Concrete Durability
And the Value of Electrical Testing

Robert Spragg, Tommy Nantung, Tony Zander and Jason Weiss, wjweiss@purdue.edu
Outline

- Background – Basic Terms
- Background – Why Measure Electrical Properties
- Background – What Influences the Results
- Background – Important Outside Influences
- Conditioning
- Test Kit -- Proceq Resipod
- Test Methods
 - Uniaxial
 - Surface
- Using the spreadsheet
Starting with Basic Terms

• I want to start today's discussion with a few basic terms that we will use to make sure everyone is on the same page

• Electrical Resistance
• Electrical Resistivity
• Electrical Conductance
• Electrical Conductivity

• All Terms are Related and We Want to Be Clear
Ohms Law

• For a wide variety of materials have a relationship between voltage and current that are directly proportional to each other

\[V = IR \]

• Proportionality constant
• Named after Georg Ohm (1827)
• Actually Discovered by Cavendish (1731-1810)
• “A professor who preached such heresies was unworthy to teach science”
• Is resistance a material property?

```
R = V / I
```

Resistance
Resistivity
Independent of Geometry

\[\frac{RA}{L} = \rho \]

- Copper \(1.68 \times 10^{-8}\) ohm m
- Carbon \(3 \times 60 \times 10^{-5}\) ohm m
- Glass \(1 \times 10000 \times 10^9\) ohm m
Inverse of Resistivity

- The inverse of resistivity is conductivity (σ)

$$\sigma = \frac{1}{\rho} = \frac{L}{RA}$$
Uniaxial Test Geometry

\[\rho = R \cdot \frac{A}{L} \]
OK – Now What

• So we measure resistance and compute a resistivity that is geometry independent
• But why are we doing this… Said simply who cares or why should we care about the electrical resistivity of the concrete
• Simply said – resistivity is related to durability but how is this the case
• We will see math but I want to look at the concept not the math
Durability Related to Transport

- Concrete protects steel from deicing salts
- Salt can be absorbed or can diffuse in the pores and when it reaches the rebar it can depassivate the steel and cause corrosion

Diagram:

- Deicing Salt
- Cover
- Reinforcing Bar
How Long Does it Take Chloride to Reach the Bar

- The chloride will migrate to the bar over time
- How long does it take to reach a critical level
- Depends on the quality of the concrete and the depth of the reinforcement

![Graph showing the relationship between time and chloride concentration at the bar reaching a critical value.](image-url)
• Concrete protects steel from deicing salts

\[1 - \text{erf} \left(\frac{x}{\sqrt{4Dt}} \right) = \frac{Cx - Co}{Cs - Co} \]

- \(x \) distance from surface
- \(t \) is time
- \(C \) is the chloride concentration
- \(D \) is a material property that describes the diffusion rate
Simply Said

- Higher D causes ions to move faster
 - High w/c (high porosity)
 - High paste content
- Lower D causes ions to move slower
 - Lower w/c
 - Supplementary SCM
- The Diffusion Coefficient is Difficult, Time Consuming and Costly to Obtain
Diffusion Coefficient

- D is Related to Electrical Properties of Concrete Using the Nernst-Einstein Eqn.

\[
\frac{\sigma_{Sample}}{\sigma_{Fluid}} = \frac{D}{D_{ion}} = \frac{\rho_{Fluid}}{\rho_{Sample}}
\]

\[
D = \sigma_{Sample} \cdot \frac{D_{ion}}{\rho_{Fluid}} = \frac{1}{\rho_{Sample}} \rho_{Fluid} D_{ion}
\]

\[
D = \sigma_{Sample} \times \text{Constant}
\]
Concrete as a Porous Material

- Which phases influence transport

 - Aggregate – Typ. low porosity and low transport
 - Paste - Transport occurs Hydration products, vapor, and fluid
Where Do Pores Come From

- Initially cement is the particles in the space and the water is the porosity.
- Over time cement reacts and the porosity fills in (densifies).
- The porosity (ϕ) is related to the w/c.

\[
\phi = \frac{w/c}{w/c + \rho_w/\rho_c} \quad \rho_w = 1000 \text{ kg/m}^3 \quad \rho_c = 3150 \text{ kg/m}^3
\]
Power’s Model for Paste Fractions

Transport is largely driven by the capillary pores.

