Teamwork
Utilities and Railroad Division Mission:

• INDOT Utilities and Railroad’s mission is to strategically collaborate efforts regarding utility and railroad coordination, design, and construction, in order to efficiently and effectively execute the agency's program for the State of Indiana.

Utilities and Railroad Division Vision:

• INDOT Utilities and Railroad’s vision is to be an indispensable partner to the industry by maintaining a focus on excellence in customer service, deliverables, and team development in accordance with the agency’s goals.
INDOT Utilities and Railroad Division Roles

Utility Administrator
- Programmatic level-policies/procedures
- Serves as Subject Matter Expert
- Review reimbursable agreements
- Approve Utility Accommodation Policy exceptions
- Approve Certifications with exceptions

Utility Oversight
- Oversee utility coordination tasks
- Monitor, oversee, follow up
- Usually an INDOT employee but can be a consultant

Utility Coordinator
- Designated person to complete the utility coordination responsibilities
- INDOT employee/consultant
INDOT Updates

- 105 IAC 13
- Utility Accommodation Policy
- Utility Coordination Design Manual
- Utility Tracking Application
- Coordinator Training
105-IAC-13

• Indiana Administrative Code
• Communication
• Current version always available on INDOT Utilities website:
 https://www.in.gov/indot/3787.htm

Utility Codes, Policy, and Manual

• 105-IAC-13
• Utility Accommodation Policy (UAP) (Revised 6/12/14)
• INDOT Utility Coordination and Design Manual (UCD)

Utility Coordination Training and Certification

Utility coordination on INDOT contracts is required to be performed by a certified utility coordinator. INDOT on June 11, 2019 in the INDOT Traffic Management Center (TMC) Conference Rooms C, D, and E located at 1

Please email utilitvsupport@indot.in.gov for registration and/or questions. Confirmation with more detail w
Utility Accommodation Policy

• New and improved version coming soon

• Current version always available on INDOT Utilities website
 https://www.in.gov/indot/3787.htm

• Reminder, all UAP exceptions on state right-of-way must be approved by INDOT Utilities and Railroad Division

Utility Codes, Policy, and Manual

• 105-JAC-13
 • Utility Accommodation Policy (UAP) (Revised 6/12/14)
 • INDOT Utility Coordination and Design Manual (UCD)

Utility Coordination Training and Certification

Utility coordination on INDOT contracts is required to be performed by a certified utility coordinator. INDOT on June 11, 2019 in the INDOT Traffic Management Center (TMC) Conference Rooms C, D, and E located at #

Please email utilitvsupport@indot.in.gov for registration and/or questions. Confirmation with more detail w
Utility Coordination Design Manual

• Currently Chapter 104 of the Design Manual
• Utility Coordination Process based on the 105-IAC-13
• Current version always available on INDOT Utilities website https://www.in.gov/indot/3787.htm

Utility Codes, Policy, and Manual

• 105-IAC-13
• Utility Accommodation Policy (UAP) (Revised 6/12/14)
• INDOT Utility Coordination and Design Manual (UCD)

Utility Coordination Training and Certification

Utility coordination on INDOT contracts is required to be performed by a certified utility coordinator. INDOT on June 11, 2019 in the INDOT Traffic Management Center (TMC) Conference Rooms C, D, and E located at... Please email utilitzsupport@indot.in.gov for registration and/or questions. Confirmation with more detail w

NextLevel INDIANA
Utility Tracking Application (UTA)

- Benefits of UTA:
 - Centralized data location
 - Document retention
 - Template documents

- New and improved coming soon
 - Training and enforcement will follow

- Available through INDOT’s ITAP Page
 https://itap.indot.in.gov/
Coordination Training

- New and improved coming soon
- Available on INDOT University
- Certification test available twice per year
- Information available on INDOT Utilities website

 https://www.in.gov/indot/3787.htm
- Next Certification test date:
 June 11, 2019
- Look for future round tables

Course Objectives

This course is designed to serve as supplemental training to prepare you for the INDOT Certified Utility Coordinator Exam.

