I-70 over SR 121
Bridge Slide Construction and Engineering

March 6, 2018

Kevin Gorak, American Structurepoint
Pete Jerrell, Walsh Construction
Project Overview

• Project Location
 I-70 in Richmond, IN
Project Overview

• Project Location
Project Overview

• Existing Bridge

 – Twin - 3 Span Structures (Total Length 140’-10”)
 • End Spans: Reinforced Concrete Girders (35’-10” Clear Spans)
 • Middle Span: Steel W-Beams with Concrete Deck (49’-6” Clear Span)
Project Overview

- Existing Bridge
 - 39’-6” Clear Roadway
 - 2 – 12ft lanes width
 - 5’-6” and 10’-0” Shoulders
Project Overview

- New Bridge
 - Twin – Single Span Structures (71’-0” Span Length)
Project Overview

• New Bridge
 – 40’-8” Clear Roadway
 • 2 – 12ft lanes width
 • 5’-8” and 11’-0” Shoulders
Project Overview

- Design Options Considered (INDOT / BLN)
 - Do Nothing
 - Conventional Construction
 - Self Propelled Modular Transporter (SPMT)
 - Slide-In Superstructure Installation
 - Hybrid Slide-In Superstructure Installation
Project Overview

• Do Nothing Option
 – Bridge Condition was in too bad of shape
Project Overview

• Conventional Construction
 – Two-Construction Seasons (4 Phases of Construction)
 – Build half of the bridge per phase
 – No Lane Closures
Project Overview

• Self Propelled Modular Transporter (SPMT)
 – One Construction Season
 – Single Lane Closure for limited time
 – Available staging area on the south-east area of the project
Project Overview

• Self Propelled Modular Transporter (SPMT)
Project Overview

• Bridge Slide-In
 – One Construction Season
 – Single Lane Closure for limited time
 – Room in between bridges to construct bridge
Project Overview

• Bridge Slide-In
Project Overview

• Hybrid Bridge Slide-In

 – One Construction Season
 – One Conventional Bridge Construction and One Bridge Slide-In
 – Use Slide-In bridge as temporary structure during demolition of existing bridge
Project Overview

• Best Options for final Design
 – Conventional Construction, SPMT and Bridge Slide-In Options were within 5% estimated construction cost of each other
 – INDOT received grant money for ABC project
 – SPMT and Bridge Slide-In will continue to Final Dual Design
Bid Process

- Project overview
- Self Propelled Modular Transporter (SPMT) or SLIDE?
- Days?
Bid Process - SPMT Project Plans

- SPMT Movement (Westbound Bridge)
Bid Process - SPMT Project Plans

- SPMT Movement (Westbound Bridge)
Bid Process - SPMT Project Plans

- SPMT Movement (Eastbound Bridge)
Bid Process - Slide-In Project Plans

- Site Layout
Bid Process - Slide-In Project Plans

• Remove Overhang
Bid Process - Slide-In Project Plans

• Build New Bridge
Bid Process - Slide-In Project Plans

• Shift Traffic, Slide New Bridge
Bid Process - Slide-In Project Plans

• Build New Bridge
Bid Process - Slide-In Project Plans

- Shift Traffic, Slide New Bridge
Bid Process - Days

A + B Contract

A Component = Cost of construction (SPMT or Slide)

B Component = Closures
 • I-70 Closure
 - Allowed 13 days at 15 hours/day (195 total hours) of lane closure per installation
 - Only one Friday closure is allowed
 - Hours only charged for Peak Hours: 6 AM – 9 PM
 - Incentive and Disincentive: $2,500/hour on Fridays
 - Incentive/Disincentive: $2,000/hour on all other days
 • SR 121 Closure
 - Allowed 60 Days at $4,000/Day
Bid Process – SPMT vs. Slide

SPMT

– Pros
 • Room to build new bridge
 • No temporary demolition to existing structure
 • Keep an extra lane open during construction phases
 • 1 less Lane Closure = $307,500 savings

– Cons
 • Cost to use SPMT
 • Construct temporary supports for bridge construction
 • Walk EB bridge under new WB bridge
 • Construct supports for EB Bridge to raise into to position because amount of leg stroke on SPMT
Bid Process SPMT vs. Slide

