Utilization of Unmanned System Technology in Transportation Engineering

Dr. Michael R. Williamson
Assistant Professor
Indiana State University

Sam Morgan
Instructor
Indiana State University
Overview

- Parking Project Description
- Setting up the assignment
- Identifying the problem
- Unmanned Systems
- Transportation Engineering Uses
 - Accumulation Graphs
 - Cost Effectiveness
- Lessons learned
- Future uses
Unmanned Systems
Indiana State University

- Terre Haute, Indiana
 - 60,000 Residents

- Indiana State University
 - Enrollment 14,000
 - Campus 435 acres
 - 5 Colleges
 - 30 parking lots
 - 1 parking garage
Campus Map
Parking Study Objectives

- Parking inventory
 - Count the number of available spaces in each lot

- Parking accumulation
 - One hour increments on all campus lots
 - Use unmanned systems if possible to collect data
 - Compare cost of traditional vs. unmanned system
 - Create bar graphs showing parking trends in each campus lot vs capacity
Parking Lots

- **6 Staff**
 - 740 Total Spaces
 - 691 Regular

- **6 Student**
 - 960 Total Spaces
 - 921 Regular

- **10 Staff/Student**
 - 1594 Total Spaces
 - 1552 Regular

- **8 Remote**
 - 1605 Total Spaces
 - 1587 Regular

- **1 Parking Garage**
 - 590 Total Spaces
 - 572 Regular

- **Total Spaces 5498**
Parking Inventory

- Determine spaces on campus by type
 - Regular Spaces
 - Handicapped
 - Parking Meters
 - Service
 - Motorcycle
Parking Inventory with Unmanned Systems

- Count in off peak times
- Striping and signage visible
Faculty Led Student Project

- Collaboration outside of departments
- Civil Engineering Students
 - Transportation focus
 - Analyze and interpret data
 - Summarize results
- Aviation Students
 - Unmanned vehicle focus
 - Responsible for collecting data with drones
Setting up the Class Assignment

- Assigned to the 30-student Human Factors of UMS class
- Present to students and allow group collaboration
- Superstar student spearheaded the project
- One trip of all lots took approximately one hour
- Schedule students and UAVs
- Establish grading criteria
- Ensure all students participate
- Emphasize safety
- Side-quest to determine a valid and sustainable contract price
Timeline Considerations

- Number of available UAVs
 - ISU provided one
 - Students had personal drones
- Transfer UAV between parking lot launch sites
- Set-up and tear-down of the UAVs
- Battery charging
- Transfer UAVs between students
- Optimum time for accurate vehicle counts vs. class schedules
 - 5-10 minute difference could show overload vs. empty
- Student availability vs. class schedules
Identify problem

- Take useable pictures of all parking lots
- Schedule the people (30) and UAVs (3-4)
- Transfer UAVs between operators
- Provide pictures with data to know time, date, location
 - Pixilation matters to get accurate count
 - Trees, power lines, towers, buildings, etc. obscure some areas of the lots
 - File names from “00001” to “Lot 5_3 Apr_0800”
Identify problem

- Ensure safe operations with limited training
- Coordinate with FAA and police to minimize outside interventions
- Deliver completed data to parking lot team
- Always considering: Safety, man-hours, transportation, regulatory guidance, set-up costs, licensing requirements, scheduling, personnel availability, proficiency training, and checklist development
Unmanned Systems

- Phantom 4 Pro (Plus student-owned models)
- Capabilities
 - Flight time 28 minutes
 - Max Service Ceiling 20,000 feet
 - Max Wind Speed Resistance 22 mph
 - Programmable flight paths
 - Range - Approximately 4 miles
 - Object tracking
- Cost of each drone (Full kits)
 - $3000 to $5000
Determine best options

- Pictures every hour between of each parking lot
 - May be at a low or high spike time between classes, “false” data
- Optimize sensor for max coverage while not overflying people or moving vehicles
- Straight down vs. altitude vs. angled shots (Flashlight effect)
- Data transfer between flights or end of day
- Battery charging and software updates
- Checklists – developed during this project
- Parking lot travel flow to expedite collection
Federal Aviation Administration

- Approached this project with UAV business model
 - (Recreational, Commercial, or public entity)
- Small Unmanned Aircraft Rule (Part 107), 21 June 2016
 - < 55 lbs.
 - Visual Line-of-sight (VLOS) (Spectacles OK, not binoculars)
 - Daylight, or Civil Twilight with anti-collision lighting (3 mi)
 - FAA Certified Pilot in Command
 - Visual Observer optional (Recommended)
 - Maximum altitude of 400 feet above ground level (AGL)
 - Max speed 100 MPH ground speed (GS)
 - Weather: 3 SM visibility, 500’ below clouds, 2,000’ horizontally
 - Don’t fly over people
 - ATC approval (Class D airspace)
Federal Aviation Administration

- Air Traffic Control (ATC) permission required in Class B/C/D airspace
 - Contact airports when within their controlled airspace
 - Notification is required when operating inside 5 statute miles and/or controlled airspace (Terre Haute – 5.7 NM)
- Require a part 107 certification for commercial operations
- Airspace Authorization
 - Available through internet request
 - 3-4 month wait
 - Once approved, still need to contact the ATC control tower
- Must yield right of way to all manned aircraft
Federal Aviation Administration

