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EXECUTIVE SUMMARY

Introduction

Intersection-related crashes are one of the main contributors of

total crashes. In 2014, intersection-related crashes contributed to

47% of all crashes and 28% of fatal crashes in the US, as reported

by the National Highway Traffic Safety Administration (NHTSA,

2014). Within Indiana, intersection-related crashes contributed to

31% of total crashes and 24% of fatal crashes (INDOT, 2014). In

addition, intersection-related crashes caused $120 billion in

economic costs and $371 billion in comprehensive costs, account-

ing for 50% of all economic costs and 44% of all societal harm

from motor vehicle crashes (Blincoe et al., 2015).

Although intersection-related crashes are generally decreasing,

the decrease is modest. Different intersections, based on their

design, traffic volume, and location, have varying levels of crash

risk. Therefore, engineers and researchers have been looking for

alternative ways to improve the safety and operation of intersec-

tions. Researchers commonly focus on examining the relationships

of the intersections’ geometry designs and the types of crashes, but

a recent concern is safety impacts at intersections with right-turn

lanes. Right-turn lanes provide space for deceleration and storage

for right-turning vehicles. Since right-turn lanes separate turning

movements from through traffic, they have been known to

improve safety and operations at intersections. Depending on the

traffic control methods and design elements used, right-turn lanes

can be designed in different forms; however, each form has

advantages and disadvantages. Constructing appropriate right-

turn lanes will improve traffic safety, increase travel speed, reduce

delay, and reduce congestion. Therefore, to figure out the design

configurations that result in higher crash rates, there is a need to

evaluate the safety and operation of right-turn lanes.

Findings

N The installment of the exclusive RTL can reduce the risk of

crashes compared to the shared RTL; however, a high-speed

limit increases the risk ratio. The compound factor of these

two variables significantly contributes to right-turn related

crashes. The exclusive RTL with a speed limit over 35 mph

has 16% fewer crashes than the shared RTL with a speed

limit over 35 mph. The exclusive RTL with a speed limit

below or equal to 35 mph has 45% fewer crashes than the

shared RTL with a speed limit below or equal to 35 mph.

N A high design speed limit increases the number of crashes,

compared to a low design speed limit. The effects of the

design speed limit are different for roadway class and county

class.

N Exclusive RTLs reduce crashes, and the effects of the exclu-

sive RTL depend on the AADT of roadway class and county

class.

N A 1% increase in the RTL turn radius leads to a 0.22%

increase in crash frequency. The effects of the RTL turn

radius are different for roadway class and county class.

N RTLs having ‘‘yield/stop sign’’ have 0.785 times more crashes

on average than RTLs having traffic signal control. RTLs

having ‘‘nothing for control’’ have 0.647 times more crashes

on average than RTLs having traffic signal control.

N When RTLs are on local roads and US roads, RTLs with

signal control have fewer crashes; and RTLs with yield/stop

signs have more crashes than RTLs with no traffic control.

The effects of traffic control are different for RTLs on local

and US roads.

N RTLs with signal control have fewer crashes. RTLs with

yield/stop signs have more crashes than RTLs with no traffic

control for roads in Marion County, Madison County,

Tippecanoe County, Clark County, Harrison County,

Vanderburgh County, Allen County, and La Porte

County. However, the effect of traffic control is insignificant

for roads in Hamilton County and Hancock County.

N The presence of bicycle lanes increases crash cost by 0.57%

($10,445), and a 1% increase in a RTL turn radius leads to a

0.14% increase in crash cost.

N The effects of bicycle lanes are different for the roadway

classes and county classes.

N A 1% increase in RTLs turn radius increases crash frequency

by 0.56% and increases crash cost by 0.21%.

N A 1% increase in a RTL turn radius leads to a 0.17%

reduction of crash cost in Madison County, Tippecanoe

County, Clark County, Harrison County, Vanderburgh

County, Allen County, and La Porte County. A 1% increase

in a RTL turn radius results in a 0.59%–0.28% increase in

crash frequency for all counties.

N A 1% increase in a RTL turn radius increases crash cost by

1.78% on interstate roads and increases crash cost by 0.19%

on the local/city road.

N The exclusive RTLs decrease crash cost by 0.07% ($4,229)

compared to shared RTLs.

