ONIX -- A Transforming Standard

Michael Holdsworth

Cambridge University Press, myh@cambridge.org

Follow this and additional works at: https://docs.lib.purdue.edu/atg

Part of the *Library and Information Science Commons*

Recommended Citation

DOI: https://doi.org/10.7771/2380-176X.3979

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
ONIX – A Transforming Standard

by Michael Holdsworth (Press Business Development Director, Cambridge University Press) <myh@cambridge.org>

The new superstores of the 1990s (Borders and Barnes & Noble in the USA; B&Qs and Waterstones in the UK,) discovered a simple truth. The greater the range of titles offered, the greater the sales. Critical to this growth was the serendipity of “found” sales – when a bookbuyer comes into a shop for one book and leaves with three. Superstores replaced cramped uniformity with spacious diversity; now amazon.com, the “world’s biggest bookstore,” expands those choices to every available title. Previously hard-to-find backlist is taking an increasing share of total sales away from “top-twenty” bestsellers.

Internet bookselling created almost overnight a need for better descriptive product information. It was a need that the publishing industry simply had not recognised before and which it had no way of satisfying. A new standard for the exchange of bibliographic “metadata” – industry-wide agreement both on the data structures, and on the messaging protocol – was urgently required. Enter ONIX — the fruit of parallel transatlantic initiatives, which brought together the AAP, the Book Industry Study Group and the UK’s Book Industry Communications (BIC) under the umbrella of EDIEurope, the international book industry standards body. The first issue of the ONIX standard appeared in late 1999.

Full information on ONIX can be found at www.editeur.org.

ONIX represents the most transforming new standard in our industry since the ISBN. The ISBN may be a deceptively simple and undervalued identifier, but it has for nearly forty years formed a stable business base for discovering, organizing, sharing, trading and profiting from content. The lingua franca of any standard builds and grows partnership and community — and there is perhaps no global partnership as unified by a single standard as the community of publishers, booksellers, library vendors, wholesalers, librarians and scholars.

ONIX is a standard written in XML (Extensible Markup Language), a near-relation of SGML and HTML. Simply put, this means that it is plaintext based, consensual, universal, independent of operating system, application or platform. Which makes it affordable — and, to some extent at least — as readable, and as easily generated, by people as it is by machines. Simple marker tags within the data (expressed as angle brackets) identify when individual data fields start (<>) and end (</>), and are named according to ONIX rules. Think of using Styles (italic, bold) in Microsoft Word. Thus:

<EA13>9780521645959</EA13>

<ProductForm>DB</ProductForm>

<ProductFormDescription>Paperback</ProductFormDescription>

<DistinctiveTitle>Capitalism Russian-Style</DistinctiveTitle>

This is no more or less complicated than clicking on, for example, an italic style in Word, then clicking on it again when you want to switch it off. All Word is doing is placing invisible tags at either end of the text.

What you ask a computer to do with this tagged text, or how you map it into a database, is up to you. While this means that ONIX is first and foremost a messaging standard, many publishers, particularly those building bibliographical databases for the first time, have taken ONIX as the basic design architecture and data dictionary. This has certainly been the case at Cambridge, where a suite of customised product and bibliographical databases have been reconfigured to match the ONIX data structure. The issue is usually one of ONIX either splitting or lumping data elements that may not have been separated in the original databases. When these older databases run templated desk-top publishing outputs — for example, for printed catalogues and catalogues, or form the dynamic source-data for the publisher’s Web catalogue or e-commerce, the necessary adjustments can require considerable care in the implementation.

Since its launch in 1999, wider possibilities of ONIX as a single messaging possibility for product information have been recognised. While constantly retaining a commitment to backward compatibility (to enable usability across revised versions of the standard), ONIX has been extended to encompass video-cassette/DVD “biblio,” and eBooks. Minor tweaks to the structure have been incorporated to gain adoption of the new standard, beyond the English-speaking world, in France and in Germany, taking ONIX International from a multinational to a multilingual context. Discussions are underway.

The Amazon Effect

from page 18

[Read “The Virtual Approval Shelf: A Look Towards the Future?, pg. 28”].

