SUSTAINABLE AGGREGATES IN ASPHALT PAVEMENTS

Rebecca McDaniel
Purdue Road School, March 6, 2012
Sustainability

- Meeting the needs of the present without compromising the ability of future generations to meet theirs.
 - Conservation of resources (materials and energy)
 - Reduction of environmental impacts (GHG, carbon footprint, landfills, quarries, etc.)

- Growing awareness and demand from the public for sustainable practices.
Aggregate Sustainability

- Utilization of sustainable products
 - Recycling
 - Balance with production (fine, small NMAS mixes)

- Use of sustainable designs
 - Perpetual pavements - designed to last over 50 years without major structural rehabilitation and needing only periodic surface renewal
Asphalt Pavements and Aggregate Sustainability

- Virtually 100% recyclable
 - Most recycled material in the US
 - Over 80% of old asphalt pavement reused
 - Reduces demand for new aggregates and binder
 - Reduces energy/costs to produce, process, transport

- Beneficial reuse of waste materials and by-products
 - Slags
 - Asphalt Shingles
 - Foundry sands
 - Glass
 - Crumb rubber
 - Waste oils
Asphalt Pavements and Sustainability

- **Perpetual Pavements**
 - New or staged construction

- **Warm Mix Asphalt**
 - Reduced fuel consumption (15 to 30% reduction)
 - Reduced GHG
 - Construction benefits

- **Lower energy consumption and green house gas emissions than concrete (COLAS, Robinette)**

- **Porous Surfaces**
 - Reduced noise (and need for noise walls), improved safety
 - Improved water quality
Indiana Efforts

Increased Use of RAP

- Investigation of Low and High Temperature Properties of Plant-Produced RAP Mixtures (FHWA funded)
- Evaluation of Recycled Asphalt Pavement for Surface Mixtures

Increased Use of Local Materials

- Maximizing the Use of Local Materials in HMA Surfaces
Plant- Mixed RAP Mixes

- Evaluated 5 sets of plant-produced mixes with up to 40% RAP and 2 virgin binders
- Compared
 - Modulus
 - Low temperature properties and cracking
 - Estimated blending
 - Fatigue (TFHRC)
- Also tested extracted/recovered binders
Conclusions

- As RAP content increased, mix modulus generally increased
- No statistically significant difference between moduli of mixes with PG64-22 with 0, 15 and 25% RAP
 - Significant difference for 40% RAP in most cases
- Use of softer virgin binder did reduce modulus
- Implies grade change is needed for 40% RAP but not for 25% RAP
Conclusions

- Significant blending of RAP and virgin binders was observed in most cases.
- Low temperature mix testing showed slight change in critical cracking temperature at up to 25% RAP with no grade change.
- Critical cracking temperatures were lower with PG58-28, but may not be needed.
- Fatigue results were unexpected; no clear effect of RAP content or binder grade.
Outcome

- INDOT OMM explored PG grading of 33 RAP sources across the state (average PG90.1–11.1)
- Based on all these results, spec change was approved
 - 25% with no grade change, 40% max
 - Also changed to binder replacement
- Reports that some other states are verifying these results
RAP FOR SURFACE MIXTURES

- RAP historically not used to full extent in surfaces
 - Unknown aggregates and unknown frictional properties
- Determine threshold level of RAP that has minimal effect on friction
- Evaluated lab-fabricated RAP at up to 40% blended with steel slag and ACBF Slag in HMA and SMA
- Friction testing of 8 existing surfaces with 15-25% RAP
- Draft final report reviewed, final report next week.
Surface Characteristics
Findings and Recommendations

- Field friction testing suggests 15% RAP is acceptable and higher RAP contents are possible for medium volume roadways.

- Recommended limit of 20% RAP by binder replacement for Category 3 and 4 roadways.
 - Further field testing for Category 5.
 - On case by case basis, consider higher RAP contents when RAP aggregates can be known.
INDOT Specs for RAP and RAS in Surface Mixes

- 2012 Specifications allow
 - 40% maximum binder replacement for Category 1 and 2 surfaces
 - 15% maximum for Category 3 through 5
 - RAS no more than 25% of total binder content
INDOT Efforts

Maximizing the Use of Local Materials in HMA Surfaces

- **Objective** — explore opportunities to allow the use of more local materials in HMA in place of “imported” fine and coarse aggregates

- Local coarse aggregate up to 40% blended with steel slag, ACBF and sandstone

- Local fine aggregate up to 20%

- HMA and SMA mixes

- Draft final report submitted but not yet reviewed
Experimental Design

- Local coarse aggregate content – up to 40% blended with steel slag, ACBF and sandstone

- Local fine aggregate content – up to 20% (with steel slag, ACBF slag and sandstone CA)

- HMA and SMA mixes
Preliminary Findings

- Adding polish susceptible agg caused decrease in surface friction in HMA and SMA.
- But friction was still acceptable at up to around 20% local agg.
- Fine aggregate data was somewhat erratic.
- Appears fine agg up to 20% has small negative effect on friction.
- Other considerations besides friction.
Potential Cost Savings

Substituting local agg for steel slag could save:

- $1.50 to 2 per ton of hot mix (fine aggregate)
- $3 to 4 per ton of hot mix (coarse agg)
- $4.50 to 6 per ton of hot mix (both)
- Up to 10% of cost of mix
- $3000 to 4000 per lane mile of surface mix
Ancient Greek Proverb

A society grows great when old men plant trees in whose shade they will not sit.
Modern Twist

A society is sustainable when people pave roads their children can recycle.