By the end of this course, you will have a better understanding of the following:

- Overview of Utility Coordination
- Overview of the roles of the Utility Oversight Agent
- Overview of Local (LPA) coordination
- Codes, Policies, and Procedures regarding Utility Coordination
- The Utility Coordination Process
- Soft Skills and Utility Coordination
- Next Steps to become a Certified Utility Coordinator
Tools to Use

• Central Office Utility Coordination On-Call Contracts
 • Utility Coordination
 • SUE
 • Buffet
 • Railroad
 • Survey
 • Policy Review
 • Inspection
 • Title Search
Lessons Learned from Various Perspectives

- SUE & INDOT Facilities Requiring Relocation
- Design Plan Details and Utility Master Plan
- Constructability and Overhead Lines
- Clearing/Staking and Environmental Constraints
- Utility Notice to Proceed
- Coordination During Construction
CALL 811

Proposed Excavation
Temporary Survey Markings
Electric Power Lines, Cables, Conduit, and Lighting Cables
Gas, Oil, Steam, Petroleum, or Gaseous Materials
Communication, Alarm or Signal Lines, Cables, or Conduit
Potable Water
Reclaimed Water, Irrigation, and Slurry Lines
Sewers and Drain Lines

References:
- APWA Uniform Color Code
- Existing operating practices from various states' one call centers
- Existing one call laws from various states
- ANSI Standard Z535.1 Safety Color Code

Address:
P.O. Box 219
Greenwood IN 46143

Hours:
24/7

Advance Notice:
2 full working days
Number of days in advance of a digging project that you need to notify the one call center of your intent to dig.

Marks Valid:
20 days
Defines the period of time the facility marks (paint, flags, stakes, etc.) are valid according to state law or practice.
Why Do We Need SUE?

• There are now more facilities in the Right of Way than any time in our history.

https://www.fhwa.dot.gov/programadmin/pus.cfm
Subsurface Utility Engineering (SUE)

A branch of ENGINEERING PRACTICE that involves managing certain risks associated with:

• The American Society of Civil Engineers (ASCE) has developed a National Consensus Standard, CI/ASCE 38-02, titled “Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data”.

NextLevel INDIANA
SUE: Quality Level D (QL-D)

• Using Existing Utility Records
• Involves the use of existing utility records, permits, plans to depict the ‘approximate’ horizontal position of underground utilities.
SUE: Quality Level D (QL-D)

• The digital world of the future – even mobile
SUE: Quality Level D (QL-D)

- KMZ / KML files
SUE: Quality Level C (QL-C)

- **Survey of Visible Features**
- Involves surveying visible above ground utility facilities to assist with determining ‘approximate’ horizontal position of underground utilities. Used with QL-D.
- **Manholes**
- **Power poles**
- **Hydrants/values**
- **Phone pedestals**
SUE: Quality Level B (QL-B)

- Utility Designating
- Involves the use of geophysical prospecting equipment to determine the existence and horizontal position of underground utilities.
- Paint markings
- Flags
- Field Sketch
Utility Locating

Involves the use of non-destructive digging equipment at critical points to determine the precise horizontal and vertical position of underground utilities, as well as the type, size, material, and other characteristics.

QLA provides precise horizontal and vertical information at a specific point on a utility line by exposing the utility.
INDOT Facilities Requiring Relocation

• Highway/Street Lighting - Districts
 Ed Cox, 317-899-8601
 ECox@INDOT.IN.gov
 &
 Konstantin Veygman, 317-899-8606
 Kveygman@INDOT.IN.gov

• Signals - Districts

• ITS & Weigh Station

• Rest Areas
 Ryan Hargis, 317-234-0179
 RHargis1@INDOT.IN.gov

• RWIS
 Josh Coulter, 317-726-6682
 JCoulter@HoosierCo.com
 https://rwis.in.gov/
RWIS sites
SUMMARY

• Using level of SUE will be dependent upon the type of project and location of the project.

• If the project involves drainage design, with new curb & gutter and storm sewer, the conflicts may be great.

• If the utilities involved are major, meaning high pressure gas lines or water lines that serve an entire city or town, or maybe the cost and schedule to move a particular facility would be excessive.

