DPN procedure had concentrations of 20 mM. Single beam cantilevers from Veeco Instruments, CA (model # MSCT-AUHW and spring constant of 0.05 N/m) were modified with ODT, MHA, MUAM and MHL solutions for 15 min. A chamber was mounted around the AFM in order to control the temperature and humidity conditions. Contact mode AFM and a standard DPN protocol \[3\] was used in order carry out the patterning with each molecular “ink” on the GaP(100) surface.

2.5. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS)

We utilized a Thermo Nicolet, Nexus 670 FT-IR spectrometer for all FT-IR experiments. This single reflectance mode instrument has a narrow mercury cadmium telluride (MCT) detector. The spectrometer was cooled down using liquid N\(_2\). The data were analyzed using the Thermo Nicolet’s OMNIC software. Each data set was acquired with a resolution of 8 cm\(^{-1}\). A background for each inter-

3. Results and discussion

We began this study using standard protocols previously reported to modify surfaces by \(\mu\)CP and DPN. Identical methodology has been previously used to transfer molecular “inks” on other semiconductor surfaces\[6\]. The characterization we describe in this section is necessary in order to understand the physical and chemical properties of the modified GaP(100) surfaces.

3.1. General surface characterization

Before any patterning on the GaP substrates was done, we removed the native oxide by performing wet chemical etching with a base \[11\]. Four commercially available alkanethiols were patterned: ODT, MHA, MUAM and MHL. We took water contact angles of the etched and clean GaP(100), as well as surfaces modified with millimeter size alkanethiol patterns generated by \(\mu\)CP. These measurements examined the homogeneity of the substrates at the microscopic level. The water contact angles for clean GaP(100), \(\mu\)CP-ODT GaP(100), \(\mu\)CP-MHA GaP(100), \(\mu\)CP-MUAM GaP(100), and \(\mu\)CP-MHL GaP(100)
We have repeated the patterning with these two order in the SAM.

The AFM height and lateral force microscopy (LFM) images showed that the pre-programmed patterns were generated on the surface. The AFM height and lateral force microscopy (LFM) images showed that the pre-programmed patterns were generated on the surface. In the lateral force microscopy images darker features correspond to surface structures of relatively lower friction. We observed high friction when MHA and MHL patterns were compared with the bare surface, Fig. 1D and H. This is attributed to the high contact between the hydrophilic end groups on the surfaces and the clean bare surface, Fig. 1D and H. This is attributed to the high contact between the hydrophilic end groups on the surfaces and the clean bare surface. The resultant water contact angles for the patterned adsorbates are consistent with previously published surface investigations [6,7].

4. MHL 0.54 ± 0.05 0.31 ± 0.03

The second method that we used to demonstrate molecular patterning on GaP(100) was DPN, Fig. 2. All patterning steps were performed at the humidity of ~32–34% and at temperature of 24 °C. Features generated with ODT and MHA are shown in Fig. 2A–D, where the size of the squares is 3 × 3 μm² and was generated by using a speed of 2 Hz. The rectangles of MUAM molecules, Fig. 2E and F, were done using a ratio of 16:1 as the scan size and a scan speed of 1.5 Hz. The writing speed for the long molecular lines (5 μm) composed of MHA was 15.25 μm/s, Fig. 2G and H. The AFM images of each pattern were taken with a clean tip after they were dried for 1 h. The RMS values associated with each type of pattern are summarized in Table 1. The LFM images confirmed the difference in friction which depends on the interaction of the clean tip with the end functional group of the pattern and the bare tip surface. MHA and MHL DPN patterns presented higher friction than the ODT and MUAM DPN samples. These results were similar to the contrast seen in previous surface investigations [3–7,19,20]. The initial characterization confirm the ability to successfully pattern GaP(100) surfaces on the micron and nanometer scale. In order to understand the chemical composition and gather deeper understanding of the organization of the molecules within the patterns we carried out further spectroscopic analysis using XPS and FT-IRRAS.