Slide-In

– Pros

• Experience with bridge slide
• Use simple equipment to slide bridge
• Slide equipment cheap

– Cons

• Need to remove bridge overhang to construct bridge between existing structures
• Tight work area between and beneath bridges
Bid Process - Decision

- **B Component for Slide**

PHASE III - SLIDE 1

<table>
<thead>
<tr>
<th>DAY</th>
<th>8-Sep-17</th>
<th>9-Sep-17</th>
<th>10-Sep-17</th>
<th>11-Sep-17</th>
<th>12-Sep-17</th>
<th>13-Sep-17</th>
<th>14-Sep-17</th>
<th>15-Sep-17</th>
<th>16-Sep-17</th>
<th>17-Sep-17</th>
<th>18-Sep-17</th>
<th>19-Sep-17</th>
<th>20-Sep-17</th>
<th>21-Sep-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td></td>
</tr>
<tr>
<td>DAYS</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>HOURLY RATE</td>
<td>$2,500</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,500</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>SR 121</td>
<td>1</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>06</td>
<td>WB I-70 FRI</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>07</td>
<td>EB I-70 SAT - THR</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>EB I-70 FRI</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>WB I-70 SAT - THR</td>
<td>15</td>
<td>165</td>
</tr>
</tbody>
</table>

PHASE IV - SLIDE 2

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td></td>
</tr>
<tr>
<td>DAYS</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>HOURLY RATE</td>
<td>$2,500</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,500</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$2,000</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>SR 121</td>
<td>1</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>06</td>
<td>WB I-70 FRI</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>07</td>
<td>EB I-70 SAT - THR</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>EB I-70 FRI</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>WB I-70 SAT - THR</td>
<td>15</td>
<td>165</td>
</tr>
</tbody>
</table>

TOTAL HOURS

TOTAL COST

MAX

TOTAL

COST

TOTAL HOURS

TOTAL COST

TOTAL

COST

TOTAL HOURS

TOTAL COST
Bid Process - Decision

• Decided to bid Slide-In

 – Engineer’s Estimate = $6,800,000
 – Walsh Bid Estimate = $6,484,900
 • 24 Days of I-70 lane closure (26 days allowed)
 • 30 Days of SR 121 road closure (60 days allowed)
 • B Component = $855,000
Bridge Slide Design

- Existing Bridge with New Abutment
Bridge Slide Design

- Build a New Bridge Between Existing
Bridge Slide Design

• Build a New Bridge Between Existing
Bridge Slide Design

- Demo Existing and Slide Over
Bridge Slide Design

- Bridge Slide Design Options
 - Slide the bridge on rollers

Pros
- Slide system on a track
- Allows for low friction
- Control geometry tolerances

Cons
- Needs a temporary separate slide structure
- Cost for temporary structure
Bridge Slide Design

• Bridge Slide Design Options
 – Slide the bridge on Teflon pads

Pros
- Use existing abutment for slide surface
- Allows for low friction
- Little modification to abutment

Cons
- Teflon bearings could walk
- Cost for multiple temporary Teflon bearings
Bridge Slide Design

• Bridge Slide Design Options
 – Slide the bridge on stainless steel surface

Pros
- Use existing abutment for slide surface
- Fewer Teflon bearings req’d
- Stainless steel provides level and smooth surface

Cons
- Cost for stainless steel plate
- Abutment would need to be modified
Bridge Slide Design

- Bridge Slide Design Options
 - Slide the bridge on stainless steel surface

PROCEED TO FINAL DESIGN
Bridge Slide Design

- Temporary Slide Bearings will be located at the final bearing locations
Bridge Slide Design

• Now we have to pull the bridge
 – Friction Coefficient for Lubricated Teflon on Stainless Steel: 3% - 5% (Dawn Soap)

 – Total Structure Weight
 • EB Structure - 830,000 lbs (415,000 lbs per abut)
 • WB Structure – 771,000 lbs (385,500 lbs per abut)

 – Lateral Sliding Force (Per Abutment)
 • EB Structure – 20,750 lbs (5% Coeff of Friction)
 • WB Structure – 19,275 lbs (5 % Coeff of Friction)
Bridge Slide Design