• When to use SUE should be summarized by the need to look at the level of risk involved for the project by utility impacts and overall fit for the needs of the project.

• INDOT ITS is not in 811
Lessons Learned from Various Perspectives

- SUE & INDOT Facilities Requiring Relocation
- Design Plan Details and Utility Master Plan
- Constructability and Overhead Lines
- Clearing/Staking and Environmental Constraints
- Utility Notice to Proceed
- Coordination During Construction
Design Plan Details and Utility Master Plan
Design Plan Details and Utility Master Plans

• Aerial lines affect constructability
Design Plan Details and Utility Master Plans
Design Plan Details and Utility Master Plans

- Above ground “clues” can help determine line locations
Design Plan Details and Utility Master Plans
Design Plan Details and Utility Master Plans

- Above ground clues don’t tell the whole story
Design Plan Details and Utility Master Plans

http://www.kennyjonescorp.com/underground-utilities/
Design Plan Details and Utility Master Plans

- Other existing or proposed utilities in the area could complicate or prevent construction.

[Check out more information about underground utilities at http://www.kennyjonescorp.com/underground-utilities/ or http://www.prime-excavating.com/underground-utilities/]

![Image of construction scene with underground utilities highlighted]
Design Plan Details and Utility Master Plans

• Service lines typically aren’t shown on plans.

http://www.edgerenterprises.com/utilities
http://www.kennyjonescorp.com/underground-utilities/
Design Plan Details and Utility Master Plans

• Most beneficial master plans include:
 • All utilities
 • Existing and proposed lines
 • Roadway plans
 • Cross sections have even more added value
Lessons Learned from Various Perspectives

- SUE & INDOT Facilities Requiring Relocation
- Design Plan Details and Utility Master Plan
- Constructability and Overhead Lines
- Clearing/Staking and Environmental Constraints
- Utility Notice to Proceed
- Coordination During Construction
Constructability and Overhead Lines

- How to read pole brands
 - Rule of Thumb = 10% + 2 feet

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUKE</td>
<td>DUKE ENERGY</td>
</tr>
<tr>
<td>PTC</td>
<td>POLE TREATING COMPANY I.D.</td>
</tr>
<tr>
<td>F6-86</td>
<td>PLANT LOCATION (F), MONTH (6) AND YEAR (86) OF TREATMENT</td>
</tr>
<tr>
<td>SPSK .6</td>
<td>SOUTHERN PINE CCA, .6 LBS RETENTION</td>
</tr>
<tr>
<td>5-40</td>
<td>POLE CLASS AND LENGTH</td>
</tr>
</tbody>
</table>

MARKING AND CODE LETTERS: PER ANSI 05.1 LATEST REVISION (PARAGRAPH 7.5)
Constructability and Overhead Lines

- Pole Dimensions
- Ground space for pole butt and auger

Table A - ANSI Dimensions for Southern Pine Poles

<table>
<thead>
<tr>
<th>Class</th>
<th>H2</th>
<th>H1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>23</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>38</td>
<td>36</td>
<td>34</td>
<td>32</td>
<td>30</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>42</td>
<td>40</td>
<td>38</td>
<td>36</td>
<td>34</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>47</td>
<td>45</td>
<td>43</td>
<td>41</td>
<td>39</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>57</td>
<td>55</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>60</td>
<td>58</td>
<td>56</td>
<td>54</td>
<td>52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>65</td>
<td>63</td>
<td>61</td>
<td>59</td>
<td>57</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>70</td>
<td>68</td>
<td>66</td>
<td>64</td>
<td>62</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>80</td>
<td>78</td>
<td>76</td>
<td>74</td>
<td>72</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Table B - Taper Factor Chart for Southern Pine Poles

<table>
<thead>
<tr>
<th>Class</th>
<th>H2</th>
<th>H1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>0.99950</td>
<td>0.3542</td>
<td>0.3542</td>
<td>0.3542</td>
<td>0.3542</td>
<td>0.3542</td>
</tr>
<tr>
<td>40</td>
<td>0.4310</td>
<td>0.4310</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
</tr>
<tr>
<td>50</td>
<td>0.4412</td>
<td>0.4412</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
</tr>
<tr>
<td>60</td>
<td>0.4463</td>
<td>0.4463</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
</tr>
<tr>
<td>70</td>
<td>0.4322</td>
<td>0.4322</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
</tr>
<tr>
<td>80</td>
<td>0.4286</td>
<td>0.4286</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
<td>0.3974</td>
</tr>
</tbody>
</table>
Constructability and Overhead Lines