N The effect of the RTL type is different for county class and

roadway class. Exclusive RTLs increase crash cost by 0.48%

relative to shared RTLs in Marion County; however, they

decrease crash cost by 0.12% in Madison County, Tippe-

canoe County, Clark County, Harrison County, Vander-

burgh County, Allen County, and La Porte County. Exclu-

sive RTLs decrease crash cost by 0.36% in Hamilton County

and Hancock County. The exclusive RTLs increase crash

cost by 2.69% on the interstate road, but they decrease crash

cost by 0.74% on the US road, relative to the shared RTLs.

N The effects of traffic control at RTLs are different for

roadway class and county class. Traffic signs decrease crash

cost from 0.38%–1.64% for RTLs in different roadways.

Traffic signals decrease crash cost from 0.82%–0.51% on

different roadways. RTLs with traffic signals increase crash

cost by 0.36%, and RTLs with traffic signs increase crash

cost by 0.20%, relative to RTLs with nothing for control.

Implementation

There were six tasks for estimating the effects of influencing

factors on right-turn lane safety performance.

Task 1 was conducting a literature review on previous research,

determining the best practices of right-turn lanes (RTL) design to

reduce crashes, and identifying methodology and data sources for

analysis.

Task 2 was collecting and processing candidate intersections

data. Data collection involved three parts:

1. The first part was collecting the population of RTLs, which

were collected from the INDOT geodatabase for RTLs on

major highways (US/SR/CR), US census road network for

RTLs on ramps, and Google Maps for RTLs on local roads

(Dr, Blvd, Rd, St, etc.).

2. The second part was collecting the dataset of intersection-

related characteristic of RTLs. The dataset was manually

collected from Google Maps for geometry, road name, loca-

tion, and layout; Google Street View for traffic control and



the surrounding environment; and the INDOT traffic count

database (AADT) for volume.

3. The third part was collecting the crash data obtained from the

Automated Reporting Information Exchange System

(ARIES). The data fusion method (a road name compar-

ison-based method) for the multi-source datasets was

employed in the data processing.

Task 3 was data cleaning. We re-corrected the measurement

bias in the datasets and conducted the descriptive analysis for both

crash frequency and crash severity. The correlation analysis was

conducted for the explanatory variables, including RTL geometric

factors, intersection characteristics, environmental-related factors,

and location factors. To understand the traffic management

background of different counties, we conducted a clustering

method to divided ten counties into three groups according to

population, percent of educated people, yearly household income,

and number of individuals below the county poverty level. Finally,

the preliminary data description showed that the RTLs at local

roads had the highest number of crashes than any other types of

roads (US, interstate, or state); and Marion had the highest crash

frequency among the counties.

Task 4 was conducting statistical modeling for both the crash

frequency and crash severity. We proposed several hypotheses,

then selected the methodology for the crash frequency and

severity, respectively. For the crash frequency model, we applied

the negative binomial random effect model. For the crash severity

analysis, we applied the log-linear model. To get detailed esti-

mates, we estimated the crash on the overall level, estima-

ted the RTL crashes on the county level (three types of grouped

counties), and estimated the RTL crashes on the roadway class

level (county road, local road, state road, interstate road, and US

road). To ensure the reliability of the estimates, we conducted

the robustness test for both models. The interpretations of the

estimated results were based on the marginal effect and the

elasticity estimates.

Task 5 was providing recommendations or safety improvements

for the RTL geometric design. In this task, we combined the

results from the crash frequency and severity analysis and

provided the key geometric design factors in the overall RTLs,

RTLs grouped by counties, and the RTLs in the roadway class.

We also ranked recommendations for the RTLs geometric design

by their effectiveness.

Task 6 was discussing and reaching conclusions for the anal-

ysis of the RTL geometric design improvements. We summari-

zed the recommendation of the RTL geometric design based

on the analysis of crash frequency and severity and concluded the

study.
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1. INTRODUCTION

Intersection-related crashes are one of the main con-
tributors of total crashes. In 2014, intersection-related
crashes contributed to 47%–28% of all crashes and fatal
crashes in the US, as reported by the National Highway
Traffic Safety Administration (NHTSA). Within Indiana,
they contributed to 30% of total crashes and 24% of fatal
crashes (INDOT, 2014). In addition, the Federal Highway
Administration (FHWA) estimated the annual economic
and societal costs of intersection-related crashes were close
to $120 billion (Blincoe et al., 2015).

