Post Tensioning Lessons Learned

Presented by Brian Frederick, PE and Jay Ridens, PE
Post Tensioning Project Examples
Post Tensioning Project Examples

- US 31 over Kern Road
Post Tensioning Project Examples

- US 31 over Kern Road
Post Tensioning Project Examples

- **US 31 over Kern Road**
Post Tensioning Project Examples

- Northbound SR 37 over I-69
Post Tensioning Project Examples

- Northbound SR 37 over I-69
Post Tensioning Failures
Post Tensioning Failures

Anchor Head

Trumpet area
Post Tensioning Failures

- Partially Filled Grout
- Strands with Pitting Corrosion
- Duct Tape
- Grout Leakage
Post Tensioning System
Post Tensioning System

[Diagram of Post Tensioning System]

NOTE: Other requirements not shown for clarity.

NOTE: Other requirements not shown for clarity.

NOTE: Other requirements not shown for clarity.

NOTE: Other requirements not shown for clarity.
Post Tensioning System
Post Tensioning System

Anchor Casting

Spiral Reinforcement

Trumpet
Post Tensioning System

Design
Post Tensioning System

SOUTHBOUND PIER 2 – POST TENSIONING GEOMETRY SCHEDULE

<table>
<thead>
<tr>
<th>TENON LOCATION</th>
<th>0.00</th>
<th>1.75</th>
<th>3.25</th>
<th>5.25</th>
<th>8.25</th>
<th>11.25</th>
<th>18.375</th>
<th>21.75</th>
<th>24.25</th>
<th>26.25</th>
<th>29.25</th>
<th>31.75</th>
<th>34.5</th>
<th>35.75</th>
<th>38.5</th>
<th>40.75</th>
<th>42.75</th>
<th>45.75</th>
<th>48.25</th>
<th>50.75</th>
<th>53.75</th>
<th>54.5</th>
<th>56.5</th>
<th>58.5</th>
<th>60.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-1</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-2</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-3</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-4</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-5</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-6</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-7</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-8</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-9</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-10</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-11</td>
<td>0.75</td>
</tr>
<tr>
<td>PT-12</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Notes:
- Distances from left end of pier cap.
- Location of 0.00 is defined as mid-length of pier cap to centerline of deck.
- Distances from left end of pier cap.
- Locations from 0.00 to 54.5' are shown.

UNIONED Consulting

1625 N. Post Road
Indianapolis, Indiana 46219

Phone: 317-805-2958
Fax: 317-805-2999
Web: www.scholly.com

INDIANA DEPARTMENT OF TRANSPORTATION

POST TENSIONING DETAILS

U.S. 31 OVER KERN ROAD
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
</tr>
<tr>
<td>Data 6</td>
<td>Data 7</td>
<td>Data 8</td>
<td>Data 9</td>
<td>Data 10</td>
</tr>
<tr>
<td>Data 11</td>
<td>Data 12</td>
<td>Data 13</td>
<td>Data 14</td>
<td>Data 15</td>
</tr>
<tr>
<td>Data 16</td>
<td>Data 17</td>
<td>Data 18</td>
<td>Data 19</td>
<td>Data 20</td>
</tr>
<tr>
<td>Data 21</td>
<td>Data 22</td>
<td>Data 23</td>
<td>Data 24</td>
<td>Data 25</td>
</tr>
</tbody>
</table>

Southeast Pier - Post Tensioning Geometry Schedule
Construction Sequencing
Construction Sequencing
Beam Erection
Construction

- Beam Erection
Installing Ducts

- Connection for Grout Port
- Coupling with Heat Shrink Sleeve
Installing Ducts
Installing Reinforcing
Installing Reinforcing
Installing Reinforcing
Thermal Control Plan
Tendon Installation

TENDON TRANSITIONS
Scale: $\frac{1}{2}'' = 1'-'0''$

- Contingency Duct
- Dead Load Tendons
- Live Load Tendons
Tendon Installation
Tendon Installation
Tendon Installation
Tendon Installation

Dywidag Systems International USA Inc.

