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ABSTRACT 
 

Challenges to global warming require reduction of GHG emissions, and increased use of renewable energy. Heat 

pumps extract energy from renewable sources and convert them to more useable forms for space conditioning, space 

heating and for water heating. They can be powered by renewable sources of electricity and must be engineered to use 

low global warming potentials (GWP) refrigerants (e.g., propane, GWP = 3) for a sustainable economy. Therefore, an 

electric heat pump water heaters (HPWH) using propane as refrigerant are developed in Oak Ridge National 

Laboratory to replace water heaters using all electric resistance and natural gas. A submerged condenser directly 

contacting with water is employed in the HPWH, which eliminates heat transfer barrier of the tank wall, and also 

prevents heat loss from the condenser tubes to the surrounding air. In present work, a numerical model is developed 

to model the submerged condenser. A dynamic temperature distribution on the condenser tubes from experimental 

data is applied to the model to enhance the accuracy of the numerical model. The model is essential to guide the design 

of the submerged condenser to achieve the performance required by the HPWH. 

 

 

1. INTRODUCTION 
 

According to the DOE Buildings Energy Databook (U.S. Department of Energy, 2012), water heating consumed 

12.3% total energy in the residential sector of U.S. in 2011, which makes water heating the second largest energy end 

use for residences. In 2010, the natural gas water heater and electric water heater consumed 1.73 quadrillion Btu and 

1.67 quadrillion Btu energy, respectively. Different to conventional gas and electric resistance water heaters, the heat 

pump water heater is an energy-efficient appliance, which saves up to 70% energy comparing to electric resistance 

water heaters. Using heat pump heating technologies, HPWHs absorb heat from ambient or indoor air with an 

evaporator and compress the refrigerant to high pressure and temperature using a compressor. Two types of condensers 

are usually employed in HPWHs: a) forced water flow heat exchangers like tube-in-tube and brazed plate heat 

exchangers coupled with a water circulation pump; and b) a water heating coil either wrapped-around the water tank 

or submerged inside the water tank (no water pump required). Since the submerged condensers can not only eliminate 

heat transfer barrier of the tank wall, but also prevent heat loss from the condenser tubes to the surrounding air, more 

and more studies have dedicated on it (Ji et al., 2003; Guo et al., 2011).  

Due to the restrictions imposed by the Kyoto Protocol (United Nations, 1998), the current high GWP refrigerants used 

in heat pumps will be phased down. One of the high GWP refrigerants is R-134a (GWP = 1301), which is the most 

used refrigerant in HPWHs. Therefore, some studies have been conducted to replace R-134a by other low GWP 

refrigerants. Gürel et al. (Gürel et al., 2020) assessed four alternative low GWP refrigerants to replace R-134a, 

including R-290 (GWP = 3), R-600a (GWP = 4), R-1234yf (GWP < 1), and R-1234ze (GWP < 1), to replace R-134a. 

As the conclusion, the authors recommended R-600a and R-1234ze as the two best candidates to replace R-134a in 

the refrigeration application. On the other hand, de Paula et al. (de Paula et al., 2020) conducted optimal design and 

environmental, energy and exergy analysis for R-290, R-1234yf and R-744 (GWP = 1) to replace R-134a. In terms of 

Total Equivalent Warming Impact and exergy efficiency, their study indicated that R-290 was identified as the 

optimum option. Another study reported by Duarte (Duarte, 2018) compared the performance of a heat pump water 
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heater assisted by solar using different refrigerants of R-134a, R-1234yf, R-290, R-744, R-600a. Although at a low 

solar radiation density, R-134a had the best performance, R-290 showed the best performance at a high and medium 

solar radiation density. Due to the previous studies, R-290 is a promising low GWP refrigerant to replace R-134a in 

HPWHs. Therefore, an electric HPWH using R-290 as refrigerant are developed in Oak Ridge National Laboratory to 

replace water heaters using all electric resistance and natural gas. 

In order to assistant the design of the HPWH using low GWP refrigerants, a computational fluid dynamics (CFD) 

model has been developed to model the HPWH. Building up with the dynamic temperature distribution on the 

condenser tubes from experimental testing, a simplification approached is employed in the CFD model to avoid 

complicated multi-phase simulations. The model is capable of providing the insight of the HPWH, including the water 

temperature distributions, water flow patterns, as well as the temperature history in a specific location in the HPWH. 

The CFD model provides an economic tool to guide the design of the submerged condenser to achieve the performance 

required by the HPWH.    