Although intersection-related crashes are in general
reducing annually, the decrease is modest. Different
intersections based on their design, traffic volume and
location have varying levels of crash risk. Therefore,
engineers and researchers have been looking for alter-
native ways to improve the safety and operations at
intersections. Researchers commonly focus on examin-
ing the relationships of the intersections’ geometry
designs and types of crashes. A recent concern is safety
impacts at intersections with right-turn lanes. Right-
turn lanes provide space for deceleration and storage
for right-turning vehicles. Since they separate the turning
movements from through traffic, they have been known
to improve safety and operations at intersections. Depen-
ding on the traffic control methods and design elements
used, right-turn lanes can be designed in different forms.
However, each form has its own advantages and dis-
advantages. Constructing appropriate right-turn lanes
will improve traffic safety, increase travel speed, reduce
delay, and reduce congestion. Therefore, to figure out the
design configurations that result in higher crash rates,
there is a need to evaluate the safety and operations at
right-turn lanes.

1.1 Background Information

Numerous districts have realized that large yield
controlled, channelized right-turn lanes often have high
crash rates. The problem appears to be that driver expec-
tancy varies between the vehicles that yield, and those
that follow. Also, the driver yielding must turn to check
oncoming traffic almost 180 degrees behind them. Addi-
tionally, it has been discovered that right-turn lanes may
actually be contributing to higher crash rates due to
blocking visibility of approaching vehicles in the adjacent
through lanes. Figure 1.1 and Figure 1.2 show these
issues and highlight the design issues at SR-43 and US 40
respectively.

Figure 1.1 is an example located on SR-43 at the
northbound I-65 off ramp, in Tippecanoe County. This
intersection had 66 WB to NB right-turn rear-end
crashes in a 3-year period (7/1/2012 to 6/30/2015).

Figure 1.2 is an example located at the eastern
intersection of US-40 with SR-267/Quaker Blvd, in the
Town of Plainfield. It includes an EB right-turn lane to
SB SR-267/Quaker Blvd. There were 17 NB to EB
right-turn rear-end crashes in a 3-year period from

Figure 1.1 The right-turn lane in the SR 43 and I 65
intersection.

Figure 1.2 The intersection of US-40 and SR-267.

2013–2015, and there were 10 EB to SB right-turn rear-
end crashes in a 3-year period from 2013–2015.

There are various factors that influence on the deci-
sion on whether right-turn lanes should be used, and if
yes, which right-turn lane design should designers follow.
A systematic analysis of the safety issues related to right-
turn lanes is critical to understand (1) current limitations;
(2) identify factors that contribute to crashes at these
intersections; and (3) provide recommendations for design.
Currently, the INDOT does not have the guidelines for
use of alternative turn-right lane designs. It is critical to
have guidelines for designers so they can quickly narrow
down options for consideration. These guidelines should
be based on modeling tools that will used data from past
crashes and diagnose high crash intersections and provide
recommendations to improve safety.

The objectives of the research project are to (1)
collect data from INDOT and conduct data analysis of
the crashes at right-turn lanes; (2) identify factors that
contribute to the crashes at right-turn lanes; (3) identify
geometric design variables that correlate with right-turn
crashes; and (4) provide recommendations to mitigate
crashes and develop guidelines for use of alternative
intersection designs, to improve safety. The guidelines
are suggested based on the combination of performance
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measures obtained from the data at candidate intersec-
tions and analysis that will be conducted.

1.2 Study Benefits and Deliverables

By implementing this project, INDOT will gain the
following significant benefits:

1. Future number of crashes and crash severity will be reduced.

2. Future intersection designs will be improved.

Deliverables of this project include the following:

1. A list of right-turn lane design alternatives. A list of right-
turn lane design alternatives and key recommendations
will be provided. The key factors help to select which
right-turn lane should be used.

2. Guidelines that will serve as a tool to utilize at high crash

risk intersections. Decision making at right-turn intersec-
tions with islands is complex. We will develop guidelines
that facilitate the identification of high-risk intersections,
guidelines for data collection and analysis and design
guidelines to improve the safety. This guideline will
facilitate the process of analyzing them internally and
summarizing a set of alternatives that guide INDOT’s
decisions on selection of right-turn lane designs. INDOT
engineers can use these guidelines at the design stage and
construction stage for new intersections and possibly
redesign existing intersections.

2. LITERATURE REVIEW

2.1 Common Layout and Traffic Controls of Right-Turn
Lanes

Among common right-turn lane designs, there are four
main layouts depending on whether there is designated
right-turn lane, whether there is an island, and whether
there is a dedicated downstream lane. We examine the
four layouts and summarize the pros and cons in the
following lists:

1. Designated right-turn lanes (Figure 2.1)

Pros

N Allows right-turn-on-red (unless prohibited), reducing
right-turn queues.

N Removes turning vehicles from through vehicle lane for
improved intersection operations.

N Lower turning speeds provides a safer pedestrian envir-
onment.