JACK CALIBRATION FORM

JACK TYPE: Tenna 2600Kn
THEO. RAM AREA: 65.21
JACK ID: 00109
COMPUTED RAM AREA: 84.35

PRESSURE GAUGES:
MASTER GAUGE: 5719868
SERVICE GAUGE CALIBRATION STANDARD: ANSI 45.2

SERVICE GAUGES: GAUGE 1: 6-20754
GAUGE 2: 6-20735
GAUGE 3: GAGE 4:

LOADCELL:
CALIBRATION STANDARD: ASTM E4 AND E74

METER NUMBER: DS800K-01
METER MFG: U of I

CONVERSION EQUATION: AVG. X 1 + 0

Temperature: 68
Humidity: 58%

Calibration Location: DYWIDAG SYSTEMS INTERNATIONAL, INC.

Calibrated By: Greg Wilkinson
Calibration Firm: DYWIDAG SYSTEMS INTERNATIONAL, INC.

Verified By: Gary Smith
Verification Firm: DYWIDAG SYSTEMS INTERNATIONAL, INC.

Customer: Reth - Riley Construction Co
Job Number: J088716

GAUGE CALIBRATION FORM

GAUGE TYPE: 6" 10000 PSI GAUGE
CAL ID: 12085
GAUGE ID: 6-20754
DATE: 1/13/2014

Special Note:
TEMP: 68

MASTER
TEST RUN 1
TEST RUN 2
TEST RUN 3
AVG. READING

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>7000</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
</tr>
<tr>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
</tr>
</tbody>
</table>

CUTOMER: Reth - Riley Construction Co
JOB NUMBER: J088716

METER INSTRUMENT ID NO.: 96609

DESCRIPTION: DEADWEIGHT TESTER

ALTHOUGH RAM/GAUGE COMBINATIONS ARE CALIBRATED AS A UNIT, GAUGES ARE CALIBRATED INDEPENDENTLY, AND ARE USABLE ON OTHER DYWIDAG SYSTEM RAMS, WHEN THIS DOES NOT CONFLICT WITH PROJECT SPECIFICATIONS.

INSTRUCTIONS:

- 1. Each gauge must be calibrated to a master instrument that has been calibrated and traceable to NIST Standards.
- 2. Each gauge must be calibrated to meet or exceed ASME STD. 40.1.
- 3. Each gauge will be used in a jack calibration.
- 4. Each gauge will be calibrated before being sent to the customer as a replacement gauge.
- 5. Connect the gauge to the testing machine.
- 6. Pressure the gauge in 10 increments throughout it’s entire range, 3 times.
- 7. Record the gauge and test standard readings.
- 8. If gauge is in need of adjustment, consult the manufacturers product manual contained in the DSI equipment calibration and standards book.
- 9. Form is to be used by Equipment Dept. staff in the calibration of hydraulic gauges that will be used by the customer.
- 10. Form is to be completely filled out.
- 11. Form is to be filled in the gauge calibration file according to it’s I.D. No. and with any associated equipment file. One Copy to customer.

Report Created By: Russell Galazinski
Report Number: 11-3-EDTS-R3 Revised Date: 4-8-00
Tendon Installation

- Stressing Tendons
Tendon Installation

- Measuring Elongations
Stressing Tendons – Field Form

Stressing Record

Customer Name: RIETH - RILEY
Project Name: US 31 OVER KERN RD.
Area: SOUTH BOUND RAMP
Drawing Number: PT. 11
Project Number: J088710
Overstressed Gauge Pressure:
- **Cap 1:** 20% = 1100 PSI
- **Cap 2:** 20% = 1200 PSI
- **Cap 3:** 20% = 5000 PSI
Strand/Bar Size: (19) 0.6"
Jack Number: DS1 2308 / 6-20051 / 6-20050
Jack Ram Travel (in.): 138.31

