Skew Effects On Steel Highway Bridges

Lance Peterman, P.E., S.E.
Julie Rivera, P.E., S.E.
2018 Purdue Road School March 7, 2018
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Presentation Outline

- Introduction
 - Behavior of Skewed Structures
 - Cross Frames and Diaphragms
 - Framing Plan
 - Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Introduction

- Skew can complicate design, detailing, fabrication, and construction of bridges
- Skew can lead to construction delays and claims if not appropriately accounted for
- Skewed bridges are becoming more prevalent especially in tight urban areas
- We need a plan to address the issues with skew
Introduction

First step is in the planning process try to minimize skew if possible

- Work with roadway designers to adjust the alignment
- Consider lengthening bridge
- Consider integral pier
Introduction

First step is in the planning process try to minimize skew if possible

- Consider retaining wall to allow the use of a non-skewed abutment
Introduction

Recognize skew challenges:
- Introduce torsion in the girders
- Large cross frame forces
- Different thermal movements
- Additional detailing considerations
- Longer substructure elements
Introduction

Next steps to address skew:
- Understand the behavior of skewed structures
- Determine appropriate level of analysis
- Develop optimal framing plan
- Detail skewed bridges properly to mitigate skew effects
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Behavior of Skewed Structures

- Girder differential vertical deflection causes lateral deflections and twist
- Due to the skew and associated framing, skewed girders will deflect vertically, and rotate transversely during deflection
- Shifting of load between girders creates torsion and changes the vertical and horizontal reactions
- Cross-frames attempt to equalize adjacent girder deflections
Behavior of Skewed Structures

- Elastomeric bearings performance
Behavior of Skewed Structures

- Example 1
Behavior of Skewed Structures

- Opposite direction of rotation between span 1 and 2
Behavior of Skewed Structures

- Transverse load paths through cross frames
- “Nuisance Stiffness” Effects
- Lateral reactions develop at the bearings
Behavior of Skewed Structures

- Example 2
Behavior of Skewed Structures

- Effects of Curvature (Radial Piers)
Behavior of Skewed Structures

- Effects of Curvature and Skewed Piers
- Skewed pier leads to longer center span for outside girder
Behavior of Skewed Structures

- Transverse load paths through cross frames
- “Nuisance Stiffness” Effects
- Lateral reactions develop at the bearings
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Cross Frames and Diaphragms of Skewed Structures

- Straight bridges diaphragms brace compression flanges and transfer wind loads
- For skewed and curved bridges the diaphragms and cross frames members may carry significant load through transverse load paths
- K-type and X-type are utilized based on girder spacing and depth
- Cross frame stiffness is greater than the girder torsional stiffness so the cross frame remains rigid while the girders twist.
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Framing Plan

- The effects of skew on steel I-girder bridges depend on the severity of skew and type of framing
- Integrated system behavior is recognized with framing plan arrangement
- Continuous versus staggered diaphragms
 - Manage Uplift
 - Flange Lateral Bending
Framing Plan - Example 1

- Selectively remove cross-frames near the pier
 - Nuisance stiffness, reduce transverse load paths
- Use full-depth diaphragms at interior pier location
 - Attract load at two distinct locations
- Use staggered cross-frame pattern at skewed ends
 - Eliminate the transverse load paths
Framing Plan - Example 1

- Difference in cross frame member sizes, near skewed pier and typical intermediate
Framing Plan - Example 2

- Based on initial 3D analysis, rearrange cross frames at skewed pier 4
 - Use 3D model to investigate layouts
 - Reduce “nuisance stiffness”
 - Place cross frames along skew
 - No radial frames at skewed pier
 - Omit certain cross frames beyond pier
 - Relieve transverse stiffness & reduce cross frame forces
Framing Plan - Example 2

- Difference in member sizes, near skewed pier and typical intermediate
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Appropriate Analysis

- Level of analysis is based on the configuration of the bridge
 - NCHRP Report 725 introduced a scoring method to assess the accuracy of the analysis method.
 - Based on a skew index that considers the width of the bridge, the skew angle, and the span length