Cons

N All vehicles must stop on red, potentially increasing the
right-turn queue.

Figure 2.1 Designated right-turn lanes.

N The absence of an island eliminates its use for (1)

placement of traffic control devices and (2) a pedestrian

refuge.

2. Shared lane with island (Figure 2.2)

Pros

N Provision of islands permits its use for placement of

traffic control devices or as a pedestrian refuge.

N Removes turning vehicle from head of queue.

Cons

N May encourage higher speeds.

N If signal support is located on the island, pedestrians will

need to cross uncontrolled lane to reach pedestrian push

button.

N Design may result in small island size.

N The through movement queue may obstruct the throat of

the right-turn lane, reducing capacity of the intersection.

3. Exclusive right-turn lane with island (Figure 2.3)

Pros

N Provides relatively free movement for vehicles after

yielding to pedestrians and opposing traffic, reducing

right-turn queues.

N Removes turning vehicles from through vehicle lane for

improved intersection operations.

Cons

N Higher turning speeds may present a hazard to pedestrians.

N Driver attention is split between looking back to merging

traffic and looking forward to pedestrian crossing points

that may be present in front of the vehicle.

4. Right-turn lane with island and dedicated downstream
lane (Figure 2.4)

Pros

N Benefits motorized vehicles by lowering emissions and

increasing capacity.

Figure 2.2 Shared lane with island.

Figure 2.3 Exclusive right-turn lane with island.
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Figure 2.4 Right-turn lane with island and dedicated down-
stream lane.

N Provides free flow of turning vehicles, reducing right-turn
queues.

N Eliminates need to look for merging vehicles (attention
may be focused ahead of vehicle because driver is enter-
ing dedicated lane).

N Removes turning vehicles from through vehicle lane for
improved intersection operations.

Cons

N High turning speeds are detrimental to pedestrian safety,
so this design is not generally recommended in the urban
environment.

N Vehicles are observed to frequently stop prior to entering
the cross street even with an available dedicated lane,
because drivers do not know they have a dedicated lane
or how long it lasts.

N Dedicated downstream lane must be sufficient length for
vehicles to merge.

N Access needs to be managed along dedicated downstream
lane to ensure proper operation.

2.2 Right-Turn Lanes and Crashes Evaluations

There are two major type of crashes related to right-
turn lanes, including right-angle crashes and rear-end
crashes. The right-angle crashes happened when two
vehicles collide perpendicular to each other. It mainly
locates within intersection. The rear-end crashes hap-
pened when two vehicles traveling the same direction
collide—with the front of the following vehicle colliding
with the rear of the leading vehicle. It is more likely to
occur at the beginning of right-turn lanes or upstream of
intersection due to deceleration behaviors of right-turning
vehicles. In the section, we mainly discuss the relation-
ships between right-turn lanes and the two types of
crashes.

Dixon et al. (1999) analyzed the crashes history at 17
signalized intersections with various right-turn treat-
ments in Cobb County, Georgia, to identify the effects
of those right-turn treatments on right-turn crashes. The
use of a traffic island appears to reduce the number of
right-angle crashes. The addition of an exclusive right-
turn lane appears to correspond to elevated sideswipe
crashes. The addition of an exclusive lane on the cross
street for right-turning vehicles (i.e., an acceleration
lane) does not appear to reduce the number of rear-end
crashes when no additional control is implemented.

Ale (2012) measured the crash reductions due to
right-turn lanes with intersections in Minnesota and
concluded that right-turn lanes reduced right-turn
movement related crash occurrences and conflicts by

85% and 80%, respectively. Right-turn lanes also reduced
crash injury severity, hence, reducing the economic cost
by 26%. Safety benefits, in dollars, realized with the use
of right-turn lanes at driveways were 29% and 7% higher
compared to those at intersections at low and high-speed
conditions respectively for similar traffic conditions.
Later, Ale et al. (2014) collected 5-year crash data on
Minnesota’s two-lane trunk highways and identified the
safety benefits of right-turn lanes. The installation of
right-turn lanes was found to reduce such RE crashes, on
average, by 30% (not completely eliminate), reduce crash
injury severity, and decrease the associated economic
costs by 26%. According to the analysis of the South
Australian crash data, Right-turn lanes at signalized
intersections appear to reduce right-turn crashes as well
as rear-end crashes (Kloeden et al., 2007).