 

 

2. SIMULATION DOMAIN 
 

A 3D CFD model has been developed using a commercial code Ansys Fluent (Version 17.2) (ANSYS, 2017), which 

is installed in a workstation with an Intel Xeon E5-2630 v3 processor and 64 GB memory. Figure 1 shows the 

simulation domain. Working as a condenser, the coils tubes are sandwiched by two pieces of copper sheets. Total 

twelve tubes are bundled parallelly between the sheets. Then the copper sheets are bended together with the tubes 

inside. The inner and outer diameters of the bended sheets are 0.150 m and 0.156 m, respectively. The angle between 

two ends of the cooper sheets after bending is 315°, which leaves a 45° gap in the tank. The bended sheets are filled 

with thermal paste to enhance the heat transfer between the coils and sheets. Since the diameter of the coils is very 

small (about 6 mm) comparing the simulation domain size, it is very difficult to directly model the coils in the CFD 

model. To simplify the model, it is assumed that the bundled 12 coil tubes have the same heat transfer coefficient 

along their coil lengths. The bundled coil tubes can be simplified to pieces of annuli deployed in the water tank from 

top to bottom, while the thermal paste occupies the rest space between the sheets. In Figure 1, the yellow annuli are 

coil tube bundles, and the rest are the thermal paste. In present work, the coil tube bundles, thermal paste, and the two 

copper sheets called condenser. Then the condenser is merged to a water tank with diameter 0.54 m and heigh 1.25 

m, as shown in Figure 1. Therefore, the simulation domain is comprised of a water tank filled with water, coil tube 

bundles, and thermal paste sandwiched by two copper sheets. It is assumed that the copper sheets are perfectly sealed, 

and no water can enter the space between the sheets. As a result, in the simulation, water only appears in the tank. The 

45° gap provides a path to connect the water inside and outside of the heat exchanger to benefits the heat transfer in 

the tank. Two types of tube deployments have been modeled in present work. Figure 2 shows the schematic view of 

the deployments. In Figure 2, the left one represents the evenly deployed tubes bundles with thickness 0.036 m, called 

even deployment. On the other hand, the right one depicts the mixing phase tubes are centralized to the bottom of the 

heat exchanger as bottom deployment. The gaps between two adjacent tube bundles are 0.103 m and 0.005 m from 

the even deployment and bottom deployment, respectively.  
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Figure 1 The schematic view of the simulation domain. 

 
Figure 2 The schematic view of the deployments of submerged condensers 

 

 

3. MATHEMATICAL MODELS 

 
The governing equations consider for the fluid flow and heat transfer include the continuity, momentum, and 

energy equations. In the present model, only water flow due to natural convection in the tank is modeled, so in the 

model, the continuity and momentum equations are written as  
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𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 ,                                                                  (1) 

 

 
𝜕(𝜌𝒖)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝒖) = −∇𝑝 + ∇ ∙ 𝜇 (∇𝒖 + ∇𝒖T −

2

3
∇ ∙ 𝒖𝑰) + 𝜌𝒈, (2) 

 

where u, ρ, p, μ, g, and I are fluid velocity vector, density, pressure, dynamic viscosity, gravitational acceleration, and 

unit tensor, respectively. Therefore, ρg represents the gravitational body force, which is described by a Boussinesq 

approximation in present model. 

Because the fluid flow is driven by the natural convection, the Reynolds number is low in the water tank. As a result, 

the water flow is always laminar flow. 

The energy equation is  
𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ (𝒖(𝜌𝐸 + 𝑝)) = ∇ ∙ (𝜆∇𝑇),                                                        (3) 

where  

𝐸 = ℎ −
𝑝

𝜌
+

|𝒖|2

2
.                                                                          (4) 

 

where λ is the thermal conductivity of water. In Eq. (3) and (4), T and h represent the temperature and the enthalpy 

of water, which are related with Eq. (4). 

 

ℎ = ∫ 𝑐𝑝d𝑇 +
𝑝

𝜌

𝑇

𝑇𝑟𝑒𝑓
 .                                                                        (5) 

where Tref = 298.15 K and cp is the specific heat of water.  

When the refrigerant passes the HPWH, it changes phase. Initially, when the refrigerant enters the heat exchanger, 

with vapor phase. After moving forward in the heat exchanger and heating the water, the refrigerant temperature drops. 

When it reaches the condensation point, the refrigerant starts condensing, leading to a mixing vapor-liquid phase of 

refrigerant in the heat exchanger. When it finishes condensing, all the refrigerant turns to liquid phase so only liquid 

phase of refrigerant can be found in the end of heat exchanger. The coil tubes of the heat exchanger can be divided 

into three groups according to the refrigerant phase inside, vapor phase, mixing phase and liquid phase. Previous 

experiments observed that, in each circuit, the beginning 5% length is vapor, the end 23% length is liquid, the middle 

72% length contains two-phase refrigerant. Therefore, in the CFD model, the deployment of the coil tubes is shown 

in Figure 1. Since in the experimental testing, the liquid phase occurs in the tubes retuning to the top of the tank, the 

liquid phase tubes are deployed between vapor phase and mixing phase tubes.  

To avoid complicated condensing simulations, a simplified approach based on experimental observations has been 

employed in present work. The observations are: 

(1) The average mixing temperature is 11°C higher than the average water temperature adjacent to the mixing tubes. 

(2) In the mixing region, the temperature drops 5.5°C due to the pressure drop, distributed linearly along the two-

phase tube length. 

(3) In the vapor section, the temperature drops 5.5°C from entering vapor to the first point of two-phase, distributed 

linearly along the vapor tube length. 

(4) In the liquid section, the temperature drops 11°C, distributed linearly along the liquid tube length. 