- Various responses considered
 - Major-axis bending
 - Vertical displacements
 - Cross frame forces
 - Flange lateral bending
 - Girder layover at bearings
Appropriate Analysis

- 1D Line Girder Analysis
 - Isolates and analyzes a single girder
 - Loads are distributed to each girder by way of distribution factors
 - Adequate for fairly simple structures with little to no skew angle
Appropriate Analysis

- 2D grid analysis:
 - Begins to address system behavior
 - Girders are modeled with a single line of beam elements
 - Deck is modeled in strips using line elements
 - Limits modeling of cross frames to single line element
 - Generally cannot model warping stiffness

- May produce inaccurate results
 - Cross-frame forces
 - Bearing Reactions
 - Girder displacements
Appropriate Analysis

- 2D grid analysis shortcoming:
 - 2D software only considers St. Venant (pure) torsional stiffness of the girders while neglecting warping torsional stiffness component. Warping torsion produces shear stress and normal stresses in which cross-sections do not remain plane.
 - Significant since I-girders as open, thin-walled sections, primarily carry torsion by warping
 - The lack of torsional stiffness in the I-girder leads to an inability to accept significant load transferred from the cross frames. As a result the 2D model underestimates transverse load paths and cross frame forces in the skewed bridge framing.
Appropriate Analysis

- 3D Finite Element Analysis
 - Girder flanges are modeled with beam elements and webs are modeled using plate or shell elements.
 - Explicitly model all cross-frame members using truss elements for K and X type cross frames and plate or shell elements for the webs of full the depth diaphragms with beam elements for the diaphragm flanges.
 - The deck is typically modeled using brick-type elements or shell elements.

- Benefits
 - Accurate cross-frame forces
 - Properly model girder torsional stiffness and warping stiffness
 - Properly accounts for load shifting between girders
 - Properly capture horizontal and vertical reactions
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Case Study Overview

Exist. WB Bridge:
- 5 simple spans: 471 ft total length
- 60” deep plate girders
- WB fracture critical substructure
- WB no skew counterfort wall abut

Exist. EB Bridge
- 3 continuous spans: 503 ft total length
- 81” deep plate girders
- skewed counterfort wall abut
Case Study Overview

- 70-degree skew
- Two spans @ 280 ft = 560 ft total length
- Deck width: 49’-3” with three lanes
- 6 plate girders
- Webs: 13/16” x 9’-6”
- Flanges: 1.5”x26” to 3”x34”
- X-type intermediate cross-frames
- Full-depth abutment diaphragm along skew
- Full-depth pier diaphragm normal to girders
Case Study Overview

- Stub abutments behind 600 ft long soldier pile walls
- Modular swivel type expansion joints at each abutment
- Multi-column pier supported on 4 rows of battered piles
Case Study Overview
Detailing – End Diaphragm

- Full-depth end diaphragm (length ~ 23.5 ft)
 - Too long for a K-type cross-frame
- Auxiliary stiffeners (back-up stiffeners)
Detailing – End Diaphragm

- Full-depth diaphragm connected to bent stiffener plate
- Bolted jacking stiffener installed after end diaphragm due to conflict
Detailing – Pier Diaphragm

- Detail to avoid interference with fixed bearing at skewed pier
Fit Condition

- Severe skew leads to:
 - Out-of-plumb webs after dead load is applied
 - Excessive bearing rotation
 - Try to control this rotation via detailing

- AASHTO Article 6.7.2
 - Fit condition to be specified in the plans

- 3 choices:
 - No load fit (NLF)
 - Steel dead load fit (SDLF)
 - Total dead load fit (TDLF)
For SDLF and TDLF, the cross-frames are forced into place and the girders are twisted out of plumb during the erection.

Cross-frames connect to girder locations that have different dead load deflections (differential).

