ASPHALT SPECIFICATIONS FOR LOCAL PAVING PROJECTS

Purdue Road School
March 7, 2018

Kirsten Pauley, PE
Technical Director, APAI
kpauley@asphaltindiana.org
The “Need”

APAI Local Guide Spec
 – INDOT 2016 Specification Changes

Construction Best Practices

PaveXpress Software

Wrap-up
Design and Specification Issues

- Improper mixture types
- Varying RAP/RAS contents
- Not enforcing construction requirements
- Inaccurate asphalt layer thicknesses

Quality Product at Lowest Cost
APAI Local Guide Spec
What is it?

- Asphalt guide specification for LPA and commercial projects
- Revised in February 2018
- Reference to 2018 INDOT Standard Specifications
- Incorporates NAPA guidelines
- Modified by agency or designer
- Establishes standard of quality
How to use?

- Certifications required
- Mix design for approval and Type D cert for acceptance

Guidelines for Design
- Mixture types
- Volumetric mix design
- Recycled content

Guidelines for Construction
- Surface preparation
- Temperature requirements
- Compaction
Mixture Types

- Type A, B, or C depending on traffic count
- INDOT eliminated Type A (Cat. 1) and Cat. 5 mixes
- Correlates ESALs to AADT and AADTT

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Type A*</th>
<th>Type B*</th>
<th>Type C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design ESAL</td>
<td><300,000</td>
<td>300,000 to <3,000,000</td>
<td>≥3,000,000</td>
</tr>
<tr>
<td>AADT (Average Annual Daily Traffic)**</td>
<td><4,000</td>
<td>4,000 - 15,000</td>
<td>15,000 - 30,000</td>
</tr>
<tr>
<td>AADTT (Average Annual Daily Truck Traffic)**</td>
<td><50</td>
<td>50 - 1700</td>
<td>>1700</td>
</tr>
<tr>
<td>Commercial & Residential Application***</td>
<td>Passenger car parking with <500 stalls and <20 heavy trucks** per day, residential driveways</td>
<td>Parking Lots with 20-300 heavy trucks** per day</td>
<td>Heavy commercial parking lots with 150-300 heavy trucks** per day</td>
</tr>
</tbody>
</table>
Volumetric Mix Design

- Design requirements align with all current INDOT specifications
- Specs for Type A mix added since removed from INDOT spec book
- Recommended PG binder grade for each mixture type and layer
Recycled Content

- Recommendation to specify maximum binder replacement at 25% or 40% (excludes Type C surface)
 - INDOT October 2016 spec changes
 - NAPA guidelines
 - Neighboring states’ specs
 - “Proper engineering judgement on project-by-project basis”

- PG binder grade jump when above 25% binder replacement
CONSTRUCTION BEST PRACTICES
Surface Preparation

Subgrade and Subbase
- Must support pavement and load transferred from traffic
- Be graded to properly drain and provide basis for final longitudinal and cross slope of pavement
- Uniformly compacted to required density
- May be stabilized with cement to increase strength
- Proof roll to check stability
Surface Preparation

Milling
- Mill to sound surface
- Improper mill depth will cause delamination
- Patch and crack repair where necessary
- Clean surface thoroughly after milling and prior to applying tack coat, no dust or debris
- Fine milling cutting drum for 4.75 mm surface
Surface Preparation

Tack Coat
- Promote bonding to the subsequent pavement layer
- Prevent slippage between asphalt layers
- Moisture barrier
- Uniformly applied without striping at 95% coverage
- “Break” before paving
TEMPERATURE REQUIREMENTS

Plant
- Plant discharge maximum temperatures based on PG binder grade
- Warm mix asphalt allowed

Field
- Weather limitations for ambient and surface temperatures based on depth of asphalt course
- Asphalt may be placed at lower temperatures if density controlled or if approval given by Owner or Engineer
How important is density?

- Impacts service life directly
- Prevents further consolidation
- Provides shear strength and resistance to rutting
- Improves resistance to fatigue and thermal cracking
- Ensures impermeability
- Prevents excessive oxidation of binder
Compaction

Keys to Maximizing Density

▪ Establish rolling pattern and do not deviate from it
▪ Design at optimum lift thicknesses
▪ Watch temperatures when compacting – initial breakdown when HOT
▪ Proper roller operation techniques
PaveXpress
AASHTO has been developing Pavement ME (MEPDG) for high volume roads, but a gap has developed for local roads and lower volume roads.
Why use software for pavement design?

- AASHTO 1993, 1998, and Pavement ME determine the pavement thickness for which the mean value of traffic can be carried given specific inputs.
- Over-conservatism ➔ thicker pavements ➔ higher cost
- Reliability factor built into software decreases the risk of premature deterioration below acceptable serviceability
- Use materials testing and traffic counts when possible
- Avoid “one size fits all” designs
What is PaveXpress?
An online tool to create simplified pavement designs using key engineering inputs, based on the AASHTO 1993 and 1998 pavement design process.

- Accessible via the web and mobile devices
- Free — no cost to use
- Based on AASHTO pavement design equations
- User-friendly
- Share, save, and print project designs
- Interactive help and resource links
Main Street

1 Project Information
 Location, Roadway Classification and Pavement Type

2 Design Parameters
 Specific Design Variables

3 Traffic Data
 Traffic and Loading Data

4 Pavement Structure
 Pavement Layer(s) Information

5 Pavement Sub-Structure
 Base, Sub-Base and Subgrade

Calculated Design

Design Parameters

Design Period: 20 years

Reliability

Reliability Level (R): 75
Combined Standard Error (S_o): 0.6

Serviceability

Initial Serviceability Index (p_i): 4.5
Terminal Serviceability Index (p_f): 2
Change in Serviceability (ΔPSI): 2.5
PaveXpress
A Simplified Pavement Design Tool

www.PaveXpressDesign.com

APAI workshop for designers coming summer/fall 2018!
Wrap-up
Kirsten Pauley, PE
Technical Director
kpauley@asphaltindiana.org