- Distribution 1’ to 1’
 - For every 1’ excavated, you must maintain 1’ clearance from poles

- Transmission 1’ to 2’
 - For every 1’ excavated, you must maintain 2’ clearance from poles

<table>
<thead>
<tr>
<th>DEPTH OF TRENCH</th>
<th>MINIMUM CLEARANCE FROM NEAR EDGE OF TRENCH TO POLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'-0" OR LESS</td>
<td>3'-0"</td>
</tr>
<tr>
<td>3'-0"</td>
<td>5'-6"</td>
</tr>
<tr>
<td>4'-0"</td>
<td>8'-0"</td>
</tr>
<tr>
<td>5'-0"</td>
<td>9'-6"</td>
</tr>
<tr>
<td>6'-0"</td>
<td>11'-6"</td>
</tr>
<tr>
<td>7'-0"</td>
<td>12'-6"</td>
</tr>
<tr>
<td>8'-0"</td>
<td>14'-0"</td>
</tr>
<tr>
<td>9'-0"</td>
<td>15'-6"</td>
</tr>
<tr>
<td>10'-0"</td>
<td>17'-0"</td>
</tr>
</tbody>
</table>
Constructability and Overhead Lines

- Underground clearances from other utilities

Direct Buried or In Conduit

<table>
<thead>
<tr>
<th>Paralleling</th>
<th>Preferred (See Note 2)</th>
<th>NESC Minimums</th>
<th>Preferred (See Note 3)</th>
<th>NESC Minimums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Lines</td>
<td>12</td>
<td>See Note 4</td>
<td>Communication Lines</td>
<td>12</td>
</tr>
<tr>
<td>Water Lines</td>
<td>36</td>
<td>See Note 2</td>
<td>Water Lines</td>
<td>12</td>
</tr>
<tr>
<td>Sewer Lines</td>
<td>36</td>
<td>See Note 2</td>
<td>Sewer Lines</td>
<td>12</td>
</tr>
<tr>
<td>Fuel Lines</td>
<td>36 (See Note 3)</td>
<td>Fuel Lines</td>
<td>12</td>
<td>See Note 2</td>
</tr>
<tr>
<td>Steam Lines</td>
<td>60 (See Note 5)</td>
<td>Steam Lines</td>
<td>36</td>
<td>See Note 2</td>
</tr>
<tr>
<td>Customer Owned Cables</td>
<td>36 (See Note 2)</td>
<td>Customer Owned Cables</td>
<td>12</td>
<td>See Note 2</td>
</tr>
</tbody>
</table>

In A Conduit (Ductbank) System

<table>
<thead>
<tr>
<th>Paralleling</th>
<th>Preferred (See Note 2)</th>
<th>NESC Minimums</th>
<th>Preferred (See Note 3)</th>
<th>NESC Minimums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Lines</td>
<td>12</td>
<td>3 - Concrete 4 - Masonry</td>
<td>Communication Lines</td>
<td>12</td>
</tr>
<tr>
<td>Water Lines</td>
<td>36</td>
<td>See Note 2</td>
<td>Water Lines</td>
<td>12</td>
</tr>
<tr>
<td>Sewer Lines</td>
<td>36</td>
<td>See Note 2</td>
<td>Sewer Lines</td>
<td>12</td>
</tr>
<tr>
<td>Fuel Lines</td>
<td>36 (See Note 5)</td>
<td>Fuel Lines</td>
<td>12</td>
<td>See Note 2</td>
</tr>
<tr>
<td>Steam Lines</td>
<td>60 (See Note 6)</td>
<td>Steam Lines</td>
<td>36</td>
<td>See Note 6</td>
</tr>
<tr>
<td>Customer Owned Cables</td>
<td>36 (See Note 2)</td>
<td>Customer Owned Cables</td>
<td>12</td>
<td>See Note 2</td>
</tr>
</tbody>
</table>
Constructability and Overhead Lines