Computed Elongation Table

<table>
<thead>
<tr>
<th>Location</th>
<th>Place in Bundle</th>
<th>Mark</th>
<th>Stressing Length</th>
<th>Type</th>
<th>Maximum</th>
<th>Target</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIER CAP 2</td>
<td>T1</td>
<td>←</td>
<td>110°</td>
<td>LE/DE</td>
<td>6 3/8</td>
<td>6 3/4</td>
<td>5 3/4</td>
</tr>
<tr>
<td>T3</td>
<td>←</td>
<td>6 3/8</td>
<td>6 3/4</td>
<td>5 3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>←</td>
<td>6 3/8</td>
<td>6 3/4</td>
<td>5 3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>←</td>
<td>6 3/8</td>
<td>6 3/4</td>
<td>5 3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIER CAP 3</td>
<td>T1</td>
<td>←</td>
<td>110°</td>
<td>LE/DE</td>
<td>7 3/8</td>
<td>7</td>
<td>6 3/8</td>
</tr>
<tr>
<td>T3</td>
<td>←</td>
<td>7 3/8</td>
<td>7</td>
<td>6 3/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>←</td>
<td>7 3/8</td>
<td>7</td>
<td>6 3/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>←</td>
<td>7 3/8</td>
<td>7</td>
<td>6 3/8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actual Elongation

- **Before:**
- **After:**
- **Total:**
Tendon Installation

Safety
Failed Strand
Grouting Operation
Keys To Successful Grouting

– Communication

– HAVE A PLAN – Grout Plan

 • Contractor to submit a Grout Plan before work starts
 • What does that include?
Grouting Operation

- Grout Plan
 - What’s in the Grout Plan?
 - Materials used in grouting
 - Equipment
Grouting Operation

– What’s in the Grout Plan?

• Grout mixing and pumping procedures
• Direction of grouting
• Inlet and Outlet sequence
Keys To Successful Grouting
Keys To Successful Grouting

- Pre-grout meeting with all parties involved
- Know what to do if there are issues during grouting
 - Vacuum grouting
 - Drilling ducts and inspecting for voids.
 - Flushing with water
 - Use of the contingency tendons
Grouting Operation

- Ready to Grout
Keys To Successful Grouting

- Grout Testing

- Flow Cone Test
Keys To Successful Grouting

- Mud Balance Test
- Strength Test
Keys To Successful Grouting

- Be prepared
 - Testing Equipment
 - Plenty of 5 gallon buckets and rope
Keys To Successful Grouting

- Readily available water source
- Walkie-talkies
Grouting Operation

- Grouting Conditions
Grout Field Records

<table>
<thead>
<tr>
<th>PROJECT LOCATION</th>
<th>US 31 OVER KERN RD.</th>
<th>SOUTH BEND, IN</th>
<th>LOCATION</th>
<th>SOUTH BEND, IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NO.</td>
<td>JD80710</td>
<td></td>
<td>PROJECT NO.</td>
<td>JD80710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>6-30H</td>
<td>6-30H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAY</td>
<td>Pier Cap 3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TENDON</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPS & VENTS</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKED</td>
<td>(Y/N)</td>
<td>(Y/N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>Trial Run</td>
<td>Ambient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIL RUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEATHING</td>
<td>GROUT MIX</td>
<td>W/C RATIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION GROUTING</td>
<td>Temperature</td>
<td>Efflux Time</td>
<td>Inspection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSTGROUTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/C Ratio</td>
<td>95</td>
<td>35</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Efflux Time (in)</td>
<td>~85 sec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENTS</td>
<td>10.4</td>
<td></td>
<td>10.6 on backsides</td>
<td></td>
</tr>
<tr>
<td>SHELTING</td>
<td>~85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- **Using Euclid Cable Grout PTFE.**
- **Water Tolerance: 1.5-1.7 Gal/Bag**
- **5 Bag Batches:** 7.5 - 8.5 Gallons Per Batch.
- **H.O. Temp:** ~46°F
- ~50 PSI Working Pressure.
- **Cap 3:** 14 batches, 9 tendons = 17.5 bags/ton
- **Cap 2:** Same on Cap 2.
Issue prior to grouting live load tendons
Pour Back
References

– Post Tensioning Institute “Specification for Grouting of Post Tensioned Structures”

Thank You!

For additional questions, please contact:

Brian Frederick, PE
O: 317-895-2585
brianf@ucindy.com

Jay Ridens, PE
O: 317-895-2585
jayr@ucindy.com

1625 N. Post Rd.
Indianapolis, IN 46219
www.ucindy.com