• Keep the lateral slide system design simple
 – Use 25% Coefficient of Friction for Design
 – Lateral Sliding Design (Per Abutment)
 • EB Structure – 104,000 lbs
 • WB Structure – 96,000 lbs
 – Use 150 ksi 1 ¼” diameter all thread bar
 • Ultimate Strength = 188,000 lbs
 • $0.6 \ f_{pu} = 113,000$ lbs
Bridge Slide Design

• Lateral Slide Anchoring System
Bridge Slide Design

- Lateral Slide Anchoring System
Bridge Slide Design

• Lateral Slide Anchoring System

Stressing Frame Model

C 15X33.9

Jack Force
= 83.0 kips

MC 18X42.7

9 - 1" dia D32 Dayton Superior threaded rods

3 - 1" dia D32 Dayton Superior threaded rods
Bridge Slide Design

- Lateral Slide Anchoring System
Bridge Slide Design

• Lateral Slide Anchoring System
Bridge Slide Operations

- Pre-Slide Construction Work & Challenges
Bridge Slide Operations

- Pre-Slide Construction Work & Challenges
 - Drilled Shafts – Wet conditions in spring & minimal room
 - End bents – Forming and Pouring beneath existing bridge
 - MSE Walls – Undermining existing bridge
 - New Bridge – Access and tight space in between existing bridges
 - Pre-slide Preparations – Anchoring system, jacking equipment, test pull
Bridge Slide Operations

• Pre-Slide Planning – Jacking System Preparation
 – Vertical Lift System
 • Enerpac RCS, Low Height Cylinders X8 – 4 Jack ports/Abutment
 • Used to remove temporary bearings and install permanent bearing pads
 • Jacks plumbed through a manifold to apply equal pressure
 – Horizontal Pulling System
 • Pulling Jacks x2 – 60 Ton Enerpac RPH-3010 Hollow Plunger with electric pump
 • Pulling rod – 1.25” Diameter 150 KSI Rod
 – Test Pull
Bridge Slide Operations

Pre-Slide Planning

- Detailed schedule broken down by hour

<table>
<thead>
<tr>
<th>Maintenance of Traffic</th>
<th>No. of Hours</th>
<th>8-Sep</th>
<th>9-Sep</th>
<th>10-Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Barrier Wall</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Install Temp Markings</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demolition</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crackers Demo</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove Debris (I-70)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove Debris (IN 121)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove PCCP East</td>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remove PCCP West</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slide Operations</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Jacks & Rods</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean/ Lubricate Abutment</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slide Bridge</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean & Jack Bridge</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/R/P Restrainer (East - 4 EA)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/R/P Restrainer (West - 4 EA)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install Polychlorprine Membrane</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bridge Slide Operations

- Bridge Demolition
Bridge Slide Operations

• Slide Tolerances - Laterally
 – Tape measure installed on the back side of abutment
 – Lath with pointed tip used to measure lateral progress
 – PE monitor as bridge is slid and convey to operator
 – Operators have ability to pull more or less to stay even

• Slide Tolerances – Along Center of Abutment
 – Centerline of Abutment marked
 – Center of Abutment Marked
 – Monitor as bridge is being slid
Bridge Slide Operations

- **Slide**
 - Lubricate Stainless steel – Dawn Dish Soap
 - Breakout – Each abutment is initially moved independent of each other
 - Slide – Bridge pulled at 2” – 3” increments
 - Monitoring – 6 People on each bent monitoring
 - Bridge within 1” of plan location
Bridge Slide Operations

• Post Slide
 – Jacking onto new bearings
 – Pour restrainer block
 – Grout jacking ports
 – Backfill abutments
 – Pavement
Bridge Slide Operations

I-70 Bridge Slide
Over State Road 121
Richmond, Indiana
Conclusion

SUCCESS!

WB I-70 Closure Bid = 12 Days or 180 Hours
WB I-70 Actual Closure = 8 Days or 120 Hours

WB I-70 Incentive = 60 Hours x $2,000/Hour = $120,000

EB I-70 Closure Bid = 12 Days or 180 Hours
EB I-70 Actual Closure = 8 Days or 120 Hours

EB I-70 Incentive = 60 Hours x $2,000/Hour = $120,000

SR 121 Closure bid = 30 Days
SR 121 Actual Closure = 17.5 Days
*3 Separate Closures

SR 121 Incentive = 12.5 Days x $4,000/Day = $50,000