




















































of 4 inches and length of 8 inches, were cast simul-
taneously to test the compressive strength develop-
ment of concrete. One section of concrete slab and 16
concrete cylinders were cured by compound (CP) and
the other section of slab, and the left 16 cylinders were
exposed in natural air (AC).

The slab and cylinders were tested using the ground
penetrating radar (GPR) instrument. Additional tests
included measurements of the electrical resistivity,
thermogravimetric analysis (TGA), mercury intrusion
porosimetry (MIP) and compressive strength tests at 1,
3, 7, 14, and 28 days of age.

The concrete was poured on August 30, 2021, at 8 am.
After 4 hours of pouring, the surface of one section slab
and 16 cylinders’ surfaces were sprayed with a layer of
curing compound (CP). The other section of the slab and
the left 16 cylinders were exposed in air (AC). The weather
history of West Lafayette area from 1 day to 30 days is
shown in Figure 5.2 (Weather Underground, 2021).

5.2 Results and Discussion

5.2.1 GPR Measurement Results

5.2.1.1 Dielectric constant value determination by
travel time method. The travel time difference (Dt)
between the first and second reflected electromagnetic
(EM) pulse can be used to calculate the dielectric
constant value (e) of concrete as demonstrated by the
previous research (Chen et al., 2012; Chen & Shen,
2013; Lai et al., 2009; Shen et al., 2016).

e~
cDt
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ðEq: 5:1Þ

where c denotes the speed of light (36108 m/s), h
represents the thickness of concrete slab (0.2 m), and Dt
is the travel time difference between the first and second
reflected EM wave pulse, Dt5t1-t2 (ns).

5.2.1.2 Dielectric constant value determination by
first pulse amplitude. The amplitude of the first
pulse amplitude (Ap1) can also be used to calculate
the dielectric constant of concrete (Bourdi et al.,
2012; Harris, 2006; Lahouar, 2003; Wimsatt et al.,
1998).

e~
A0zAp1

A0{Ap1
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ðEq: 5:2Þ

where A0 denotes the reflected wave pulse amplitude by
directly testing the steel sheet with GPR; in this work,
A0 was pre-determined as 7,000.

5.2.1.3 Dielectric constant determination results. The
results of calculated dielectric constant values are shown
in Figure 5.3. The dielectric constant values determined
by two-way travel time method (i.e., Eq. 5.2) decreased
with the increase of the curing age, which is reasonable,
since the hydration process consumes water. Thus, the
water content in concrete slabs decreased with the increase
in the curing age. However, the dielectric constant
values determined by the amplitude of first pulse peak
method (i.e., Eq. 5.2) showed unreasonable increase at
7 days and 28 days. The reason for this abnormal
increase of dielectric constant values can be explained
by the wet surface of the specimen, which influenced
the measured first pulse amplitude.

TABLE 5.1
Mix proportions of concrete (kg/m3)

Design w/c Cement

Mixing

Water

Fine

Aggregate

Coarse

Aggegate

0.50 335 167 819 1,109

Figure 5.1 Schematic of concrete slabs.
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Figure 5.4 Compressive strength development.

Figure 5.5 The electrical resistivity development with curing
age.

Figure 5.6 Ca(OH)2 (CH) content development of AC and
CP concrete slabs.

TABLE 5.2
Porosity and average pore diameter results from MIP tests

Porosity Average Pore

(%) Diameter (nm)

Compound Air Compound Air

Age (days) Cured Cured Cured Cured

1 25.65 26.60 56.50 68.90

3 23.21 24.79 40.30 42.00

7 20.08 23.31 32.50 33.40

14 17.62 21.95 29.10 30.90

28 16.64 20.64 26.10 27.90

in Table 5.2. It can be seen that the AC concrete samples
presented more porous microstructures than CP samples
as the porosity and average pore diameter of AC concrete
samples were higher than CP concrete samples. The pore
size distribution curves are presented in Figure 5.7. Two
major peaks at around 100 nm and 1,000 nm were
observed for AC samples while one major peak at around
100 nm for CP samples was obtained.

5.2.6 Comments on Practical Application of Curing
Effectiveness Evaluation Methods

In this work, two practical methods (i.e., dielectric
constant value and electrical resistivity measurements)
were adopted to evaluate the curing effectiveness of air-
cured concrete and compound-cured concrete. The
relative relationship of dielectric constant value develop-
ment between AC and CP concrete was consistent with

compressive strength, TGA results and MIP results while
the electrical resistivity for AC concrete was higher than
CP concrete before 3 days, but lower than CP concrete
starting from 7-days age. The relative relationship of
electrical resistivity development between AC concrete
and CP concrete was not consistent with compressive
strength, TGA and microstructure measurement results.

In addition, it has been found that the dielectric
constant value of hardened concrete can be directly
correlated with water content (Janoo et al., 2009; Klysz
& Balayssa, 2007; Lee & Zollinger, 2012; Leucci, 2012).
Thus, from a development perspective, the higher
dielectric constant value of CP concrete than AC
concrete also indicates that CP concrete could provide
more water for further hydration. In other words, the
‘‘hydration potential’’ for CP concrete is higher than
AC concrete.