- OSHA crane clearances

https://www.osha.gov/laws-regs/regulations/standardnumber/1926/1926.1408

<table>
<thead>
<tr>
<th>Voltage (nominal, kV, alternating current)</th>
<th>Minimum clearance distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 50</td>
<td>10</td>
</tr>
<tr>
<td>over 50 to 200</td>
<td>15</td>
</tr>
<tr>
<td>over 200 to 350</td>
<td>20</td>
</tr>
<tr>
<td>over 350 to 500</td>
<td>25</td>
</tr>
<tr>
<td>over 500 to 750</td>
<td>35</td>
</tr>
<tr>
<td>over 750 to 1,000</td>
<td>45</td>
</tr>
<tr>
<td>over 1,000</td>
<td></td>
</tr>
</tbody>
</table>

(as established by the utility owner/operator or registered professional engineer who is a qualified person with respect to electrical power transmission and distribution).

Note: The value that follows "to" is up to and includes that value. For example, over 50 to 200 means up to and including 200kV.
Lessons Learned from Various Perspectives

- SUE & INDOT Facilities Requiring Relocation
- Design Plan Details and Utility Master Plan
- Constructability and Overhead Lines
- Clearing/Staking and Environmental Constraints
- Utility Notice to Proceed
- Coordination During Construction
Clearing/Staking and Environmental Constraints

• Determine the physical area of need
• Determine the timing and sequencing

• Other considerations
 • Commitments – sentimental trees

• Issues to Keep in Mind
 • Land Rights
 • Customer Notifications
 • Trimming After INDOT is Clear
 • When Clear Does Not Mean Clear

• Determine if there are environmental constraints
Environmental Constraints
Environmental Constraints

Indiana Bat
Myotis sodalis

STATUS: ENDANGERED
CLASSIFICATION: MAMMAL

DESCRIPTION

Indiana bats are dark grey or brown bats with soft fur. They look similar to little brown bats and northern long-eared bats. One way that scientists can tell the difference between these species is by the size of their feet and the length of their toe hairs.

Indiana bats are about 3.5 inches (nine centimeters) in length with a wingspan of 9.5 to 10.5 inches (24 to 27 centimeters). Like all bats, they must be incredibly lightweight to fly. Adults weigh an average of seven grams, less than the weight of two nickels.

RANGE

Indiana bats are found from New Hampshire south to northern Florida and west to Iowa, Missouri, and Oklahoma. In the winter, Indiana bats hibernate in special roosting sites called hibernacula. Hibernacula are located in limestone caves, where bats cluster in the thousands. They migrate north in the spring and roost in tree cavities or under loose bark in trees such as shagbark hickory, elm, beech, birch, oak, maple, ash, sassafras, sycamore, pine, aspen, cottonwood, locust, and hemlock. Bats may travel thousands of kilometers during their migration. Predators of Indiana bats include snakes, owls, and raccoons.
Environmental Constraints
Environmental Constraints
Lessons Learned from Various Perspectives

- SUE & INDOT Facilities Requiring Relocation
- Design Plan Details and Utility Master Plan
- Constructability and Overhead Lines
- Clearing/Staking and Environmental Constraints
- Utility Notice to Proceed
- Coordination During Construction
Utility Notice to Proceed

- What happens when it doesn’t get issued? – Nothing good.
- What does an NTP do?
- Who issues the NTP?
Lessons Learned from Various Perspectives

- SUE & INDOT Facilities Requiring Relocation
- Design Plan Details and Utility Master Plan
- Constructability and Overhead Lines
- Clearing/Staking and Environmental Constraints
- Utility Notice to Proceed
- Coordination During Construction
Keys to Utility Coordination During Construction

Communication Documentation
Communication

Phone calls

Emails

Meetings

Preconstruction Meeting
Progress Meetings
Face to Face Site Meetings
Communication

