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ABSTRACT 
 

 

Using low-GWP refrigerants can reduce the Green House Gas (GHG) emission of HVAC systems. Research has 

shown that using heat exchangers with small diameter tubes is a promising solution to meet the performance goals of 

heat pump using low-GWP refrigerants due to reduced refrigerant charge, reduced flammable impact and 

environmental impact. However, application of small diameter tube requires in-depth component design optimization 

to make the new system adapt to low-GWP refrigerants.  

 

In this paper, multi-objective optimizations using Particle Swarm Optimization (PSO) algorithm on a R-410A 

residential 5-ton air source heat pump is performed for improved system performance and reduced material cost. Five 

R-410A alternatives, i.e., R-32, R-454A, R-454B, R-454C and R-455A are investigated. R-455A and R-454C have 

GWP lower than 150. As a result of optimization, 12.4%-19.1% Energy Efficiency Ratio (EER) improvement and up 

to 71% HXs material cost saving is achieved. Life Cycle Climate Performance (LCCP) analysis shows that optimized 

systems reduce total CO2 emission by 13%-33% depending on the choice of refrigerant and climate zone. 

 

The optimal heat exchangers resulting from this research can fit into the original R-410A fan-coil units. The proposed 

heat pump design method establishes a production and installation path to produce cost-effective low-GWP heat 

pumps easily accepted by end users. 

 

Key words: Low GWP, Small diameter tube, Heat exchanger, Optimization, LCCP 

 

 
1. INTRODUCTION 

 

Residential Air conditioning and water heating contributes substantially to the modern life in the US.  Environmental 

concerns are the primarily driving force for refrigerant changes during the past 40 years. The phased-out schedule of 

Ozone-depleting refrigerants established by the Montreal Protocol (1987) affected chlorofluorocarbon (CFC) and 

hydrochlorofluorocarbon (HCFC), which were primarily replaced by hydrofluorocarbons (HFCs). 

 

The 2016 Kigali Amendment responds to the concerns about climate change by reducing the direct effect related to 

the use of refrigerants. Most of the new low-GWP alternatives are flammable and classified as 2L (lower 

flammability), 2 (flammable) and 3 (higher flammability) by refrigerants designation and classification standard 

ASHRAE 34. The emergent use of mildly flammable class 2L refrigerants has driven intense research on flammability. 

Investigations have been performed on fundamental flammability characteristics, full-scale experiments, and risk 

assessments. The results are being used in updating installation standards such as ASHRAE Standard 15 and 

equipment standards such as UL 60335-2-40. The combined non-ODP and low-GWP requirements further reduced 

the options for some of the mainstream applications such as RAC HPs and HPWHs. When exploring new refrigerants 

for systems with air-to-refrigerant heat exchangers, which are the most common in these applications, the industry 

preference is to identify a single-component fluid with a similar performance to the refrigerant to be replaced. If a 

single fluid is not available, an azeotropic or near-azeotropic blend with no temperature or small glide are also 
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desirable options. Unfortunately, most of the alternatives are non-azeotropic blends with large temperature glide where 

optimizing heat exchangers can be challenging.  

 

Over the last several years, multiple fluids have been proposed as low-GWP substitutes for heat pumps. The relative 

merits of alternative refrigerants depend on a combination of several factors discussed including performance, safety, 

and material compatibility. The importance of such factors fluctuates between countries due to economic development, 

regional regulations, and types of equipment. The fluids included in this study should comply with national 

regulations, regional regulations and the phase-down schedule mandated by the Kigali Amendment. For non-article 5 

countries, this planning strategy corresponds to the reduction steps imposed by the Kigali Amendment, where 

medium-GWP refrigerants (GWP<750) will satisfy the 2024-2025 phase-down, and even lower-GWP refrigerants 

(estimated at GWP<150) will be required to comply with the additional reduction impending in 2029. 

 

2. METHODOLOGY 
 

2.1 System Model and Selection of Refrigerants 
The DOE/ORNL Heat Pump Design Model (HPDM) is used to model the performance of heat pumps. HPDM is a 

public-domain HVAC equipment and system modelling and design tool, which supports a free web interface and a 

desktop version for public use. A finite volume (segment-to-segment) tube-fin HX model is used to simulate the 

performance of the heat exchanger with different circuitries. This model has been validated by the experiment data 

Abdelaziz et al. (2016). The dehumidification model used in the evaporator simulation is Braun et al. (1989). More 

details of HPDM can be found in Shen et al. (2018). In HPDM, REFPROP 10.0 Lemmon et al. (2010) is used to 

simulate the refrigerant properties.  