3.2. Elemental composition of the patterns on GaP(100) surfaces: XPS analysis

XPS is a powerful technique, which provides information about the chemical composition of the micro-scale SAM patterns and molecular adlayers [21,22]. We investigated each type of alkane-thiol modification by XPS using a micron-size alignment indicator in order to take spectra from a specific lithographic pattern. We analyzed the core level spectra of gallium (Ga 3d and Ga 2p3/2), phosphorus (P 2p), sulfur (S 2p), carbon (C 1s), nitrogen (N 1s) and oxygen (O 1s). Each spectrum was fitted assuming a Gaussian/Lorentzian line shape. The curve fitting is particularly important for the S 2p and N 1s analysis because these photoelectron transitions overlap with the Ga 3s and Ga Auger peaks, respectively [10]. The peak positions for the clean, μCP- and DPN-modified GaP(100) are summarized in Table 2.

High-resolution core level spectra of the S 2p/Ga 3s region were collected in order to rationalize each patterning modification on GaP(100), Fig. 3. An asymmetric peak at 1559.9 eV is representative of Ga 3s from the clean GaP(see the light turquoise peak in Fig. 3). After μCP and DPN of the alkane-thiols on the surface, the S 2p doublet peaks at ca. 162 eV became detectable [10,23–28]. This peak

<table>
<thead>
<tr>
<th>Surface</th>
<th>μCP Features</th>
<th>DPN-features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ODT</td>
<td>0.41 ± 0.02</td>
<td>0.26 ± 0.03</td>
</tr>
<tr>
<td>2. MHA</td>
<td>0.77 ± 0.09</td>
<td>0.26 ± 0.05</td>
</tr>
<tr>
<td>3. MUAM</td>
<td>0.47 ± 0.06</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td>4. MHL</td>
<td>0.54 ± 0.05</td>
<td>0.31 ± 0.03</td>
</tr>
</tbody>
</table>

Table 1

Summary of the RMS values (nm) collected after analysis of areas patterned by each lithographic method.
position is characteristic of covalently bond sulfur to the substrate. These peaks are plotted in lime color and the spin-orbital doublet splitting is 1.15 eV, spectra 2–5 in Fig. 3. Regardless of which patterning technique was used, we recorded a weak S signal. On samples patterned with MUAM by DPN, Fig. 3, spectrum 4, an additional component is detected at \(\frac{C}{24} 169 \text{ eV} \) which is attributed to oxidized sulfur [23–25]. In order to have additional information about the composition of the patterns generated by each lithographic technique, the C 1s and N 1s core level spectra were analyzed.

The C 1s core level spectra are represented in Fig. 4. Freshly etched GaP(100) substrates had some carbon contamination due to a short exposure to air. After the preparation of the molecular patterns by both lithographic approaches, the C 1s peak intensity increased in comparison with the clean surface. It is important to note that the C 1s intensity was higher for the surfaces patterned by \(\mu \text{CP} \) than for the ones modified by DPN. We also would like to note that in the case of a surface modified by DPN, the XPS spot of analysis was bigger than the DPN pattern and therefore the analysis covered some non-functionalized (i.e. clean) fraction of the surface. The surfaces patterned by DPN with ODT were more susceptible to carboxylic acid contaminants compared with samples that were modified with other adsorbates [10]. Samples modified with the MHA ink and each technique, the deconvolution of the spectra revealed \(\text{OH–C} \@ \text{O} \) and \(\text{C–OH} \) component that were detected at \(\frac{C}{24} 288.9 \text{ eV} \) and \(\frac{C}{24} 286.0 \text{ eV} \), respectively. Surfaces functionalized with MUAM using \(\mu \text{CP} \) and DPN showed a C 1s component at 286.3 eV and 285.7, respectively. This component is consistent with the presence of nitrogen bonded species and was confirmed by the analysis of the N 1s core level spectra.

In Fig. 5, the N 1s peak overlaps with the Ga L3M45M45 Auger lines [29]. The Ga L3M45M45 Auger lines were observed for clean GaP(100) and for all patterned surfaces. The Auger line shape was extracted from the spectra obtained from the clean surface. Subsequently the Auger line constraint was used to deconvolute the N 1s peak. A peak attributed to N 1s at \(\frac{C}{24} 400 \text{ eV} \) can be assigned to \(\text{C–N} \) and \(\text{NH}_2/\text{NH}_3^+ \) species from MUAM on surfaces patterned by...
each method. All the XPS data we collected confirmed the successful transfer of the chosen “inks” onto the surface and provided evidence for the formation of a bond to the GaP(100) surface.

