April 2003

Bet You Missed It -- Press Clippings -- In the News -- Carefully Selected by Your Crack Team of News Sleuths

Pamela M. Rose
University of Buffalo, pmrose@acsu.buffalo.edu

Follow this and additional works at: https://docs.lib.purdue.edu/atg

Recommended Citation
DOI: https://doi.org/10.7771/2380-176X.4047

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
like fund code, location code, and grid or branch copy information can be output in the electronic order. Some systems’ electronic orders require an ISBN, and some do not. Some allow the library to pick the ISBN to be transmitted in the order, but most just transmit whichever ISBN is listed first in the bibliographic record. Each system records and outputs vendor account information in different ways, some requiring multiple vendor records for the same vendor if the library orders on multiple account numbers. Thus, it’s important to review the data elements output in an electronic order and confirm that they will meet your requirements.

With electronic invoicing, the library faces similar questions and changes. The new system may allow for invoicing data to be embedded in a MARC bibliographic record. Invoicing may be moving from one standard used by the former system, such as X12, to another, such as EDIFACT. What is the invoicing matchpoint that the new system is expecting to find in the electronic invoice? Is that matchpoint solely a system-proprietary number like a PO number or line item number, or can it be a number supplied by the material vendor? For libraries with large approval plans, where there is no pre-existing purchase order in the library system, an ability to accept book vendor-supplied invoicing matchpoints is critical.

For MARC records, a more complex set of questions emerge, due to the multiple ways that libraries use MARC records. Can the system accept pre-order or selection records generated from the book vendor’s online database? If so, what are the duplication control routines, and how complicated is it to finish off the order and transmit back to the book vendor? If the library chooses to order on the book vendor’s online system, can the library’s system accept electronic order confirmation records, which construct a copy of the bibliographic and order data in their local system? For cataloging records, what is the overlay matchpoint? The biggest area of variability we see is what sort of order, invoice, and barcode data can be embedded in the MARC record. If the library’s system allows for the acceptance of order or invoice data in a MARC record, are the field mappings for the data prescribed by the systems vendor, or flexible, to be agreed upon by the library and book vendor? If the library receives both bibliographic data and invoicing data from the materials vendor, will the new system be expecting one integrated file or two separate ones?

Finally, the mechanics of file moving and loading can vary greatly from system to system. Are file delivery and pickup processes automated or manual? Which library department is in control of file exchanges: Technical Services or Systems? How complicated is the setup process, and how well-documented by the systems and materials vendors? What is the testing process? It’s been our experience that some libraries can set up electronic ordering in a matter of minutes, output a test file or two, and then go into regular production mode. For others, it can take several months, depending on the complexity of the arrangement and the maturity of the systems and materials vendors’ capabilities.

One of the most critical steps is analyzing any existing custom programming, and whether it will transition to the new system or not. Many libraries developed internal programs to overcome shortcomings of older systems, or to enhance workflow efficiencies. Some libraries have grafted electronic ordering programs onto their system. Others have created custom programs to handle payment voucher data from their library system to their parent body’s accounting system. With the system migration, chances are these custom tools will either become obsolete or require significant rewriting.

As a library enters a transition period between old system and new, there are a number of actions they can undertake to minimize transition woes. We recommend that libraries minimize the number of open monographic orders they’ll have to migrate between systems. Migrating and setting up serial check-in records tends to be a major project, so the fewer the open monographic orders to have to deal with, the better. We see libraries scheduling transitions at different points in their fiscal years. For libraries which transition in the middle of fiscal years, and have financial data split between their old and new systems, the book vendor’s online system may provide expenditure and other financial reports to help span the gap.

Most libraries have a transition blackout period lasting from a week or two to several months, where routine technical services work is difficult or impossible. During that time, the library must determine whether they will suspend various tasks or create workarounds. Book vendors can usually suspend approval plans or other shipments for some period of time, as long as we have reasonable notice. If the library opts to continue receiving shipments, but cannot receive items on the new system during the blackout period, then additional storage locations or shelves may be needed within the library. If a library will not be able to load cataloging records or electronic invoicing for a period of time, then they may need to arrange with the book vendor to store the files longer than normal, or else pick up the files and store them locally until they can be loaded. If a library will be unable to pay invoices for some period of time, it’s imperative to notify the materials vendor; some libraries make prepayments or set up small deposit accounts to cover the transition period.

Looking ahead, once the library is up and running on the new system, if desired workflows are not supported, then the library can work with the systems and materials vendors to try to develop system enhancements. Both systems and materials vendors typically have long development lists which must be prioritized, but we’re always seeking to make our systems work better for our customers.

The selection and implementation of a new integrated library system is one of the larger, more expensive decisions that libraries face. In formulating RFPs, and then selecting and implementing the new system, we hope you will take advantage of the library’s primary materials vendors as a source of information on the system’s proven capabilities and as a gateway to other libraries who have faced similar questions. We promise to be close at hand.

Bet You Missed It

Press Clippings — In the News — Carefully Selected by Your Crack Staff of News Sleuths

Column Editor: Pamela M. Rose, M.L.S. (Web Services & Library Promotion Coordinator, University at Buffalo; Phone: 716-829-2408 x129; Fax: 716-829-2211) <pmrose@acsu.buffalo.edu> wings.buffalo.edu/~pmrose

IRRESISTIBLE QUOTE

by Bruce Strauch (The Citadel)

In re Congress extending existing copyrights for twenty years: "If Congress believes long-dead artists can be retroactively incentivized to create, that’s OK."