Figure courtesy of Ronnie Medlock (High Steel).
Fit Condition

- Steel Dead Load Fit (SDLF) chosen
 - Disc bearing can accommodate rotations
 - Concrete dead load
 - Live load
 - Erection simpler & faster than TDLF
 - Limited construction windows

Fit Condition

- Achieved via girder drops on the shop drawings
 - Drops are the difference in elevation between the top of webs for adjacent girders.
 - Drops are comprised of:
 - differential deflection
 - roadway profile
 - deck cross slope
Deck Placement Analysis

- Girder camber is dependent on the sequence of the deck placement
- Difference between single monolithic deck pour and accumulated deflection due to the deck placement sequence
- Verify deck stresses resulting from pour sequence will not result in cracking
Deck Placement

- Placement of concrete along skew to load girders equally
- Place concrete along bridge skew ahead of paver skew and use retarder to delay set
Deck Placement

- Bridge Paver rails extended to approach
Pier Design

- 49’ wide bridge = 130’ long pier along skew
- 3 segments, each supporting 2 girders
Pier Design
Pier Design: Effect of Skew

- Opposite direction of rotation between span 1 and 2
Pier Design

- Severe skew and fixed bearing condition led to high lateral forces in opposite directions
- Segmented pier:
 o Better accommodate internal thermal force demands
 o Reduce torsion in pier cap
- Circular columns directly under girders to effectively carry vertical reaction
- Intermediate circular columns to effectively resist fixed horizontal bearing reactions
Pier Cap Design

- End Result:
 - Horizontal bearing reactions approximately equal to vertical reactions
- High torsional demand
 - No. 10 bars all around
- Special design considerations at fixed bearing locations
Concrete Anchorage Design

- Specialized approach with seismic-like detailing
 - Supplemental horizontal and vertical stirrups
 - Welded hoop bars
 - Embedded anchor bolts
 - Bar terminators
- Use of parametric tools
 - Clash detection
 - Verify sequence
Pier Cap Detailing

Bar Terminator

Anchorage Reinforcement
Pier

- Welded hoop bars to confine core for anchorage
Pier

Fixed Bearing

Non Guided Expansion Bearing
Bearing Design

- High Load Multi-Rotational Bearings
- Disc bearings were specified (rotation at abutments > 0.05 radians)
Bearing Design

Concrete Placement Hole

Anchor bolts threaded through embedded plate
Swivel Type Modular Expansion Joint

- Multi-directional movement capability
- Detail girders and end diaphragms to accommodate joint
- Special closure pour at joints
 - To minimize movement due to dead load effects (racking)
 - To reduce shrinkage effects
Conceptual Erection Sequence Analysis

- AASHTO LRFD Requirements
 - Article 2.5.3 Constructability
 - “Where the bridge is of unusual complexity, such that it would be unreasonable to expect an experienced contractor to predict and estimate a suitable method of construction while bidding the project, at least one feasible construction method shall be indicated in the contract documents.”
Conceptual Erection Sequence Analysis

- Use LARSA 3D FEM to check:
 - Temporary support structure placement
 - Hold cranes required
 - Girder stresses, deflections, reactions (no uplift)

- Potential issues:
 - Girder buckling capacity greatly reduced due to long unbraced lengths
 - Loading is less than in the final condition, but the girder capacity is also less
Shop Fit-Up
Presentation Outline

- Introduction
- Behavior of Skewed Structures
- Cross Frames and Diaphragms
- Framing Plan
- Analysis
- Case Study
 - Detailing and Fit
 - Deck Placement Considerations
 - Impacts to Pier Design
 - Effects on Bearing Design
 - Expansion Joints
 - Conceptual Erection Sequence
 - Shop Fit-Up
- Summary
Summary

- Try to minimize skew in the planning process
- Recognize alternative load paths at skewed supports
- Recognize when a refined 3D analysis is warranted
- Be cognizant of high lateral forces at fixed bearings of a skewed support
- Specify fit condition for the girders and cross-frames
- Consider shop assembly to verify fit-up
- Place deck concrete along skew
- Follow these steps to reduce risk of geometry control issues and construction delays and claims
References

- Chavel, B., Peterman, L., McAtee, C.. (2010).“Design and Construction of the Curved and Severely Skewed Steel I-Girder East-West Connector Bridge over I-88”, International Bridge Conference