• Stephen Pugh of YBP’s International Division writes as an approval profiler with many years of experience with selectors in US and International libraries. Selectors, he argues, barely have time to consider the paper and electronic announcements they now receive — will anyone actually embrace “slips on steroids?” [Read “The Decline of the Poultry Selector,” pg. 32].

Some Final Ruminations:

In this speculation about the virtual approval plan, we’ve deliberately focused on what may be possible, perhaps stretching credulity. In our temporary suspension of disbelief, we’ve ignored some very real questions, which we must at least acknowledge in closing:

• The timeliness of data is critical in new title selection, and many of the data sources discussed still rely upon a published copy of the book to capture cover images, tables of contents, etc. The best hope for improved timeliness rests with publishers, and the degree to which a critical mass of them implement ONIX, with as much information as early in the publishing cycle as possible. That ONIX data may then be imported into vendor systems, or accessed by a link to the publisher site.

• It would be possible to test the timeliness of extended metadata for selection very easily. Identify the 800 or so titles profiled in a typical week by approval vendors. Search each of them in a defined set of extended metadata sources to determine what percentage link to sufficient information for a selection decision that week. Any library school students looking for an interesting project?

• Vendor systems such as GOBI or Collection Manager play a significant role in approval selection in many libraries. For these services to thrive in a virtual approval environment, their systems may need to become OpenURL-compliant — certainly as target resources, perhaps as service providers.

Perhaps the biggest question of all, though, is an economic one: Is it sufficiently in anyone’s interest to assemble all the pieces? If we build it, will they buy?

<http://www.against-the-grain.com>
with book industry communications bodies and publisher/bookseller associations as far afield as Korea and Argentina.

National libraries, and in particular the Library of Congress and the British Library, have also expressed interest in using ONIX as a base data-set for e-CIP, and to accompany the legal deposit of print or digital material. National ISBN agencies are exploring ONIX as a core data load to accompany SBN issue.

Nor has the world of serials been neglected. One of the most powerful features of ONIX is its granularity. The data-set can be optionally applied at any level of content, from book series, to book title, to individual chapter (and, if required, to sub-chapter level) — to subheadings, paragraphs, or even sentences. For books, this offers users true chapter metadata for the first time, with all the benefits that this will offer for digital or print-on-demand or pay-per-view chapter (or other fragment) sales over the Web, for digital course-pack assembly, or for permissions clearance. The parallels here with the traditional journal SGML header file are self-evident, and plans are well in hand for an extension of ONIX to manage serials at the journal title, journal issue and individual article level. There are a number of papers describing the ONIX for Serials initiative available as downloads from www.editeur.org. For the first time, ONIX can offer the real possibility of uniform and interoperable books and journals information.

It is ONIX's inherent power to bridge content types and information communities which most engages its supporters. Notwithstanding the fact that the standard was designed mainly by publishers and booksellers to facilitate Internet trading, ONIX is just as relevant within library applications.

After all, why should librarians and students, now daily accustomed to the rich presentation of title information on amazon.com (and the other Internet retail majors) or on the better publisher sites, settle for any less from their library OPAC? Or to turn the question around, what data elements — a detailed book description, author authority and biography, full structured table-of-contents, jacket illustration, other books by this author, full LOC data and CIP, a selection of the standard BAC/BIC/LOC subject-codings and Deweys, sample text, book reviews, prizes and awards won, soundclips, author-interviews, market rights and territorial restrictions — which of these could possibly be deemed inappropriate for library patrons? Why stop there, why should not more technical information — book dimensions, weights, font and production data — be made available for logistics people or design aficionados? We know that library patrons, faced with a minimalist OPAC title entry, will often go in any case to publisher and retailer Websites for just this sort of extended information. Why should it not be our mutual intention as an industry to seek to make all descriptive data into one common similar look-and-feel throughout bookstore, publisher, wholesaler, library vendor, library Websites and catalogues — an interface which is not just the skeletal identifier that is a MARC record, but a genuine tool for discovery and research? For books and for serials alike; for book chapters and for journal articles; for video, sound and e-content. ONIX provides that key.