 

Regarding refrigerants, there is continuous introduction of new low-GWP fluids. Near term options have GWP<750 

and include R-32 and R-454B. Long term options would likely require GWP<150, which require the use of fluids that 

do not match the incumbent fluid (R-410A). Hence, component and system optimization are required. Among these 

candidates, R-454C and R-455A require significant changes of heat exchanger design to address their high saturation 

temperature glide that could result in lower efficiency. 

 

 

 

Table 1 depicts the characteristics of R-410A and its low-GWP alternatives for a typical residential air source heat 

pump. R-32 and R-454B have acceptable performance but present the flammability challenge. R-454C and R-455A 

have GWP less than 150 are the long-term candidates. The temperature glides are evaluated at saturation pressure 

corresponding to 8 °C dew-point temperature. 

 

Table 1: Characteristics of Refrigerants Investigated in This Research 

Refrigerant GWP 
Safety 

Class 

Composition and Mass 

Fraction Glide [C] 
Critical 

Temperature [C] 

R-410A 2088 A1 R-32/R-125: 50%/50% 0.1 72.8 

R-32  675 A2L R-32: 100% 0 78.1 

R-454B  466 A2L 
R-32/R-1234yf: 68.9% 

/31.3% 
1.3 77 

R-454A   238 A2L R-32/R-1234yf: 35%/65% 6.2 78.9 

R-454C   146 A2L 
R-32/R-1234yf: 21.5% 

/78.5% 
6.0 82.4 

R-455A  139 A2L 
R-32/R-1234yf/CO2: 

21.5%/75.5%/3% 
6.9 90.2 

 

To improve the model prediction of 5 mm tube heat exchangers, a set of small diameter air side heat transfer coefficient 

and pressure drop correlation, i.e., Sarpotdar et al. (2016), is implemented in HPDM. Sarpotdar et al. (2016) 

correlation is developed for 3-5 mm diameter tube slit fin heat exchangers using CFD. It is worthwhile to mention 
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that, to predict the airside performance of 9 mm tube heat exchangers in the baseline R410A heat pump, Wang et al. 

(1999) correlation is adopted. 

 

2.2 Baseline Reversible Heat Pump System 
 

To compare the refrigerants in an existing reversible heat pump system, a commercial 5-ton R-410A residential two-

speed heat pump is modelled. Figure 1 shows the schematic of the baseline heat pump operating under cooling mode 

and heating mode. The refrigerant direction inside the heat exchangers is reversed after mode switching.  

 

(a) (b) 

  
Figure 1: 5-ton R410A Baseline Heat Pump System: (a) Cooling Mode Operation; (b) Heating Mode Operation. 

 

Table 2 lists the structural parameters of the baseline heat exchangers as well as the air volume flow rate and fan power 

for the indoor and outdoor fans. 

 

Table 2: Parameters of Indoor and Outdoor Units of Baseline 5-ton Two-stage Heat Pump 

Parameters (heating mode) Indoor HX Outdoor HX 

Face area, ft2 3.6 33.7 

Total Tube Number 72 96 

Number of Rows 3 (cross mixed flow) 2 (cross mixed flow) 

Number of Circuits 8 8 

Fin Type Slit Slit 

Fin Density, fins/ft 168 276 

Tube Outside Diameter [mm] 9.52  9.52  

Tube Horizontal Spacing [mm] 25.4 22.0 

Tube Vertical Spacing [mm] 25.4 25.4 

 Indoor Blower Outdoor Fan 

Flow Rate [CFM] 1770 4215 

Power [W] 478 181 

 

The circuitry of the baseline R410A indoor and outdoor heat exchangers (HXs) are shown in Figure 2 (a) and Figure 

2 (b), respectively. The indoor HX has 72 tubes and 3 tube rows and is divided into 8 mixed flow circuits. The outdoor 

HX has 96 tubes and 2 tube rows and is also divided into 8 mixed flow circuits. Different colors represent different 

circuits.  

 

(a) (b) 



 

 2565, Page 4 

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10 - 14, 2022 

 

 
Figure 2: Baseline Tube-fin Heat Exchanger Circuitries: (a) Indoor HX; (b) Outdoor HX. 

