Lindberg Bridge Project

Presented at 99th Annual Purdue Road School | March 2013
LINDBERG BRIDGE DESIGN

PARTNERS

• Tippecanoe County
• City of West Lafayette
• American Structurepoint, Inc.
• Cardno ATC
• Jack Isom Construction Co., Inc.
LINDBERG BRIDGE DESIGN

PRESENTATION SUMMARY

- Project Background
- The Problems
- Possible Solutions
- Final Bridge Design
- Bridge Construction
LINDBERG BRIDGE DESIGN

PROJECT BACKGROUND

• Lindberg Road was constructed in 2001-2002 as a federal-aid project
• The owners received many complaints and public criticisms of the outcome
• The Celery Bog is a popular destination
• The City and County were collectively looking for a solution
LINDBERG BRIDGE DESIGN

THE PROBLEMS
LINDBERG BRIDGE DESIGN

THE PROBLEMS

- Roadway was constructed on poor soils
- Contractor proposed redesign
- Limits of poor soils not completely identified
- Geogrid was not used as the redesign proposed
- Roadbed settled around the auger-cast piles

ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
LINDBERG BRIDGE DESIGN

THE PROBLEMS
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
LINDBERG BRIDGE DESIGN

THE PROBLEMS

• 18”-diameter auger-cast piles of various lengths
• Geogrid over the sub-base and pile tops
• Thick aggregate sub-grade
• HMA pavement
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
LINDBERG BRIDGE DESIGN

THE PROBLEMS

- Roadway was constructed on poor soils
- Limits of poor soils not completely identified
- Contractor proposed redesign
- Geogrid was not used as the redesign proposed
- Roadbed settled around the auger-cast piles

ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
LINDBERG BRIDGE DESIGN

THE PROBLEMS
ADD THE CAVIAT THAT WE DID NOT PERFORM A FORENSIC INVESTIGATION, CONCLUSIONS ARE BASED UPON OBSERVATIONS
POSSIBLE SOLUTIONS

- Resurface the existing facility with HMA, periodically
- Develop a structural roadbed using the existing auger-cast piles
- Construct a bridge to span the poor soils
LINDBERG BRIDGE DESIGN

POSSIBLE SOLUTIONS

• Short term costs
 – Bridge option most expensive
 – Resurfacing option least expensive
 – Bridge option longest to construct
 – Resurfacing option shortest to construct
LINDBERG BRIDGE DESIGN

POSSIBLE SOLUTIONS

• Risk and long-term costs
 – Resurfacing
 • Highest risk
 • Periodic road construction along Lindberg Road
 • Does not fix the problem
 – Structural roadbed on existing auger cast piles
 • Mid-level risk
 – New bridge construction
 • Lowest risk level
 • Lowest long-term costs
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

- Structure size and type
- Thermal expansion
- Substructure design with existing piles
- Context-sensitive solution
LINEBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

- Structure size and type
- Thermal expansion
- Substructure design with existing piles
- Context-sensitive solution
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Bridge length
 – Must span poor soils
 – Total length = 1450’

• Span lengths
 – Single row of piles
 – Pier locations must avoid existing piles
 – Equal span lengths
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

- Bridge layout
 - Type II AASHTO girders
 - 30 spans
 - 48’ and 49’ spans
 - Open pile bent caps (interior piers)
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

- Structure size and type
- Thermal expansion
- Substructure design with existing piles
- Context-sensitive solution
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

- Expansion joint
 - Joint type
 - Number of joints
 - Location of the joint
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Single modular expansion joint near the center of the superstructure to facilitate 8” of thermal movement
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Bearing design
 – Options investigated
 • Fixed piers
 – Expansion end bents
 – Allow piers to move in soft soils
 – Soils must be investigated to verify they can allow for large expansion
 • Expansion piers
 – Integral end bents with battered piles
 – Stainless steel sliding plate on elastomeric bearing pad
 – PTFE bearing assembly is more expensive (290 required)
 – Solution
 • Soils found to be too stiff for pier expansion
 • Expansion piers are the only viable option
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

- Structure size and type
- Thermal expansion
- Substructure design with existing piles
- Context-sensitive solution
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Plan to avoid pile conflicts
 – As-built plans
 – Pile locations superimposed onto the topographic survey drawings
 – Surveyors stake the proposed pier locations
 – Two separate field investigations to verify existing piles locations
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Pile conflicts unavoidable
 – Piles not constructed as planned
 – Design piers to avoid stopping operations and causing change orders
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Pier design
 – Two designs
 • Piers within limits of existing piles
 • Piers outside limits of existing piles
 – Piers outside limits of existing piles
 • Length = 40'-9", Width = 3'-9", Thickness = 3'-0" minimum
 • Pile spacing = beam spacing = 8'-9"
 • Cap overhang = 2'-10½"
 • Minimum cap reinforcement
 – Piers within limits of existing piles
 • Dimensions same as piers outside limits of existing piles
 • Cap reinforcing designed to allow for:
 – 10' pile spacing
 – 3' distance from beam reaction on cap overhang to nearest pile
 • Maximum nominal soil resistance specified
 • Special provision created
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

[Diagram of bridge design]
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Special provision for piers within limits of existing piles
 – Remove soil and expose existing piles
 – Mark proposed pile locations
 – Engineer to measure and sketch the center of existing piles related to the proposed piles
 – Designer to revise pile layout

• All piers within limits of existing piles required pile layout revisions
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Structure size and type
• Thermal expansion
• Substructure design with existing piles
• Context-sensitive solution
LINDBERG BRIDGE DESIGN

FINAL BRIDGE DESIGN

• Context-sensitive solutions
 – Trail system design
 – Wetland grasses used
 – Channel cut for wildlife passage
 – Low roadway vertical profile
 – Proximity of Birck Boilermaker Golf Complex
 – Time constraints
LINDBERG BRIDGE DESIGN

BRIDGE CONSTRUCTION
LINDBERG BRIDGE DESIGN

BRIDGE CONSTRUCTION

- Bid to Jack Isom Construction for $4,285,932
- $77 per sft including incidentals
- Design change to construct solid wall piers for speed of construction
LINDBERG BRIDGE DESIGN

BRIDGE CONSTRUCTION