Utilities

• When can relocation start after R/W cleared and staked
• Duration of relocation
• Anticipated completion
• Any site problems
• Determine which utility is priority
Communication

Utilities
- When can relocation start after R/W cleared and staked
- Duration of relocation
- Anticipated completion
- Any site problems
- Determine which utility is priority

Contractor
- Notifies utility coordinator on R/W staking and clearing schedule
- Areas where construction work will begin
- Advise utility coordinator on any utility questions or problems
Communication

Utilities
- When can relocation start after R/W cleared and staked
- Duration of relocation
- Anticipated completion
- Any site problems
- Determine which utility is priority

Contractor
- Notifies utility coordinator on R/W staking and clearing schedule
- Areas where construction work will begin
- Advise utility coordinator on any utility questions or problems

Project Supervisor and Inspectors
- Advise when utilities will be on site
- Advise when a utility conflict may become a problem
<table>
<thead>
<tr>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone logs</td>
</tr>
<tr>
<td>Print or save emails</td>
</tr>
<tr>
<td>Meeting minutes/summary</td>
</tr>
<tr>
<td>Site visit summary</td>
</tr>
<tr>
<td>Pictures</td>
</tr>
<tr>
<td>Video</td>
</tr>
<tr>
<td>If it isn’t documented, it didn’t happen</td>
</tr>
</tbody>
</table>
“We have a conflict!”

- Where is the conflict? Station and offset or address
- What is in conflict?
- When was conflict determined?
Types of Utility Conflicts

- Utility relocated in wrong location
- Construction changes
- Soil contamination
- Changed conditions
- Utility hits
- Previously unknown utilities
Relocated in Wrong Location

1. Place 320' (1' inside ROW) copper 25 pair cable (plow or trench)
2. Place 8" ped against pole for sspolc.
3. Hand dig 4'x6' pit.
4. Place 8" ped for sspolc.

638' (338') 1988 aband. 300' cooper 25 cable
Construction Change-Modified Drive
Soil Contamination-Oil
Soil Contamination-Mitigation
Changed Conditions-Wet Conditions
Changed Conditions - Wet Conditions
Changed Conditions-Wet Conditions
Utility Hits
Previously Unknown Utilities

Steel line with large hole

Fiber optic conduits
Previously Unknown Utilities
Utility provides documentation to the utility coordinator on proposed change to relocation plan.
Utility provides documentation to the utility coordinator on proposed change to relocation plan.

Utility coordinator to review reason for change and review new location. Discuss with Project Manager, Project Supervisor, and Contractor.
Work Plan Addendums

Utility provides documentation to the utility coordinator on proposed change to relocation plan.

Utility coordinator to review reason for change and review new location. Discuss with Project Manager, Project Supervisor, and Contractor.

During review, determine if the change will impact:

- Project schedule
- Other utility’s work plans
- Cost to project
Work Plan Addendums

Utility provides documentation to the utility coordinator on proposed change to relocation plan.

Utility coordinator to review reason for change and review new location. Discuss with Project Manager, Project Supervisor, and Contractor.

During review, determine if the change will impact:
- Project schedule
- Other utility’s work plans
- Cost to project

Utility coordinator to create addendum letter with the utility relocation change then send to Utility Oversight Agent for approval.
Utility provides documentation to the utility coordinator on proposed change to relocation plan.

Utility coordinator to review reason for change and review new location. Discuss with Project Manager, Project Supervisor, and Contractor.

During review, determine if the change will impact:

- Project schedule
- Other utility’s work plans
- Cost to project

Utility coordinator to create the addendum letter with the utility relocation change then sends addendum letter to the Utility Oversight Agent for approval.

Distribute approved addendum to utility, Project Manager, Area Engineer, Contractor, Project Supervisor, and other project personnel.
Benefits of Utility Coordination During Construction

• Verify the utility relocated to the apparent correct position
Benefits of Utility Coordination During Construction

• Verify the utility relocated to the apparent correct position
• Learn the methods the utilities use to relocate their facilities
24 inch water main under the White River in Anderson
24 inch water main under the White River in Anderson
Jack and Bore Utility Casings Under I-69
Transferring Electric Wires to New Poles