 

2.3 Optimization Problem Formulation 
Shen et al. (2012) developed an optimization framework that integrates HPDM with GenOpt (Wetter (2001)), a public 

domain optimization package. In this research, the Particle Swarm Optimization (PSO) algorithm implemented in 

GenOpt is used to optimize the heat pumps. Regarding PSO setting, the optimization runs use 100 as population size 

and 200 as number of generations. 

 

Equation (1) shows the bi-objective optimization problem formulation. The 1st objective in this optimization study is 

to maximize the Energy Efficient Ratio (EER) of the heat pump under AHRI Standard 210/240 AHRI (2008) cooling 

test A condition (95 °F).  The 2nd objective is to minimize the heat exchangers material cost. The heat exchangers 

include the indoor heat exchanger and outdoor heat exchanger. In Equation (1), the number of circuits in indoor and 

outdoor heat exchangers are two design variables, which varies between 1 and the total number of tubes in each bank 

of the indoor and outdoor heat exchangers. Table 3 shows the design space. As can be seen, the number of tubes in 

each bank of the heat exchangers is also a design variable. It means that the number of circuits has a self-adaptive 

upper limit, instead of a fixed upper limit. 

 

In terms of constraints on operating conditions, the evaporator outlet superheat degree is specified based on the 

temperature glide of different refrigerants as recommended by refrigerant OEM. The condenser outlet subcooling 

degree is automatically adjusted, but it is constrained between 2 R to 15 R. the cooling capacity of evaporator is fixed 

to be the same as that of the original 5-ton R410A heat pump. The compressor displacement volume is automatically 

altered in HPDM to meet the target evaporator cooling capacity.  

 

The last four constraints in Equation (1) guarantee that the optimal indoor and outdoor heat exchangers have the same 

frontal shapes as the baseline heat exchangers, i.e., the optimal heat exchangers can fit into the original indoor and 

outdoor fan-coil unit perfectly. Using those geometry constraints, we want to ease the retrofit effort of upgrade the old 

R410A heat pump to the new low-GWP system by minimizing the change in manufacturing and installation processes 

and guarantee that the optimal systems have the best compatibility with end-users’ house structure. As a result, the 

new products can be easily accepted by manufacturers and end-users. 
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Table 3: Design Space of Heat Exchanger Optimization  

HX Design Variable Unit Baseline Range Variable Type 

Outdoor 

HX 

Vertical Spacing Ratio (Pt/OD) - 2.67 1.5-3 Continuous 

Number of Tube Banks - 2 2-6 Discrete 

Number of Tubes Per Bank - 48 48-144 Discrete 

Number of Circuits - 8 1 - NTubes Per Bank Discrete 

Indoor 

HX 

Vertical Spacing Ratio (Pt/OD) - 2.67 1.5-3 Continuous 

Number of Tube Banks - 3 3-9 Discrete 

Number of Tubes Per Bank - 24 24-72 Discrete 

Number of Circuits - 8 1-NTubes Per Bank Discrete 

For all the optimization runs, the heat exchanger circuitry pattern is fixed as counter flow configuration, as opposed 

to the crossflow circuitry pattern in the baseline system. This is because the counter flow configuration has the most 

efficient heat transfer which shows significant advantage for high-glide zeotropic mixtures. The HX material cost is 

calculated from Equation (2), where MP is the material price,  is the material density and V is the material volume. 

We assume the tube material is copper and the fin material is aluminum. The copper price is assumed as 4 times of 

the aluminum price per unit mass. These assumptions are made by referring the raw material price per unit mass on 

market during the execution period of this study. 

 

  ( * * )  ( * * )tube finC MP V MP V = +
 

          (2) 

 

3. RESULTS 
 

3.1 Optimization Results 
Figure 3 shows the results for R410A and all alternative refrigerants. The horizontal axis depicts the Energy Efficiency 

Ratio (EER) while the vertical one shows the material cost of the heat exchangers. The optimal R410A 5 mm tube 
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design shows good performance, as expected. This performance point is also plotted on other Pareto fronts as a solid 

black hexagon.  

 

R32 results (Figure 3b) show good performance, as expected because of its good thermal properties. On the other plots 

(Figure 3c-3f), reference points were set. The red triangle represents the baseline R410A system using 9 mm tube 

HXs. The yellow hollow circle represents a drop-in simulation using the baseline system. The green diamond symbol 

represents a drop-in simulation replacing the 9 mm tubes with 5 mm tubes. The purple rectangle symbol represents a 

design in which the 9 mm tubes are replaced with 5 mm tubes with the number of tubes being doubled. 