Capillary Porosity

Capillary Pores

Gel Water

Hydrated Solid

Unhydrated Cement

Volume Proportions (%)

Degree of Hydration (%)
Volume of Paste Phases (Sealed - Maximum Hydration)

Higher w/c, more capillary pores, higher permeability
Approximate Approach (Technically Not Correct but)

• The porosity can be fluid or vapor
• If the concrete is saturated the porosity is fluid filled
• Lets assume that all the phases of concrete are conductive, we can assume that the sample is the weighted average of the product of phase fractions (ϕ) and the connectivity (β) of the phase fractions

$$\sigma_{\text{sample}} = \sigma_{\text{Fluid}} \phi_{\text{Fluid}} \beta_{\text{Fluid}} + \sigma_{\text{Solid}} \phi_{\text{Solid}} \beta_{\text{Solid}} + \sigma_{\text{Vapor}} \phi_{\text{Vapor}} \beta_{\text{Vapor}}$$
Mechanism of Electrical Conduction

- Solid phase (Cement, CSH, CH,…);
 \[
 \frac{1}{\rho_{\text{sol}}} \approx 10^{-9} \text{ S/m}
 \]
 (Rajabipour 2006 based on results of Hammond and Robson 1955)

- Liquid phase (pore solution);
 \[
 \frac{1}{\rho_{\text{liq}}} \approx 1 \text{ S/m to } 20 \text{ S/m}
 \]
 (Christensen 1993)

- Vapor phase (air voids, emptied pores);
 \[
 \frac{1}{\rho_{\text{vap}}} \approx 10^{-15} \text{ S/m}
 \]
 (Aplin 2005)

\[
\sigma_{\text{sample}} = \sigma_{\text{Fluid}} \phi_{\text{Fluid}} \beta_{\text{Fluid}} + \sigma_{\text{Solid}} \phi_{\text{Solid}} \beta_{\text{Solid}} + \sigma_{\text{Vapor}} \phi_{\text{Vapor}} \beta_{\text{Vapor}}
\]
Mechanism of Electrical Conduction

- Solid phase (Cement, CSH, CH,…);
 \[\frac{1}{\rho_{\text{sol}}} \approx 10^{-9} \ \text{S/m} \]
 (Rajabipour 2006 based on results of Hammond and Robson 1955)

- Liquid phase (pore solution);
 \[\frac{1}{\rho_{\text{liq}}} \approx 1 \ \text{S/m to 20 S/m} \]
 (Christensen 1993)

- Vapor phase (air voids, emptied pores);
 \[\frac{1}{\rho_{\text{vap}}} \approx 10^{-15} \ \text{S/m} \]
 (Aplin 2005)

\[
\sigma_{\text{sample}} = \sigma_{\text{Fluid}} \phi_{\text{Fluid}} \beta_{\text{Fluid}} + \sigma_{\text{Solid}} \phi_{\text{Solid}} \beta_{\text{Solid}} + \sigma_{\text{Vapor}} \phi_{\text{Vapor}} \beta_{\text{Vapor}}
\]
Mechanism of Electrical Conduction

- **Solid phase** (Cement, CSH, CH,…);

 \[1/\rho_{\text{sol}} \approx 10^{-9} \text{ S/m} \]

 (Rajabipour 2006 based on results of Hammond and Robson 1955)

- **Liquid phase** (pore solution);

 \[1/\rho_{\text{liq}} \approx 1 \text{ S/m to 20 S/m} \]

 (Christensen 1993)

- **Vapor phase** (air voids, emptied pores);

 \[1/\rho_{\text{vap}} \approx 10^{-15} \text{ S/m} \]

 (Aplin 2005)

\[
\sigma_{\text{sample}} = \sigma_{\text{Fluid}} \phi_{\text{Fluid}} \beta_{\text{Fluid}}
\]

\[
\rho_t = \frac{\rho_0}{\phi \beta} = \rho_0 F
\]
What to we know

- Conductivity/Resistivity is related to

\[\rho_c = \rho_o \cdot \frac{1}{\phi \beta} \]

