Design Memo 16-04

Designer Summary of Required Utility Relocations - Project Design and Utility Summary

Mike Hoy & Matt Witt - INDOT
Kenny Franklin – Blood Hound, LLC
Natalie Parks – American Structurepoint, Inc.
Project Design & Utility Summary

- Ultimate goal – successful delivery of our proposed project
 - On time and on budget

- Utilities can be an intricate part of your project delivery
 - Open to traffic commitment next year
 Can your project absorb 12 months of utility relocation work, build the project, & open to traffic
 - How about $1 million relocation
 - Utility have the money
 - Reimbursable - does your project have the money
Why Design Around Utilities

- Current Utility Coordination paradigm (IDM 104)
- Reinforced – INDOT Open Roads Program Guide
- Utilities are a long term business partner within existing public right-of-way and/or along them
- Utility stakeholders – almost all of us; same stakeholders that are funding our road/bridge projects
Designing around Utilities

- Establish **viable** options to deliver the project
 - Utility relocation options
 - Project design around options
 - Develop a decision matrix to be able to make informed decisions
- Focus
 - Integrity of the project - purpose/need & capital investment
 - Safety of the traveling public
Develop design/ utility decision matrix

- **Design and Utility Summary Table**
 - Documentation tool
 - Project_Design_and Utility_Summary_Table
 (INDOT Utility Coordination\Standard Documents – General)
 - Roadmap to solutions and final decisions
 - Advantages and Disadvantages for Utility relocation vs. Design around
 - Environmental impact, R/W, Constructability, Project Schedule, and Project Cost
 - Expand to add details – critical points table
Project Description

<table>
<thead>
<tr>
<th>Designer's Justification To Impact The Utility</th>
<th>Design Around Alternative description*</th>
<th>Design Around Estimated Cost*</th>
<th>Utility Relocation Plan</th>
<th>Estimated Utility Relocation Cost</th>
<th>Utility Relocation Reimbursable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed design meets the current Purpose and Need of the project; To design around the utility, there is substantial project impact of additional R/W and Construction cost.</td>
<td>Leave utility in place by constructing a slightly graded foreslope to provide cover over the utility, then construct the open ditch further away from the roadway; substantial project impact of additional R/W and Construction cost</td>
<td>$200,000 of additional R/W and Construction costs</td>
<td>Substantial cost and time to relocate - prefer to stay in place; Relocate to 5 ft inside proposed R/W</td>
<td>$1,200,000</td>
<td>No</td>
</tr>
</tbody>
</table>
Example Design/Utility matrix

Project Team Collaboration

<table>
<thead>
<tr>
<th>Environmental Impact</th>
<th>Right-of-Way Impact</th>
<th>Constructability Impact</th>
<th>Project Schedule Impact</th>
<th>Project Cost Impact</th>
<th>Recommended Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Around</td>
<td>Utility Relocation</td>
<td>Design Around</td>
<td>Utility Relocation</td>
<td>Design Around</td>
<td>Utility Relocation</td>
</tr>
<tr>
<td>CE/NEPA document</td>
<td>No additional impact (area already covered in CE/NEPA doc.)</td>
<td>2 parcels impacted for a total of 0.7 additional acres permanent R/W</td>
<td>No additional R/W required</td>
<td>R/W must be clear & staked prior to notice to proceed issued for utility work</td>
<td>Approx. 20 additional days to construct design around option (additional fill and stormwater structures)</td>
</tr>
<tr>
<td>Additional Information required to account for 0.7 acre of additional R/W; No additional impacts expected after environmental coord. (no waterways, wetlands, historic in area)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Design Around Option chosen; Utility enters into agreement to pay $200,000 Design Around Option; Saves the Utility $1,000,000; Saves 10 months during construction</td>
</tr>
</tbody>
</table>
How to implement

- **Early and effective communication**
 - Commitments from Utilities, UC, Designers, PM.....*Don’t forget Construction*
 - Project development timelines & expectations
 - Essential to identify critical points early
 - Realize this will be an iterative process of sharing information back and forth
 - Plan for Design flexibility
Project Kick Off

- Review proposed Design footprint vs existing utilities
 - Critical Design elements – bridges, stormwater trunkline, underdrains, etc.
 - Critical Utility features: not just lines in the survey
 - Vaults, duct banks, overhead electric with clearance restrictions, etc.
Critical Facilities
Effective SUE strategy

- Develop a design envelope around utilities
- What additional utility information is needed?
 - 811 locates surveyed... +/- 2 ft horizontal
 - Depths/elevation known by the Utility Company
Effective SUE strategy

- Develop a SUE strategy to gather more accurate location information
 - Narrow down the design envelope