 

The drop-in comparison (red triangle with yellow hollow circle) shows decreased efficiency for all alternative 

refrigerants. Replacing the 9 mm tubes with the 5 mm tubes (yellow circle with green diamond) shows an even greater 

decrease, as expected by the reduced heat transfer area. Furthermore, doubling the number of tubes (purple rectangle 

with green diamond) shows that increasing HX area without optimization also fails to deliver a satisfactory solution. 

This analysis demonstrates the excellent sensitivity of the heat pump design model and emphasizes the need to perform 

optimization of the 5 mm tube system for all low-GWP alternatives.  

 

Finally, the optimized systems (blue circle with red triangle) show significant HX cost savings and efficiency 

improvement compared with the baseline R410A 9 mm tube system. The maximum efficiency improvements for low-

GWP systems range from 11.7% to 14.1%, and the optimized HX design can save material costs by at least 62% 

depending on the choice of refrigerants.  

 
(a) (b) 

  

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

(d) 
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(e) (f) 

  

Figure 3: Pareto Fronts for 5 mm diameter tube heat pump system optimization using (a) R-410A, (b) R-32, (c) R-

455A, (d) R-454B, (e) R-454A, and (f) R-454C. 

 

3.2 Performance of Optimal Heat Pump Designs 
The seasonal energy efficiency ratio (SEER) and heating seasonal performance factor (HSPF) were calculated for the 

optimized systems, according to AHRI 210/240 test standards AHRI (2008). In all cases, the volumetric displacement 

was adjusted to match the baseline cooling capacity. The performance degradation owing to frost accumulation was 

considered by applying performance degradation factors (0.91 for heating capacity and 0.985 for power consumption 

at the 35˚F dry bulb/33˚F wet bulb ambient condition). Figure 4 shows performance for the R-410A baseline system 

and low-GWP optimized systems with SEER over 16 and HSPF over 9.5.  

 

(a) (b) 

  
Figure 4: Performance of sampled optimized heat pump systems using different refrigerants: (a) SEER and 

(b) HSPF.  
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Figure 5(a) show the optimized systems charges with reductions ranging from 13% to 50%, likely because of the use 

of optimized 5 mm tube HXs. However, compressor displacements are larger than in the baseline, indicating the need 

for further development. 

 

(a) (b) 

  
Figure 5: (a) System refrigerant charge and (b) designed compressor displacement volume. 

 

3.3 Life cycle climate performance analysis 
Life cycle climate performance (LCCP) evaluation Troch et al. (2016) was performed to analyze the direct and 

indirect greenhouse gas emissions of the system. To evaluate the annual energy consumption, each system was 

evaluated two cooling conditions and three heating conditions according to AHRI 210/240 test standards AHRI 

(2008). Other values used for evaluating the LCCP are shown in Table 4. The cut-off outdoor temperature and the 

temperature at which the heat pump starts are also shown. 

 

Table 4: Input values for baseline system LCCP calculation 

Factor Value 

Refrigerant R-410A or its alternatives 

Refrigerant charge (kg) From Figure 3 (a) 

Unit weight (kg) 190 

Annual refrigerant leakage (%) 4 

EOL leakage (%) 15 

Lifetime (years) 15 

Cut-off temperature (°C) −17.8 

Temperature at which the heat pump starts (°C) −12.2 

 

Figure 6 shows LCCP results for five cities representing all climate zones in the United States. Relative to the R-

410A benchmark system, the optimized systems using low-GWP refrigerants reduce total lifetime greenhouse gas 

emissions by 13% to 33% depending on the specific climate zones. 

 

 
Figure 6: Total greenhouse gas emissions of the baseline system and low-GWP optimized systems. 
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4. CONCLUSION 
 

This study presents heat exchanger and system development technologies to support the transition to refrigerants with 

GWP lower than 150. High efficiency levels in cooling (SEER over 16.0) and heating modes (HSPF over 9.5) were 

achieved by a model-based design optimization approach for low-GWP refrigerants using 5 mm tube heat exchangers. 

The potential to reduce the overall lifetime emissions of CO2 by 13% to 33% was also shown. 

 

The optimal 5 mm tube heat exchangers obtained from this research can fit into the original R-410A system frame, 

which helps to minimize changes in manufacturing and installation, thus reducing impacts on manufacturers and end 

users. The proposed approach establishes a production and installation path to produce cost-effective low-GWP 

reversible heat pumps. 
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