- The properties of the fluid (electrolyte) (ρ_o)
 - Contains free ions - electrically conductive
 - Na+, K+, Ca2+, Mg2+, Cl-, HPO42-, HCO3

- The Volume of the Pores (ϕ)

- The connectedness of the pores (β)
Other Electrical Measurements

- **Existing Standards:**

 ASTM C1202 / AASHTO T277

\[V = IR \]

\[Q = \int_0^{6h} Idt \]

\[Q = \int_0^{6h} \frac{1}{\rho} \cdot [Vk] \, dt \]

Limitations:

- Expensive equipment
- Time consuming
- Heating effect
A Comment on Temperature and Moisture

Electrical Resistivity

Testing Temperature (°C)

Degree of Saturation, (S)

Degree of Saturation, (S) vs. Testing Temperature (°C)

Class C Concrete - 28 d

Class C Concrete - 120 d

w/c = 0.50

Experimental Data

VCCTL Simulation

VCCTL Simulation
Relationship to w/c

![Graph showing the relationship between electrical resistivity (ρ in ohm·m) and water-cement ratio (W/C). The resistivity decreases as the water-cement ratio increases.](chart.png)
Simple Summary

- Resistivity – Independent of Geometry
- Resistivity is related to Speed of Ions (Cl-) Moving in Concrete (Diffusion Coefficient)
- Resistivity is related to the volume of the pores and the connectedness of the pores
- One needs to think about pore solution
- One needs to keep in mind - test influenced by moisture (drying) or temperature changes
- The benefit – its fast and its non destructive
Testing Devices in Indiana

Components Being Used Conventionally
While there are a few manufacturers we will use Resipod today
Resipod

Power Button
Calibration -> Easy to do and needed to check results

Battery -> The Resipod should be put on the charger at least once a month. Incorrect readings will show up even before “low battery” warning
Uniaxial Resistivity

\[\rho = R \cdot \frac{A}{L} \]

Benefits

- Less Impact of Conditioning
- Less Geometry Effects
Uniaxial Resistivity

![Uniaxial Resistivity Diagram](image)
Uniaxial

Measure Top & Bottom Sponge

- Additional Resistance: We can correct for these!
- Contact Weight: Resistance Loss
Uniaxial Measure Sample
Resipod automatically makes a few “corrections”

\[\frac{43.2 \text{kΩ} \cdot \text{cm}}{24 \text{ cm}} = 1.8 \text{kΩ} \]

\[\frac{2 \cdot 3.14 \cdot 3.8 \text{ cm}}{2 \pi a} = 24 \text{ cm} \]

\[1.8 \text{kΩ} \cdot \frac{A}{L} = 1.8 \text{kΩ} \cdot 4 \text{ cm} \]

\[7.2 \text{kΩ} \cdot \text{cm} \]

For a 4x8 cylinder:

\[\frac{A}{L} = \frac{\pi \cdot (4 \cdot 2.54)^2 \text{cm}^2}{(8 \cdot 2.54) \text{ cm}} = 4 \text{ cm} \]

These steps are done automatically by the excel program described and available on the take-home discs.
Road School – Electrical Resistivity

Sample Geometry

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>204</td>
</tr>
<tr>
<td>102</td>
<td>202</td>
</tr>
<tr>
<td>101</td>
<td>200</td>
</tr>
</tbody>
</table>