- Communicate SUE specific required information
 - Underground conduit duct bank – need all 4 corners, top left/right with bottom of critical side?
 - QL-B – Electromagnetic wand (EM) & Ground Penetrating Radar (GPR)
 - +/- 6 inches Horizontal and Vertical
 - Limitations
 - Critical location – no margin/wiggle room
 - QL-A/pot hole with details surveyed
Critical Table: One Example

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16+86</td>
<td>854.72</td>
<td>5.58</td>
<td>849.14</td>
<td>2405</td>
<td>848.50</td>
<td>12</td>
<td>0.23</td>
<td>848.27</td>
<td>849.73</td>
<td>-0.87</td>
<td>36</td>
<td>846.0</td>
</tr>
<tr>
<td>2</td>
<td>18+17</td>
<td>852.23</td>
<td>5.67</td>
<td>846.56</td>
<td>2409</td>
<td>848.00</td>
<td>15</td>
<td>0.25</td>
<td>847.75</td>
<td>849.50</td>
<td>1.19</td>
<td>12</td>
<td>846.0</td>
</tr>
<tr>
<td>3</td>
<td>20+16</td>
<td>850.08</td>
<td>5.50</td>
<td>844.58</td>
<td>2415</td>
<td>845.30</td>
<td>18</td>
<td>0.27</td>
<td>845.03</td>
<td>847.07</td>
<td>0.45</td>
<td>18</td>
<td>843.0</td>
</tr>
<tr>
<td>4</td>
<td>21+79</td>
<td>851.03</td>
<td>5.42</td>
<td>845.61</td>
<td>2421</td>
<td>843.40</td>
<td>15</td>
<td>0.25</td>
<td>843.15</td>
<td>844.90</td>
<td>-2.46</td>
<td>54</td>
<td>841.0</td>
</tr>
<tr>
<td>5</td>
<td>24+16</td>
<td>850.96</td>
<td>5.58</td>
<td>845.38</td>
<td>2428</td>
<td>843.60</td>
<td>18</td>
<td>0.27</td>
<td>843.33</td>
<td>845.37</td>
<td>-2.05</td>
<td>48</td>
<td>841.0</td>
</tr>
<tr>
<td>6</td>
<td>27+00</td>
<td>848.53</td>
<td>4.75</td>
<td>843.78</td>
<td>2425</td>
<td>843.90</td>
<td>12</td>
<td>0.23</td>
<td>843.67</td>
<td>845.13</td>
<td>-0.11</td>
<td>30</td>
<td>841.0</td>
</tr>
<tr>
<td>7</td>
<td>28+31</td>
<td>848.16</td>
<td>4.67</td>
<td>843.49</td>
<td>2426</td>
<td>844.30</td>
<td>12</td>
<td>0.23</td>
<td>844.07</td>
<td>845.53</td>
<td>0.58</td>
<td>18</td>
<td>842.0</td>
</tr>
<tr>
<td>8</td>
<td>28+47</td>
<td>848.08</td>
<td>5.08</td>
<td>843.00</td>
<td>2429</td>
<td>842.80</td>
<td>18</td>
<td>0.27</td>
<td>842.53</td>
<td>844.57</td>
<td>-0.47</td>
<td>30</td>
<td>840.0</td>
</tr>
<tr>
<td>9</td>
<td>12+20</td>
<td>849.46</td>
<td>5.33</td>
<td>844.13</td>
<td>2503</td>
<td>845.00</td>
<td>12</td>
<td>0.23</td>
<td>844.77</td>
<td>846.23</td>
<td>0.64</td>
<td>18</td>
<td>843.0</td>
</tr>
<tr>
<td>10</td>
<td>12+85</td>
<td>850.00</td>
<td>4.67</td>
<td>845.33</td>
<td>2507</td>
<td>845.20</td>
<td>12</td>
<td>0.23</td>
<td>844.97</td>
<td>846.43</td>
<td>-0.36</td>
<td>30</td>
<td>843.0</td>
</tr>
<tr>
<td>11</td>
<td>14+00</td>
<td>850.70</td>
<td>4.33</td>
<td>846.37</td>
<td>2505</td>
<td>846.60</td>
<td>12</td>
<td>0.23</td>
<td>846.37</td>
<td>847.83</td>
<td>0.00</td>
<td>24</td>
<td>844.0</td>
</tr>
</tbody>
</table>

NOTE: SEPERATION is the distance between the top of duct and the bottom of storm pipe; negative # means the duct is up into the pipe.