3.3. Chemical species arrangement on GaP(100) surfaces: FT-IRRAS characterization

In order to assess the order level of the molecule layer patterning by each lithographic method, FT-IRRAS data were collected. A low frequency region (1550–1800 cm\(^{-1}\)) and a high frequency (2800–3000 cm\(^{-1}\)) were examined, as shown in Figs. 6 and 7. As expected from ODT and MHL chemical structures, no peak in the low frequency region was observed for the surfaces patterned by each technique, as shown in Fig. 6 (spectra 1 and 4). Surfaces patterned with MHA (Fig. 6, spectrum 2), showed a peak at 1695 cm\(^{-1}\) after CP and DPN modifications, respectively. This peak is due to the presence of C=O moieties on the surface [6,10,27,30]. We recorded evidence for the presence of MUAM on the surface after the lithographic procedures due to the appearance of absorptive bands in the high frequency region (2800–3000 cm\(^{-1}\)).
of amide II peaks [10,31]. These peaks were at 1509/1510 cm\(^{-1}\) on surfaces functionalized by \(\mu\)CP and at 1552/1560 cm\(^{-1}\) on DPN-modified surfaces.

FT-IRRAS experiments were also used to study the orientation of the alkanethiol molecules on the surfaces. In order to gather this information, we analyzed the high frequency region (2800–3000 cm\(^{-1}\)). The position of the symmetric CH\(_2\) stretch is used to assess if the packing of the molecules within the patterns is in a liquid-like or crystalline-like state [10,21,27,30–32]. The symmetric v\(_{as}\)(CH\(_2\)) and asymmetric v\(_{as}\)(CH\(_2\)) stretching mode of CH\(_2\) for alkanethiol solutions were positioned at ~2851–2855 cm\(^{-1}\) and 2924–2931 cm\(^{-1}\), respectively [10]. Fig. 7A shows the v\(_{as}\)(CH\(_2\)) / v\(_{as}\)(CH\(_2\)) bands for microcontact printing patterns of the alkanethiol molecules on GaP(100). These peaks are located at 2917 cm\(^{-1}\) / 2838 cm\(^{-1}\), 2916 cm\(^{-1}\) / 2848 cm\(^{-1}\), 2921 cm\(^{-1}\) / 2847 cm\(^{-1}\), and 2919 cm\(^{-1}\) / 2848 cm\(^{-1}\) for ODT, MHA, MUAM, and MHL, respectively. The asymmetric v\(_{as}\)(CH\(_2\)) / symmetric v\(_{as}\)(CH\(_2\)) vibrations for ODT, MHA, MUAM and MHL DPN samples were positioned at 2906 cm\(^{-1}\) / 2847 cm\(^{-1}\), 2919 cm\(^{-1}\) / 2849 cm\(^{-1}\), 2919 cm\(^{-1}\) / 2840 cm\(^{-1}\) and 2910 cm\(^{-1}\) / 2843 cm\(^{-1}\), respectively. The data we gathered support the notion that the patterns of the alkanethiol molecules are in a crystalline-like state on the GaP(100) [10,27,30–32]. It is worthy to note that the biggest difference we recorded between the organization of the patterns on each surface when a different lithographic approach was utilized was in the case of the ODT ink. The FT-IRRAS data indicates that the GaP surfaces patterned by DPN with this ink produced more ordered monolayers compared to the ones generated by \(\mu\)CP. This observation is consistent with the AFM data discussed earlier.

4. Summary

This study demonstrated a complete qualitative characterization of alkanethiol patterning on GaP(100) surfaces using \(\mu\)CP and DPN. The AFM data showed well-defined structures at optimal conditions by both lithographic techniques. The XPS data allowed us to understand the elemental composition of GaP(100) surfaces modified by four different “inks”. A small amount of sulfur S was observed on surfaces functionalized by both DPN and \(\mu\)CP and a covalent attachment to the surface was confirmed. FT-IRRAS analysis showed that there are differences in the organization of the molecules on the surface after each lithographic modification but they are dependent upon the chosen molecular “ink”.

Acknowledgment

This work was supported by NSF under CHE-0614132.

References