Sponge Resistances

- **Measured with:**
 - **TOP:** 0
 - **BOTTOM:** 0

Factors

- **SR:**
 - 1: 1.95
 - 2: 1.95
 - 3: 1.93

- **Meter:**
 - 24

- **DR:**
 - 4

<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Date</th>
<th>Dark Temperature (°C)</th>
<th>Surface Configuration (kΩ·m cm)</th>
<th>Effective Surface Resistivity (kΩ·m cm)</th>
<th>Testing Age (d)</th>
<th>Effective Resistivity (kΩ·m cm)</th>
<th>Dark Resistivity (kΩ·m cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.10, 6.38, 6.68, 7.02, 7.20, 7.30, 7.50</td>
<td>23.4, 3.73, 3.77</td>
<td>2</td>
<td>3.66, 3.78</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.07, 6.36, 6.34, 6.76, 7.08, 7.20, 7.50</td>
<td>23.5, 3.64, 4.00</td>
<td>2</td>
<td>3.45, 4.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.15, 6.41, 6.19, 7.04, 7.40, 7.50, 7.80</td>
<td>21.2, 3.81, 2.95</td>
<td>7</td>
<td>4.76, 4.76</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.04, 6.71, 6.29, 6.30, 6.50, 6.90, 7.00</td>
<td>27.9, 4.24, 4.68</td>
<td>7</td>
<td>4.76, 4.76</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.02, 6.81, 6.70, 7.02, 11.40, 11.30, 11.40</td>
<td>35.8, 5.93, 6.07</td>
<td>7</td>
<td>6.08, 6.12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.15, 7.03, 7.71, 7.14, 10.00, 10.00, 10.00</td>
<td>42.5, 6.81, 7.30</td>
<td>56</td>
<td>7.04, 7.33</td>
<td></td>
</tr>
</tbody>
</table>

![RESISTIVITY CURVE](image)

- **RESISTIVITY CURVE**
 - **Surface Resistivity**
 - **Bulk Resistivity**
Surface Resistivity

\[\rho = \frac{V}{I} \cdot \frac{2\pi a}{k} \]

Benefits

- Easy Test

Drawbacks

- Surface Effects
- Secondary Geometry Effects
• Originally for use in soil surveys “infinite half-space”

\[
\rho = \frac{V}{I} \cdot 2\pi a
\]

• Use in concrete cylinders shows add’l geometry influence

\[
\rho = \frac{V}{I} \cdot \frac{2\pi a}{k}
\]

For a 4x8,

\[
d/a = 2.7 \\
L/a = 5.3
\]

Morris, 1996
Surface Mark Specimen

- Lines are 90 degrees
- Helps to get a more representative measurement
Surface Measure Sample

• Take 2 measurements for each set of marks
• Ensure good contact on the cylinder
Surface Interpretation

\[\rho = \frac{V}{I \cdot \frac{2\pi a}{k}} \]

Resipod automatically applies \(2\pi a\)

This is dependent on geometry, a good first approximation for a 4x8 cylinder:

\[k = 1.9 \]

\[\frac{11.0 \, k\Omega \cdot cm}{k} = \frac{11.0 \, k\Omega \cdot cm}{1.9} \]

\[5.9 \, k\Omega \cdot cm \]

These steps are done automatically by the excel program described and available on the take-home discs.
<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Date</th>
<th>Bath Temperature (°C)</th>
<th>Surface Configuration (kΩ·cm²)</th>
<th>Uniaxial Configuration (kΩ·cm)</th>
<th>Effective Surface Resistivity (kΩ·cm)</th>
<th>Uniaxial Resistivity (kΩ·cm)</th>
<th>Testing Age (d)</th>
<th>Effective Surface Resistivity (kΩ·cm)</th>
<th>Bulk Resistivity (kΩ·cm)</th>
<th>Dark Resistivity (kΩ·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/4/2011</td>
<td>23</td>
<td>0.10 6.36 6.35 7.02 7.20 7.30 7.30 7.30</td>
<td>23.4</td>
<td>3.73</td>
<td>3.77</td>
<td>2</td>
<td>3.66</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8/4/2011</td>
<td>23</td>
<td>7.07 7.06 6.78 7.02 7.20 7.30 7.30 7.30</td>
<td>23.6</td>
<td>3.84</td>
<td>4.00</td>
<td>2</td>
<td>3.84</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3/31/2011</td>
<td>23</td>
<td>7.15 7.02 7.11 7.14 7.20 7.30 7.30 7.30</td>
<td>30.2</td>
<td>5.53</td>
<td>5.87</td>
<td>2</td>
<td>5.53</td>
<td>5.53</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3/31/2011</td>
<td>23</td>
<td>7.02 6.81 7.02 7.02 7.10 7.20 7.20 7.20</td>
<td>38.2</td>
<td>7.53</td>
<td>7.87</td>
<td>2</td>
<td>7.53</td>
<td>7.53</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3/1/2011</td>
<td>23</td>
<td>7.06 7.05 7.15 7.15 7.10 7.20 7.20 7.20</td>
<td>47.0</td>
<td>7.50</td>
<td>7.75</td>
<td>2</td>
<td>7.50</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3/1/2011</td>
<td>23</td>
<td>7.15 6.36 6.18 7.14 7.30 7.40 7.40 7.40</td>
<td>42.5</td>
<td>6.81</td>
<td>7.00</td>
<td>2</td>
<td>6.81</td>
<td>6.81</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3/1/2011</td>
<td>23</td>
<td>7.02 7.15 7.14 7.21 7.30 7.40 7.40 7.40</td>
<td>43.0</td>
<td>6.81</td>
<td>7.00</td>
<td>2</td>
<td>6.81</td>
<td>6.81</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11/3/2011</td>
<td>24</td>
<td>7.06 6.33 7.5 7.01 7.04 7.10 7.10 7.10</td>
<td>53.5</td>
<td>3.75</td>
<td>4.06</td>
<td>2</td>
<td>3.75</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11/3/2011</td>
<td>24</td>
<td>6.00 6.01 7.0 7.04 7.10 7.10 7.10 7.10</td>
<td>75.4</td>
<td>5.01</td>
<td>5.32</td>
<td>2</td>
<td>5.01</td>
<td>5.01</td>
<td></td>
</tr>
</tbody>
</table>