Which is not, of course to say that an ONIX record need necessarily be as rich or packed as the previous paragraph might suggest. The majority of the data elements are optional, and it is expected that a core set of mandatory elements can be agreed, which can form the basis of industry accreditation (as "ONIX-compliant"). In the UK, BIC has had considerable success in promoting the certification of publishers as BIC-Basic compliant, able to deliver a core set of bibliographic and availability fields at a number of key points in the publishing process.

The big cultural change implied by the new ONIX is that it pushes responsibility for bibliographic data back upstream to publishers, and challenges everyone else downstream in the information supply chain (booksellers, vendors, librarians) to trust those publishers to manage this properly. It remains to be seen whether publishers will rise to that challenge, and where this will leave those in the business of aggregation.

There can be no doubt that the current metadata supply chain is seriously flawed. Most databases are populated by unsystematic multiple feeds both from manual entry and from data "casedades" as computers (at the bookstore, at the aggregators, at the vendors, in the libraries) poll each other to fill gaps in their data-sets by combining data, often applying arcane rules about which entry should trump or overrule another. Where errors do arise it can be extremely difficult to trace the cause.

Less error-prone, but hugely expensive and wasteful is the process of physical "book-in-hand" processing. This can extend to any number of processes: manual transcription of title-page and front-matter, retyping of table-contents, physical weighing and measuring, digital scanning of jacket art or back-matter, author-authority research, page and illustration counting/analysis and so on. We sometimes wonder how many times a Cambridge title is subjected to these identical processes within the 150 or so countries in which we sell our books. And self-evidently the book-in-hand process, being manual, is susceptible to error; and by definition, since it requires the actual book, it is always late, often too late to be much use for the selection process.

It is equally self-evident that all this information is available from the publisher the horse's mouth — unmediated, and without introduced error, and at the earliest possible point in the production workflow. ONIX messaging, either directly from the publisher to the user, or channelled unedited through data aggregators, opens up a world of new opportunities for a faster, cheaper, more accurate information supply-chain.

The step from a rich ONIX data-flow to "virtual approval" is straightforward. ONIX provides an effective surrogate for front-matter, and allows for substantial sample text elements. Most academic publishers have long ceased being coy about using sample chapters (or even, in a controlled manner, the full text) on the Web for marketing within their own catalogue sites. Cambridge allows library vendors direct access to PDF chapters on its own site, fully integrated with the vendor's own collection management offering, freely accessible both to the vendor's own approval selectors, and to their librarian customers. And all of this can be made available months before the first copy of the book is even printed.

In 2000, Cambridge launched its path-breaking DataShop facility: http://datashop.cambridge.org which provides a easy-to-use, self-service data delivery service with free access to anyone (booksellers, researchers, librarians, data aggregators, individuals) who wants to benefit from rich, 100% current, authoritative information on our publishing. DataShop offers a range of easy downloads from simple price-and-availability, to jacket files, to full-blown ONIX; anyone reading this as an ONIX novice is welcome to try the service and email themselves a trial file or two! Cambridge sees clear advantages in moving away from pushing data out, to having users pull information in, customised to their personal needs, and scheduled according to their own individual interval preferences.

continued on page 26
The Virtual Selection Process –
The ILS Perspective

by Ted Fons <tfons@iii.com>

Introduction

Book reviews, book jacket images, synopses, tables of contents, author biographies, publisher profiles, up-to-the-minute vendor inventory snapshots, first chapters, and many other tools of the selection process can be made available to library selectors and collection development staff via the Web in an integrated way. Integrated in the sense that while the selector is considering a new title, these extended metadata elements can be consulted from a single integrated library system interface and a Web browser.