Building up with the observations from the testing, the simplified approach contains the following steps: 

(1) In every time step of the simulation, read the average water temperature adjacent to the mixing tubes, then calculate 

the average mixing saturation temperature according to the observation (1). 

(2) Based on the average mixing saturation temperature and the observation (2), one can calculate the temperature 

distribution along the mixing tube length.  

(3) Since the temperature of the higher end at the mixing tubes equals to the lower end temperature at the vapor tubes, 

the temperature distribution along the vapor tube length can be caculated by considering observation (3). 

(4) Similar to the vapor tubes, the temperature distribution along the liquid tube length can be obtained using the 

higher end temperature at the liquid tubes and observation (4). 

A computer code has been developed to work with FLUENT to control the tubes temperatures in the model as 

boundary conditions in every time step of the simulation.  

Because the geometry is symmetric, only half of the domain is modeled to save the computational time. The initial 

water temperature in the tank is set as 14.45°C. ANSYS/FLUENT is used to generate the mesh and solve the 

mathematic models for the heat transfer between the heat exchanger and the water and water flow driven by the natural 

convection in the tank. 
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4. RESULTS AND DISCUSSION 

 

The CFD model has been implemented to the two cases, the even and the bottom case, which are shown in Figure 2. 

In the simulations, the tank is heated for 15 hours with starting temperature 14.45°C for both the cases. Figure 3 shows 

the velocity vectors in the symmetric face of the water tank for both cases after 15 hours heating. The figure shows 

the circulating flows due to the natural convection induced by the temperature/density differences. In the even case, 

due to the even distribution of the tubes, lots of the local circulating flows are generated along the vertical length of 

the water tank. On the other hand, for the bottom case, because most of the tubes are near the tank bottom, the 

circulating flows mainly happen near the tank bottom. The local circulating flows are seldomly observed in the bottom 

case. Instead, a huge circulating flow occurs, which is circled in the figure, due to the temperature difference between 

top and bottom of the tank. 

The different flow patterns from the two cases result in different water temperature distribution in the tank. Figure 4 

shows the tank temperature distributions in the symmetric face of the water tank for both cases after 15 hours heating. 

Due to the natural convection, the temperature stratification can be observed from both cases. The local high 

temperature region around the tubes can be clearly identified in contours. Note that the two contours use two legends. 

In the even case, the temperature span in the tank is 12 °C from top to bottom. In the bottom case, the difference is 

only about 3°C. It is because the tubes are near the bottom of the tank leading to a heating concentration near the tank 

bottom. In addition, the huge circulating flow benefits the overall heat circulating in the tank. As a result, the 

temperature span in the bottom case is small. On the other hand, the tubes are evenly distributed in the even case, 

leading to small local circulating flows. Therefore, the overall heat circulating is weak to end up with a high 

temperature span in the even case.  

 
Figure 3 Flow velocity vectors in the tank. 
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Figure 5 plots the average temperature of the tank (Ttank) changing with time, which reveals that in the 15 hours heating, 

the tank temperature in the even case is always higher than the bottom case, although the difference is small. Therefore, 

the average tank temperature in the even case with a high temperature span and bottom case with a low temperature 

span are very close.  

Figure 6 plots the temperature at the top of the tank (Ttop) changing with time, which indicates that the temperature of 

the tank top keeps increasing in the 15 hours due to the heating. The Ttop of the even case is always higher than the 

bottom case. After 15 hours, the Ttop of the even case is about 60°C, while the bottom case is about 55°C. Therefore, 

after 15 hours heating, the top temperature of the even case is 5°C higher than the bottom case. It can be found in 

Figure 4 that in the symmetric face, the top temperature of the bottom case is much lower than the even case.  

Building up with the experimental observations, a simplified CFD model has been developed to model submerged 

condensers. Two different deployments of the tubes simulated. The simulation results shows that the evenly distributed 

tubes can provide a slightly higher tank temperature than the bottom case. Moreover, the evenly distributed tubes can 

make the tank top temperature much higher than the bottom case.  

 

 
Figure 4 Temperature distributions in tank 
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Figure 5 Ttank changes with time 

 

 
Figure 6 Ttop changes with time 

 

5. CONCLUSIONS 
 

A CFD model has been developed to model an electric HPWH using R-290 as refrigerant. The model is comprised of 

a water tank filled with water, coil tube bundles, and thermal paste sandwiched by two copper sheets. Instead of 

directly modeling the multi-phase flow and heat transfer in the condensers, a simplified approach is used based on 

observations from experiments to save computational resources. The simulation results provide an insight of the 

temperature distribution and flow patterns in the HPWH. Two condenser deployments, even case and bottom case, 



 

 2451, Page 8 
 

19th International Refrigeration and Air Conditioning Conference at Purdue, July 10 - 14, 2022 

are tested using the CFD model. The results reveal that although the temperature distribution in the HPWHs with two 

deployments are different, the average temperatures of the HPWHs are very close. However, due to the temperature 

distribution difference, the top temperature of the even case is 5°C higher than the bottom case. 
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