

Load modulation strategies of residential heat pumps for demand-response programs with different thermal storage options

E. Georges & V. Lemort

Table of content

- Introduction
- Thermal models and storage options
- Load modulation strategies
- Results
- Conclusions

Introduction

Electrification

- Heat pumps
- Air-conditioning
- Electric vehicles

Active Demand Response (ADR)

Introduction

Table of content

- Introduction
- Thermal models and storage options
- Load modulation strategies
- Results
- Conclusions

Thermal models and storage options

Freestanding buildings

Year of construction	N# of floors	Heated volume [m³]	Ground floor area [m²]	Average U value [W/m²K]	Design heat demand @ - 10°C [kW]	Nominal HP temperatures A/W [°C]	Auxiliary heater [kW]
2007-2014 (A)	2	457	75	0.31	6.5	7/45	3
1991-2006 (B)	2	457	75	0.46	8.0	7/45	3
1971-1990 (C)	1	423	148.5	1.24	17.0	7/65	5
1971-1990 (D) Retrofit	1	423	148.5	0.77	12.0	7/45	5

Grey-box models

Thermal models and storage options

Table of content

- Introduction
- Thermal models and storage options
- Load modulation strategies
- Results
- Conclusions

Load modulation strategies

- Define reference consumption = baseline
 - Cost-optimal
 - Minimum energy consumption
 - Other
- From the baseline, perform a load modulation to increase the consumption over a time interval

- To provide a flexibility service
 - load following
 - secondary reserve
- \hat{P}_t To increase self consumption

Load modulation strategies

 Thermal state transition model and constraints summarized by

$$x_{t+1} = f(x_t, u_t, w_t)$$

$$x_t^{min} \le x_t \le x_t^{max}$$

$$u_{i,t}^{min} \le u_t \le u_{i,t}^{max}$$

$$u_{i,t} + u_{j,t} \le \max(u_{i,t}, u_{j,t})$$

Where

- x_t state variables, i.e. temperatures
- w_t model disturbances, i.e.: climate conditions, heat gains,...
- u_t control variables: heat pump power

Load modulation strategies

Upward modulation (ADR#1)

 $Max I_{mod}$

s.t. $R \geq \delta_t \geq I_{\text{mod}} \ t \in \left[\tau, \tau + n - 1\right]$ state constraints power limitations

Self-consumption (ADR#2)

Min

$$\sum_{t=\tau}^{\tau+n-1} \left(\max(\delta_t - S_t, 0) + \min(\delta_t - S_t, 0) \alpha_{bb, t} \right)$$

s.t.

state constraints power limitations

Table of content

- Introduction
- Thermal models and storage options
- Load modulation strategies
- Results
- Conclusions

Results for a single house

- Load matching for 3 storage options
 - House B with ADR#2

Results - ranking

Selection criterion: residual load

Upward modulation (ADR#1)

- 1. Thermal envelope
- 2. SH tank with 2-pipe config.
- 3. SH tank with 4-pipe config.

Self-consumption (ADR#2)

- 1. Thermal envelope
- 2. well-insulated houses:

 SH tank with 2-pipe config.

 poorly insulated houses:

 SH tank with 4-pipe config.

Results - ranking

Selection criterion: residual load + additional overconsumption

Upward modulation (ADR#1)

- ✓ Well-insulated houses: thermal envelope
- ✓ poorly-insulated houses:SH tank with 4-pipe config.
- X SH tank with 2-pipe config.

Self-consumption (ADR#2)

(= overconsumption entailed after the modulation interval)

- ✓ Well-insulated houses: thermal envelope / tank with 2-pipe config.
- ✓ Poorly insulated houses:4-pipe configuration

- 63 houses
- 50% PVs

- 20% HPs
- suitable thermal storage

- 63 houses
- 50% PVs

- 20% HPs
- suitable thermal storage

- 63 houses
- 50% PVs

- 20% HPs
- suitable thermal storage

- 63 houses
- 50% PVs

- 20% HPs
- suitable thermal storage

- 63 houses
- 50% PVs

- 20% HPs
- suitable thermal storage

Conclusions

- Comparison of
 - two optimal control formulations for load shifting strategies with residential heat pumps (ADR#1 and ADR#2)
 - three storage options combining a DHW tank and either the thermal envelope of the building or a SH tank with two hydraulic configurations
 - four typical Belgian houses with different insulation levels
- ⇒ Ranking of the most suitable storage options
- Application to a feeder of 63 houses with 50% PVs and 20% HPs
- ⇒ Residual load reduced by 28 to 73.4%
- ⇒ ADR#1 better suited for short time intervals and constant modulation amplitude
- ⇒ ADR#2 allows to better limit the additional overconsumption

Contact

Emeline Georges emeline.georges@ulg.ac.be

B49 Thermodynamics Laboratory

Quartier Polytech 1

Allée de la Découverte 17

4000 Liège

http://www.labothap.ulg.ac.be/cmsms/