- All ducts are too close to remain without being lowered.
- Pipe thickness taken from INDOT Design Manual Figure 28-6Q for RCP

U.S. 31 Hamilton County

116th St. & Pennsylvania St. - AT&T Indiana duct run test hole data
Review-Revise-Repeat

- Update utility information in models
- Re-plot in plans and cross sections
- Incorporate change capability into design
- Identify potential alternatives
- Develop cost-benefit scenarios
- Review changes with facility owners
- Discuss options/motivations of facility owners
Review - Revise - Repeat
Design Techniques/Alternatives

- **Designing and Constructing Around Utilities**
 (INDOT Utility Coordination website – References)
- Relocate/revise storm sewer configuration
- Revise inlet/manhole selection
- Incorporate multiple trunklines
- Add flexibility into the design
- Realign/relocate bridge piers/abutments
- Revise signal layout
- Revise retaining wall configuration
- MSE wall – excavation/strap length...support facilities
Conflict Remediation

- Design conflict structure
- Create a utility cradle
- Develop underground bridging slab
- Modify subgrade treatment selection
- Alter MOT Plan
- Hold facilities in-place during construction
- Splay duct banks
811 compared with SUE

- Isn’t 811 the same as QLB?
- The one critical question you have to answer?
LPA & Local Project Application

- **LPA Projects**
 - Still follow IDM & Associated Design Memos
 - Coordinate SUE with the Project Owner at the beginning of the project
 - Mitigates overall risk on cost and time

- **Local Projects**
 - Time is typically driving factor
 - Conflict Analysis & Matrix helps identify risk early on
Design Alternatives

- Concrete capping of shallow facilities
- Using water quality pipe for storm sewers close to water lines
- Bridging facilities through an MSE wall or retaining wall
- Spanning fuel lines
- Using curb turn outs
Project Examples

- Pennsylvania & City Center Drive
 - Carmel Bond Project
 - Locally Funded
 - Design started in March
 - Construction completed by end of 2016
 - Design alternatives were the rule, not the exception
Utilization of Conflict Matrix

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td>UTILITY PARTNER</td>
<td>CONTACT</td>
<td>CONFLICT ID</td>
<td>SHEET NO</td>
<td>UTILITY TYPE</td>
<td>OH/UG</td>
<td>MATERIAL</td>
<td>SIZE</td>
<td>TYPE OF CONFLICT</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>CATV</td>
<td></td>
<td>1627-16</td>
<td>7</td>
<td>F/O</td>
<td>UG</td>
<td>Conduit</td>
<td>2 x 1"</td>
<td>Storm</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>1627-15</td>
<td>7</td>
<td>Cable</td>
<td>UG</td>
<td>Jacketed</td>
<td>1"</td>
<td>Storm</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>AT&T</td>
<td></td>
<td>1627-14</td>
<td>7</td>
<td>Cable</td>
<td>UG</td>
<td>Jacketed</td>
<td>1"</td>
<td>Storm</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Windstream</td>
<td></td>
<td>1627-13</td>
<td>7</td>
<td>F/O (Duct Bank)</td>
<td>UG</td>
<td>Conduit</td>
<td>1"</td>
<td>Storm</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>MCI</td>
<td></td>
<td>1627-12</td>
<td>7</td>
<td>F/O</td>
<td>UG</td>
<td>Conduit</td>
<td>3 x 1"</td>
<td>Storm</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Broughhouse</td>
<td></td>
<td>1627-11</td>
<td>7</td>
<td>Cable</td>
<td>UG</td>
<td></td>
<td></td>
<td>Storm</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>CATV</td>
<td></td>
<td>1627-10</td>
<td>7</td>
<td>Cable</td>
<td>UG</td>
<td>Conduit</td>
<td>2"</td>
<td>Storm</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>City of Carmel</td>
<td></td>
<td>1627-42</td>
<td></td>
<td>Water (Unknown)</td>
<td>UG</td>
<td></td>
<td></td>
<td>Storm Str</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Vectren</td>
<td></td>
<td>1627-9</td>
<td>7</td>
<td>Gas</td>
<td>UG</td>
<td>Plastic</td>
<td>2"</td>
<td>Storm</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>AT&T</td>
<td></td>
<td>1627-43</td>
<td></td>
<td>F/O (Unknown)</td>
<td>UG</td>
<td>Conduit</td>
<td>1"</td>
<td>Underdrain</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Vectren</td>
<td></td>
<td>1627-23</td>
<td></td>
<td>Gas</td>
<td>UG</td>
<td>Plastic</td>
<td>2"</td>
<td>Underdrain</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>CATV</td>
<td></td>
<td>1627-24</td>
<td></td>
<td>Cable</td>
<td>UG</td>
<td>Conduit</td>
<td>2"</td>
<td>Underdrain</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>CATV</td>
<td></td>
<td>1627-25</td>
<td>7</td>
<td>D.O.T. F/O</td>
<td>UG</td>
<td>Conduit</td>
<td>2 x 4"</td>
<td>Underdrain</td>
</tr>
</tbody>
</table>