MICROBE MANIA

by Pamela M. Rose (University at Buffalo)

Collect ‘em and trade ‘em with your friends! The latest educational tool modelled after hockey or baseball cards are MicrobeCards, created by University of Alberta medical microbiologist professor Mark Peppler. Each set includes 106 cards for disease organisms and their vital statistics, color coded for Gram-positive or -negative bacteria, viruses, fungi, and parasites. Rejected as “too educational” by a sports card producer, the American Society for Microbiology has already sold more than 1,500 sets.

<http://www.against-the-grain.com>
COMMUTER PHYSICS
by Pamela M. Rose (University at Buffalo)

Cartoons and physics definitely mix on Massachusetts city buses! Retired Amherst college physics professor Robert Romer and artist Bruce Aller teamed up to post physics problems on buses to stimulate the public mind. Problems include such puzzles as whether the water level will go up or down if a weight is thrown out of a boat, or if a box of flying bees weighs less than one with the bees at rest. Suggestions for home experiments can be found at www.amherst.edu/~physicsqaquila. The program is so successful that readers are offering their own puzzles such as whether jumping up and down will reduce your chances of injury in a falling elevator.

VIRTUAL PHOENIX
by Pamela M. Rose (University at Buffalo)

Will the dream of instant access to every book in the world be realized? That’s the ambition of the Alexandria Library Scholars Collective, who hope to replicate the ancient wonder in a digital world by making virtually all of the world’s books available at a click of a mouse. The ambitious initiative has scanned about 100,000 pages of the Alexandria Library’s collections, and has been promised access to one million books now being scanned at Carnegie Mellon as well as a whole library of crumbling medieval manuscripts in a monastery in Timbuktu in Mali, Africa. The CyberBook Plus software, designed by an American artist, "includes colorful virtual auditoriums, classrooms and offices with lamps where scholars can exchange information, teach classes or hold office hours. The rooms and lecture halls can easily be customized for the universities that choose to use the library’s software for remote learning."

SEMANTICS OF SCIENCE
by Pamela M. Rose (University at Buffalo)

Although preprint archives and search engines like Google have allowed scientists unprecedented connectivity and ability to locate research areas, the Web is severely limited when it comes to the integration of information from multiple sites or nontextual information. The future of "e-Science" will depend on new Web technologies like the "Semantic Web" which is being designed to improve communications between different field terminologies, to extend the interoperability of databases, to provide tools for interacting with multimedia collections, and to provide support of "agent-based" computing in which people and machines work more interactively. Essentially, it unites information across disciplines through meta-description to connect disparate research areas. The success of the Semantic Web will depend heavily on open and unrestricted access to both scientific research and computer science programming.

UPSIDE HAS NO DOWNSIDE
by Pamela M. Rose (University at Buffalo)

Leaders in the life sciences have issued a set of rules for the sharing of data and research material in a report issued by the National Academy of Sciences. Their "Universal Principle of Sharing Integral Data Expediently", or UPSIDE, is designed to get "universal adherence" so that any scientist has ready access to data and materials needed to "verify or replicate" a published claim. Questions about enforcement still remain, however, editors of key journals might have the best leverage.

Biz of Acq — Acquiring Pictures in the Digital Age

License Issues in the Acquisition of Slides, Digital Images, and Digital Reproduction Rights for Two Digital Image Projects at Western Michigan University

by Miranda Howard Haddock (Visual Resources Librarian, Western Michigan University) <miranda.haddock@wmich.edu>

Column Editor: Michelle Flinchbaugh (Acquisitions Librarian, Albin O. Kuhn Library, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250; Phone: 410-455-6754; Fax: 410-455-1598) <flinchba@umbc.edu>

Column Editor’s Note: "Try to fill any requests for slides with digital slides," my library director told me. But librarians in medium-sized libraries, such as me, do not have an expert such as Miranda Howard Haddock, Visual Resources Librarian, on hand. In this article, Miranda shares her experiences in developing collections of digital slides at Western Michigan University. Miranda’s article will help me and other librarians get started purchasing digital images. —MF

Introduction

Advances taking place in digital imaging technology and projection are changing the way libraries acquire images for classroom and research use. In the teaching of the visual arts, and other subjects where material culture is at the heart of the discipline, pictures of objects are used as surrogates for an actual artifact. Pictorial surrogates allow instructors to talk about a work of material culture without having the actual piece present. Pictures and their reproductions allow copies of the works to be distributed to a wide audience either by printing reproduction technologies or projection. In the last decades of the nineteenth century and the first half of the twentieth century, lantern slides carrying black and white or hand colored surrogate images were projected in classrooms. Lantern slides were available from publishers or made by lecturers themselves through copy photography. Projected slides allowed images to be distributed to more than one person at a time. Projection of images for educational use was updated when color 35mm slides films improved. During the middle decades of the twentieth century the practical materials, manageable size, and reasonable price made using and collecting slides sensible. 35mm slides were acquired in the same way as lantern slides. Copies of works were made and distributed within the educational community under the umbrella of fair use. Rather than dispose of the images after one use, these slides became the mainstay of art and art history slide collections and visual resources libraries.

Enter the advent of the digital imaging and...