- Requires Preflight inspection prior to every flight
- No operation over moving vehicles
- May not operate over any persons not directly involved
- Restrictions may be lifted in near future
- Can also request a waiver to most Part 107 rules, with a 90-120 day response time
Local Restrictions

- Must notify University Police
 - New policy after data collection began
 - 48 hour notice
- May get an escort
- Concerned with filming near dorms
- Air vs. Ground jurisdiction
Contingencies

- **Crashes**
 - Lost UAV day 2, memory chip destroyed
 - Didn’t download data from other flights
 - Poor training led to possible pilot error
- **Weather**
 - Rain the first week reduced successful ops
 - Winds, temps (UAV, battery, controller, person)
- **Software glitches** – no-fly, geo-fence
- **Data transfer issues**
 - Drone to folders to thumb drives or cloud
 - Many high-res JPGs, label and file, transfer to students
Parking Inventory Results

• Discrepancies
 • Most lots were off by 2 to 5 regular spaces
 • No accurate count for several years
Parking Accumulation

- Defined: total number of vehicles parked at any given time
- Establish the distribution of parking accumulation over time
- Determine the peak accumulation and when it occurs
- Determine space availability
- Collect vehicle occupancy each hour
- Due to the nature of arrival patterns
 - 7:30 am to 3:30 pm
 - Class schedule
 - Faculty hours
Parking Accumulation

- Preliminary Analysis
 - Always open spaces
 - Handicapped
 - Parking Meters
 - Service
 - Motorcycle
 - Spaces full
 - Regular Spaces
Campus Map
Drone Data
Parking Garage

- Not accessible via drone
- Manual counts
Deliverable

- Accumulation graphs
- All parking lots on campus
- Assist travelers in choosing parking based on time of day
Bar Graphs

FACULTY/STAFF LOT 15

Spaces Occupied

Regular Spaces
Capacity

7:30 A.M. 8:30 A.M. 9:30 A.M. 10:30 A.M. 11:30 A.M. 12:30 P.M. 1:30 P.M. 2:30 P.M. 3:30 P.M.
Bar Graphs

STAFF/STUDENT LOT A

Spaces Occupied

Regular Spaces
Capacity
Bar Graphs

STUDENT LOT 24

Spaces Occupied

Regular Spaces
Capacity
Bar Graphs

PARKING GARAGE

Spaces Occupied

Regular Spaces
Capacity

7:30 AM 8:30 AM 9:30 AM 10:30 AM 11:30 AM 12:30 PM 1:30 PM 2:30 PM 3:30 PM
Cost Effectiveness

- **Wages**
 - $12/hour, per student

- **Hours**
 - Large lots require full day counts
 - Drone capture multiple lots per flight

- **Drone Cost**
 - $3000
Cost Effectiveness

<table>
<thead>
<tr>
<th>Method</th>
<th>Hours</th>
<th>Weeks</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Method 4 Students</td>
<td>512</td>
<td>12.8</td>
<td>$6,144.00</td>
</tr>
<tr>
<td>Drone Study Student</td>
<td>40</td>
<td>1</td>
<td>$3,480.00</td>
</tr>
</tbody>
</table>

Drone Study is 56.7 percent of the cost
92.2 percent of cost savings when drone is recouped
Lesson Learned

- Labeling the pictures
 - Date
 - Time
 - Parking lot(s)
- Multi lots per picture
 - Reducing flights
- Key to flights
 - Get certified ASAP
 - Practice
 - Schedule and communicate
 - Study and know rules
 - Determine lucrative value

- Sun angles
 - Shadows
 - Glare
- Drone capabilities
 - Battery efficiency
 - Data storage
- Weather
 - Including wind
Future use with Software

- OpenALPR
 - Plate detection system
- Compatible with most cameras
- Create flight plan to collect data
- Issue tickets as necessary
- Conduct studies on:
 - Duration
 - Turnover rate

<table>
<thead>
<tr>
<th>id</th>
<th>Lot</th>
<th>Plate_Number</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>CE MW 1</td>
<td>78.48</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>NR 1967</td>
<td>74.51</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>KE 4932</td>
<td>86.46</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>TKY 3939</td>
<td>78.54</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>BCEM 29</td>
<td>95.45</td>
</tr>
</tbody>
</table>
Unmanned Uses Within Limitations

- Parking
 - Inventory
 - Accumulation/Occupancy
Unmanned Uses Within Limitations

• Before and after traffic queues
 • Signal timing
 • Other improvements
Unmanned Uses Within Limitations

- Work zone
 - Inspections
 - Traffic monitoring
Unmanned Uses Within Limitations

- Road Networks
 - Pavement inspections
 - Bridge inspections
Contact Information

• Michael R. Williamson Ph.D.
 • Assistant Professor, Dept. of Civil Engineering, Indiana State University, Terre Haute, IN 47809 Phone: 217-343-7512; email: michael.williamson@indstate.edu

• Sam Morgan
 • Director, Unmanned Systems. Instructor, Department of Aviation, Indiana State University, Terre haute, IN 47809. Phone: 812-237-2660; email sam.morgan@indstate.edu