RESISTIVITY CURVE

- Surface Resistivity
- Bulk Resistivity

Mixed data points showing a trend in resistivity over mixture age.
Road School – Electrical Resistivity

Sample Geometry

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diameter (mm)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>204</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>202</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>200</td>
</tr>
</tbody>
</table>

Sponge Resistances

<table>
<thead>
<tr>
<th>Plate</th>
<th>TOP</th>
<th>BOTTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured with</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Factors

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Date</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Date</td>
<td>SR Meter</td>
<td>Meter DR</td>
<td>SR Meter</td>
<td>Meter DR</td>
</tr>
<tr>
<td>1</td>
<td>8/4/2011</td>
<td>1.95</td>
<td>24</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>2</td>
<td>8/4/2011</td>
<td>1.91</td>
<td>24</td>
<td>4</td>
<td>4.10</td>
</tr>
<tr>
<td>3</td>
<td>8/4/2011</td>
<td>1.93</td>
<td>24</td>
<td>4</td>
<td>4.15</td>
</tr>
</tbody>
</table>

Resistivity Curve

- **Surface Resistivity**
- **Bulk Resistivity**

Resistivity Testing - Curve Development

- Contractor: Lab Mixture
- Cast Date/Time: 8/4/2011

Spreadsheet

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Date</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Date</td>
<td>SR Meter</td>
<td>Meter DR</td>
<td>SR Meter</td>
<td>Meter DR</td>
</tr>
<tr>
<td>1</td>
<td>8/4/2011</td>
<td>1.95</td>
<td>24</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>2</td>
<td>8/4/2011</td>
<td>1.91</td>
<td>24</td>
<td>4</td>
<td>4.10</td>
</tr>
<tr>
<td>3</td>
<td>8/4/2011</td>
<td>1.93</td>
<td>24</td>
<td>4</td>
<td>4.15</td>
</tr>
</tbody>
</table>

RESISTIVITY CURVE

- **Surface Resistivity**
- **Bulk Resistivity**

- **Resistivity (kOhm-cm)**
- **Mixture Age (d)**

Spreadsheet

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Date</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
<th>Mixture ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Date</td>
<td>SR Meter</td>
<td>Meter DR</td>
<td>SR Meter</td>
<td>Meter DR</td>
</tr>
<tr>
<td>1</td>
<td>8/4/2011</td>
<td>1.95</td>
<td>24</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>2</td>
<td>8/4/2011</td>
<td>1.91</td>
<td>24</td>
<td>4</td>
<td>4.10</td>
</tr>
<tr>
<td>3</td>
<td>8/4/2011</td>
<td>1.93</td>
<td>24</td>
<td>4</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Volume of solution surrounding is important

For standardization, we are recommending:
3 – 4x8s in a 5 gal. bucket of saturated lime water

Samples are covered by 1.5 inches of lime water

Sol / Samp = 2.0
We have 3 stations for hands-on

We will practice:
- Surface Testing
- Uniaxial Testing
- Calibrating Equipment
- Marking Samples
- Filling out spreadsheet