Instructions: Blank Matrix
Utilization of Conflict Matrix

<table>
<thead>
<tr>
<th>R/L/X</th>
<th>LINE</th>
<th>QL A OR B</th>
<th>SURVEY ID NUMBER</th>
<th>DEPTH</th>
<th>SURFACE SURVEY ELEVATION</th>
<th>UTILITY ELEVATION</th>
<th>IMPACT REQUIRED (Y/N) & EXPLAIN</th>
<th>ALTERNATIVES EXPLORED</th>
<th>RE-DESIGN ESTIMATED COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>"A"</td>
<td></td>
<td>12059</td>
<td>2.72</td>
<td>851.57</td>
<td>848.85</td>
<td>N - behind prop. storm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>"A"</td>
<td></td>
<td>12060</td>
<td>2.6</td>
<td>852.34</td>
<td>849.74</td>
<td>N - above prop. storm (1')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>"A"</td>
<td></td>
<td>12061</td>
<td>2</td>
<td>852.55</td>
<td>850.55</td>
<td>Y - in Pavement</td>
<td>Lower line w/o impact</td>
<td>(at bottom of pvm’t, w/ current design)</td>
</tr>
<tr>
<td>23</td>
<td>"A"</td>
<td></td>
<td>12062</td>
<td>2.5</td>
<td>852.90</td>
<td>850.40</td>
<td>Y - in Pavement</td>
<td>Lower line w/o impact</td>
<td>(at bottom of pvm’t, w/ current design)</td>
</tr>
<tr>
<td>24</td>
<td>"A"</td>
<td></td>
<td>12063</td>
<td>5.08</td>
<td>852.89</td>
<td>847.81</td>
<td>N - Storm Revised to avoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>"A"</td>
<td></td>
<td>12064</td>
<td>> 6.2 ft.</td>
<td>852.71</td>
<td>-</td>
<td>Did not find utility - No conflict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>"A"</td>
<td></td>
<td>12065</td>
<td>3.57</td>
<td>852.91</td>
<td>849.34</td>
<td>N - above prop. storm (0.75')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>"A"</td>
<td></td>
<td>12066</td>
<td>> 7 ft.</td>
<td>852.64</td>
<td>-</td>
<td>Did not find utility - No conflict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>"A"</td>
<td></td>
<td>12067</td>
<td>2.49</td>
<td>852.83</td>
<td>850.14</td>
<td>N - above prop. storm (1')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>12068</td>
<td>1.82</td>
<td>851.54</td>
<td>849.72</td>
<td>Y - too shallow for UD</td>
<td>no underdrain</td>
<td>none</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>12069</td>
<td>3.01</td>
<td>851.68</td>
<td>848.67</td>
<td>Y - too shallow for UD</td>
<td>no underdrain</td>
<td>none</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>12070</td>
<td>2.36</td>
<td>851.61</td>
<td>849.25</td>
<td>Y - too shallow for UD</td>
<td>no underdrain</td>
<td>none</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>12071</td>
<td>1.35</td>
<td>851.15</td>
<td>849.80</td>
<td>Y - too shallow for UD</td>
<td>no underdrain</td>
<td>none</td>
</tr>
</tbody>
</table>
Results & Lessons Learned

- Removed all Underdrain
- Utilized existing storm sewers & structures
- Minimal utility relocations
- Caution - potholing yields a “snapshot” at a particular location
Design Around

- SR 1
 - Four Interstate gas transmission lines in their own easement
 - Relocation would have been about $2 Million and the project construction cost was only $2.9 Million
 - Depths were established and the storm sewer was designed around those gas facilities
Design Around
Design Changes

- **Small Structure SR 18**
 - Wing wall Geometry
 - By changing the angles on the wing walls we were able to pull back away from a 8” natural gas main
Design Changes
Unique Special Provisions

- **Electric Transmission**
 - Relocation can sometimes be cost prohibitive
 - When this occurs we discuss the possibility of outages
 - Upside- Economic feasibility
 - Downside- May cause off hours construction work and may be weather dependent
When You Shouldn’t Design Around Utilities

- **Aging Facilities**
 - How old is that sewer main?
 - Will I not get my return on this investment?

- **Constructability**
 - Can I use a vibratory roller over that gas main?
Summary

- **Original goal?**
 - Successful delivery of our proposed project
 - On Time
 - On budget
 - Designing around utilities
 - Establish *viable* options to deliver the project
 - Keys to success
 - Early communication
 - Design flexibility
 - Develop a decision matrix to be able to make informed decisions
Question and Discussion
Thank you