

Performance Investigation on Electrochemical Compressor with Ammonia

Paper 2380

Ye Tao, Yunho Hwang, Reinhard Radermacher, Chunsheng Wang

Center for Environmental Energy Engineering
Department of Mechanical Engineering
University of Maryland
College Park, MD 20742-3035

Outline

- Introduction
- Objectives
- Open Loop Experimental Results
- Closed Loop Experimental Results
- Limitations and Challenges
- Conclusions
- Future Work

Introduction

- Current challenges in the refrigeration market
 - R-410A and R-134a have high GWPs
 - Considerable energy consumption for mechanical compressor on small cooling appliances
- Electrochemical compression system
 - Works with ammonia (environmentally friendly)
 - More energy efficient
 - Solid state with no moving parts, no lubrication oil, and no noise

Previous Works

- Electrochemical hydrogen compressor
 - Hydrogen separation, storage and compression
 - Pressure of hydrogen can reach 130 bar
- Electrochemical compressor driven metal hydride heat pump
 - Controls pressure of hydrogen in two metal hydride reactors for adsorption and desorption
 - Potentially more energy efficient than mechanical compressor

Tao et al., 2015. Electrochemical compressor driven metal hydride heat pump. Int. J. Refrigeration, 60:278-288 Grigoriev et al., 2010. Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology. Int. J. Hydrogen Energy, 36: 4148-4155

Electrochemical Ammonia Compressor (EC) Working Principle

- Proton exchange membrane fuel cell design
- Under external electric field, ammonia and hydrogen react to form NH₄⁺ and get transferred across the MEA, and regenerated at cathode
- Pressure increase based on increased gas molecules per volume
- The gas transfer ratio between ammonia and hydrogen is 2:1

Objectives

- Measure the EC performance at open loop
 - Relationship between voltage and compression ratio
 - Compare with theoretical Nernst equation
- Experimental study of EC at closed loop
 - Measure the voltage and current at constant refrigerant charge
 - Measure the pressure lift after the compressor
 - Measure the flow rate
- Investigate the feasibility of integrating EC into 200 W vapor compression cycle

EC Prototype and Test Facility

Open Loop EC Performance

Nernst equation: $E = \frac{RT}{nF} \ln \left(\frac{P_d}{P_s} \right)$

- The discharge line valve is closed
- Partial pressure at inlet and outlet are both calculated
- Voltage charge and partial pressure ratio should follow logarithm relationship

- Ammonia circulation by EC in a closed loop
- Charged ammonia and hydrogen to 2 bar in the ratio of 2:1
- Voltage charge and current measured
- Pressure lift measured

The flow rate across the EC membrane can be calculated based on the current

Faraday's Law:
$$\frac{dn_e}{dt} = \frac{I}{nF}$$

Measured Current (A)	Theoretical flow rate H ₂ (10^-6 g/s)	Measured flow rate H ₂ (10^-6 g/s)	Theoretical flow rate NH ₃ (10^-6 g/s)	Measured flow rate NH ₃ (10^-6 g/s)
	1.45	1.85	2.47	3.22
0.14	1.45	1.72	2.47	3.16
	1.45	1.78	2.47	3.29

Voltage (V)	Pressure lift (kPa)	
0.2	19	
0.3	23	
0.4	26	
0.5	30	

- The pressure lift of a single unit is very low
 - Increase linearly as the number of units in the stack increases
- Working conditions for ammonia vapor compression system
 - 5 °C cooling and 45 °C heating at 5 bar and 18 bar respectfully
 - EC with multiple units in the stack to achieve desired pressure lift

Efficiency

For mechanical compressor

$$\eta_{S} = \frac{W_{S}}{W_{MC}}$$

For electrochemical compressor

$$\eta = \frac{W_{Nernst}}{W_{EC}} = \frac{\dot{U}_{Nernst}}{U_{EC}}$$

Voltage Input (mV)	Pressure Ratio	Nernst Voltage (mV)	Efficiency
50	5.5	46	92%

Scale Up and Size Analysis

- For 200 W cooling system, the number of units required is 20.
- Each unit has surface area of 100 cm² and thickness of 0.4 cm.
- 200 W system would require EC size of 10 x 10 x 8 cm.

Challenges and Limitations

- Single cell unit flow rate is small
- Flammability of hydrogen used as a carrier gas
- Refrigerant toxicity and flammability
- Moisture in the system

Conclusions

- The ammonia EC is successfully demonstrated
- The open loop performance can be predicted by Nernst equation
- The EC flow rate can be predicted by Faraday's Law
- The scaled up EC will fit into a 200 W system

Future Work

- Reduce the stack size by replacing the graphite plates with stainless steel
- Improve the MEA to increase the EC performance
- Build a 200 W EC for vapor compression cycle and test the performance in the system
- Working on alternative refrigerants such as CO₂

Acknowledgement

This study was supported by the Center for Environmental Energy Engineering, University of Maryland.

Thank You!

Back Up

Scale up Details

Mass flow rate

$$\dot{m} = \frac{dn}{dt} * M_{NH_3} = \frac{I}{nF} * 17$$

Total current required

$$I = I_d * np * S$$

Test Facility Schematic

CO₂ Electrochemical Compression