Imagine a selector retrieving a title under consideration for purchase inside the Integrated Library System (ILS). At the time that the title is retrieved, the ILS can build a set of hyperlinks to all of the resources mentioned above and launch the Web browser when any of the links are selected. To determine the scope of the title under consideration, the selector might want to click on the link for a synopsis offered by Informata. The selector might be curious about the background of the author, so a Bowker’s Books in Print link is selected to retrieve an author biography. To dig deeper into the intellectual content of the work, the selector might refer to the table of contents, or the first chapter of the book offered by Syndetics Solutions. For a title published outside of the United States, Bowker’s Global Books In Print on the Web might be used. When other sources fail, a Google search might be used to cast a wider net. Because this selector is involved in a cooperative collection development project, the next choice might be a direct search link to the Web-based catalog of a nearby college, which is also the selector’s collection development partner institution. Finally, when the selector is getting closer to a selection decision, Baker & Taylor’s Web-based inventory service might be consulted to determine if the title is currently available from B&T’s local distribution warehouse. All of these sources are available with content-specific hyperlinks from within the ILS. Many ILS vendors are offering links from the patron-focused Web OPAC. Innovative Interfaces is offering these links in both the patron and staff interfaces.

Sound judgment, subject expertise and experience are still among the most important characteristics of a selector, but convenient access to the enormous variety of resources now available on the Web adds efficiency to the process of making an informed selection decision. Linking to these sources from the ILS makes sense because the selector already uses the ILS to check for local holdings and may refer to the acquisitions system to check on the availability of money for new purchases. The scenarios described above work for both an approvals review workflow where bibliographic records have already been loaded onto the ILS for bibliographic control and payment purposes, and in the firm order workflow where the selector is using the ILS to determine local holdings. In the case where the title is already held by the library, a trained selector can refer to circulation statistics to make a decision about ordering additional copies of a title. In the case where the title is not held locally, the ILS can also make connections to co-op.

ONIX
from page 24

There are two larger questions, both addressed I am sure within this special issue of ATG. First is whether booksellers, vendors and libraries will ever want to take individual publisher feeds, rather than rely on aggregators. The Cambridge view is to hope for a mixed economy, where a few (maybe a dozen in each country) of major publishers will deal with a few major users (again, maybe a dozen), while most data exchanges will continue within aggregated services. Second is whether the target, in the library sector, for such new publisher ONIX services, is actually the vendor’s approval specialist or the individual acquisition librarian.

There is one final dimension — which I will call “intrinsic” metadata. Most (nearly all...) book MARC or ONIX elements are at the same time metadata and content. Title, subtitle, series-name, author-name would be obvious examples, but the same is true of table-of-contents, book description (as jacket “content”) and all the text on the copyright/imprints page (dates, imprint, CIP and all its LOC/BCL coding and components). These are the content elements which are transcribed into metadata at book-in-hand, but they are actually one and the same thing.

Cambridge, in common with many publishers, is now “typesetting” using XML, so that each book becomes, effectively, a consistently structured database, with tagged elements that recall the structure of Microsoft Word mentioned earlier in this piece. Development work is in progress at Cambridge electronically to extract the elements needed by ONIX as a routine part of the production process, thereby obviating any duplication of data entry at the publisher end and eliminating transcription error. With ONIX being “harvested” dynamically from work-in-progress, we can now envisage a situation in which a proofreading correction to digital “galleys” made by a copy-editor — perhaps to a chapter title — would be reflected in real time on Cambridge DataShop outputs, and via ONIX messaging instantaneously to the wider community of our bibliography consumers worldwide. Richer data, months earlier than is possible today, and with 100% accuracy (or at least a 100% match with the book itself!)

Savvy publishers will soon be able to offer this scale of virtual experience, either on their own Website, or via ONIX feeds supplemented with sample text access, with these feeds enriched with all the LOC and BL CIP components and author-authority. What value-added elements will then be left for the vendors and aggregators? Even subjective elements, such as subject-coding (on any choice of industry-standard set), may be better left to the publisher’s specialist academic editors. From both the publisher’s and the data consumer’s perspective there seems nothing to lose here but redundancy, delay and potential error. ONIX has the potential to free up resources – within libraries for better acquisitions management, and within vendors for better service – a win-win all around.

At the same time, in the online retail environment for which it was always intended, ONIX allows Internet bookstores better to recombine and present familiar of products — by author, by subject, by theme, by level — in their continuing pursuit of that perfect marketing match: the right book for the right customer.

<http://www.against-the-grain.com>