5.3 Summary

In this part of work, a concrete slab was cast in West
Lafayette, IN, USA, and divided into two sections.
These two concrete slab sections were cured in natural
environment while one section was exposed in air (AC)
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Figure 5.7 Pore size distribution curves.

and the other section was cured by compound (CP).
The dielectric properties of two sections were measured
by a GSSI 1.6 GHz ground penetrating radar (GPR)
system. The electrical resistivity developments for both
concrete slab sections were determined by 4-point
method. The compressive strength developments were
determined by testing the concrete cylinders and the
hydration degrees of AC and CP concrete sections were
obtained by determining the Ca(OH)2 (CH) content
through thermogravimetric analysis (TGA) with a
modified method. The microstructure developments of
AC and CP concrete were characterized by mercury
intrusion porosimetry (MIP) measurements. The main
conclusions of this work can be drawn as follows.

The dielectric constant value determined by two-way
travel time method is less influenced by the weather
conditions while the dielectric constant value obtained
by first pulse peak amplitude method is influenced by
the weather conditions.

1. The dielectric constant value of CP concrete is higher than

AC concrete which indicates a higher water content in CP

concrete than in AC concrete.

2. The electrical resistivity of AC concrete was higher than

CP concrete before a 3-day age and then lower than CP

concrete starting from a 7-day age.

3. For a practical application objective, the inconsistent

relative relationship on electrical resistivity development

of CP and AC concrete might result in inaccurate

evaluation on curing effectiveness. The dielectric constant

is a good NDT method to evaluate the curing effectiveness

of concrete and can be used to indicate the further

hydration potential.

6. FINAL CONCLUSIONS AND
RECOMMENDATIONS

This final chapter contains the final conclusions of
the current study, and the recommendations for the
future research.

6.1 Conclusions

In this work, the w/c value of plastic concrete
is determined by the measured dielectric constant
value and the microwave oven drying measurement.
A modified coarse aggregate correction factor is further
proposed to consider the influence of fine particles
within coarse aggregate in determining the w/c of
concrete samples. Additionally, the effectiveness of
curing compound is evaluated by GPR and electrical
resistivity measurements for field concrete slabs.

Based on the results of laboratory and field studies,
the following conclusions can be drawn.

1. The volumetric water contents of plastic concrete
calculated from the measured dielectric constant values
from the logarithmic rule proposed by Lichtenecker
provides the most accurate results out of other models.

2. The dielectric constant values and gravimetric water
contents have linear relationship with the design w/c, the
fitting parameters (R2) are 0.7687 and 0.8340, respec-
tively. The dielectric constant values and gravimetric
water contents showed a better linear relationship with
the fitting parameters (R2) of 0.9235. The COV for
calculated w/c values by GPR measurement is 1.28%

while for the microwave oven drying measurement is
4.34%.

3. The p-values of t-test for the w/c determination error
(Dw/c) of GPR measurement and microwave oven drying
measurements are 0.3353 and 0.7833, respectively, which
indicate the mean values of Dw/c determined by GPR
and microwave oven drying measurements have no
significant difference with 0. The mean value of Dw/c

results by GPR and microwave oven drying measure-
ments are -0.0023 and 0.0015, respectively, while the
variances are 8E-5 and 4E-4, respectively.

4. When the microwave oven drying test was terminated
when mass change was less than 1.0 g, the determined w/c

results of cement paste, and mortar samples had
significant difference with the design w/c values. When
the test was terminated when the sample mass change
was less than 0.5 g, the determined w/c results had no
statistical difference with designed w/c.
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5. When coarse aggregate has fine particles, the determined

w/c results with the application of CF have significant

difference with design w/c values. The application of CF9

determined w/c results have no significant difference with

the design w/c values.

6. When the fine particle content in coarse aggregate is less

than 4.44%, the calculated w/c with the application of CF

will have a 95% confidence to fall within the ¡0.02 error

range to target w/c values.

7. Under the evaporation conditions in this study (i.e.,

environmental temperature was 23uC, relative humidity

was 75%, and the evaporation area was a circle with a 3-

inch diameter), the determined w/c results in 60 minutes

after combining water with cement fall within ¡0.02

error from target values. The aggregate moisture content

has no influence in w/c determination with the applica-

tion of CF9.

8. The dielectric constant value determined by two-way

travel time method is less influenced by the weather

conditions while the dielectric constant value obtained by

first pulse peak amplitude method is influenced by the

weather conditions.

9. The dielectric constant value of compound-cured con-

crete is higher than air-exposed concrete which indicates

a higher water content in compound-cured concrete than

in air-exposed concrete.

10. The electrical resistivity of air-exposed concrete is higher

than compound-cured concrete before a 3-day age and

then lower than compound-cured concrete starting from

a 7-day age.

11. The compressive strength and CH content of compound-

cured concrete are higher than air-exposed concrete while

the porosity is lower than air-exposed concrete, and the

pore structure of compound-cured concrete is finer than

air-exposed concrete.

12. For a practical application objective, the inconsis-

tent relative relationship on electrical resistivity deve-

lopment of compound-cured and air-exposed con-

crete might result in inaccurate evaluation on curing

effectiveness. The dielectric constant is a good NDT

method to evaluate the curing effectiveness of concrete

and can be used to indicate the further hydration

potential.

6.2 Recommendations for Future Research

It is recommended that the dielectric constant value
can be used as a parameter to determine the w/c value
of plastic concrete. The modified coarse aggregate
correction factor can be used to determine the w/c value
by microwave oven drying measurement. The imple-
mentation of dielectric constant determination method
and modified coarse aggregate correction factor can be
further verified using trial batches where the target w/c
values along with the moisture content and specific
gravities of aggregates can be well controlled.

The dielectric constant value determined by GPR
measurement can be a promising NDT method in field
to evaluate the curing effectiveness of concrete. The
dielectric constant determination method can be further
simplified.
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