McCoy et al. (1995) conducted field studies on rural
two-lane highways and found a higher incidence of
merging conflicts from vehicles entering the cross street
from a channelized right-turn without an acceleration
lane than those with an acceleration lane. Based on
further accident analysis, it was concluded that channel-
ized right-turn lanes do not provide the road user with
any safety benefits. Tarawneh and McCoy (1996) con-
ducted field investigations to study the effects of the
geometrics of right-turn lanes on the turning performance
of drivers at signalized intersections with channelized
right-turn lanes. The investigation found that drivers turn
right at speeds 5 to 8 km/h (4 to 5 mph) higher on
intersection approaches with channelized right-turn lanes
than they do on approaches without channelized right-
turn lanes. In addition, it was observed that drivers are
less likely to come to a complete stop before turning onto
the cross street on approaches with channelized right-
turns. Abdel-Aty and Nawathe (2006) showed that the
presence of channelized right-turn lanes on the major
road had no significant effect on total crashes but was
linked to an increase in turning and sideswipe crashes and
the presence of channelized right-turn lanes on the minor
road was associated with a decrease in total crashes
and an increase in rear-end crashes, after analyzing 1,562
signalized intersections from 6 counties in Florida.
Fitzpatrick et al. (2016) implemented a study on relation-
ships between crashes and characteristics of channelized
right-turn lanes, with a special focus on driver age. They
tested the differences in distributions of drivers for
different right-turn treatment types, for with or without
downstream departure lane, and for existing island or
not. The results indicate the older Texas drivers are
similarly involved in crashes for each type of right-turn
treatment and presence of downstream departure lane is
benefit to older drivers. In addition, the island may be
serving as a surrogate for other characteristics of those
approaches.

Hochstein et al. (2007) investigated the offset right-
turn lane implementation at three two-way stop con-
trolled rural expressway intersections that were effective
in reducing the frequency of near-side right-angle
collisions occurring.
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2.3 Contributing Factors to Crashes

2.3.1 Modeling Approaches

The contributing factors for crashes have been
investigated for few decades. Researchers also devel-
oped various methods, mainly based on statistical
techniques, ranging from descriptive statistics, fre-
quency analysis, chi-square based hypothesis testing,
analysis of variance, and econometric models. Besides
econometric models, all other methods identify the
correlation relationship between crash frequency and
contributing factors. The econometric models show a
comprehensive understanding of influencing factors for
crash frequency, as well as crash ratios and severity. In
the section, we mainly summarize the current usage of
control study methods and econometric models.

The three representative analysis approaches in
control study methods are the before-after evaluation
with yoked comparisons, before-after evaluation with a
comparison group, and the Empirical Bayes method
(Harwood et al., 2002). The first approach is a tradi-
tional one to evaluate traffic crash countermeasures
and involves one-to-one intersection matching with and
without certain countermeasures. The purpose of the
matched or yoked comparison sites is to account for the
effects of time trends. The second approach is a vari-
ation of the first approach and is intended to estimate
the safety effectiveness of an improvement, or combi-
nation of improvements, while controlling for time-
trend effects. This is achieved by careful selection of a
suitable comparison group of intersections to match the
improved intersections, so that the above-mentioned
effects will be manifested equally in the treatment and
the comparison groups. The last approach is the Empi-
rical Bayes (EB) method. The distinctive features of the
EB method are threefold. First, since there is a potential
for selection bias in the choice of improvement sites,
the EB method attempts to account for that bias, which
neither the yoked comparisons nor the comparison
group approach can. Second, the EB method attempts
to account explicitly for changes from ‘‘before’’ to ‘‘after’’
in causal factors such as traffic volume. This is parti-
cularly important for intersections, since the expected
number of accidents at an intersection is a nonlinear
combination of the various conflicting flows, and it is
often inappropriate to use a simple accident rate to
account for the influence of changes in traffic volume.
Third, in the comparison group approach, it is common
to use only 2 to 3 years of ‘‘before’’ accident data for fear
that older accident counts are no longer relevant; the EB
method can correctly exploit the information in older
accident counts, which is particularly important for
intersection types that experience only a limited number
of accidents per year.

Among the three control study methods, the EB
approach should be considered the most desirable
approach for observational before-after evaluation of
safety improvements. The EB approach is the only
evaluation approach with the potential to compensate

for regression to the mean. Where the EB approach
cannot be applied, the yoked comparison approaches
should be considered as preferable to evaluation designs
without comparison sites. The comparison group app-
roach should generally be considered as preferable to
the yoked comparison approach, because it incorpo-
rates a comparison group consisting of multiple sites.
However, both the yoked comparison and comparison
group approaches are likely to provide overly optimistic
evaluation results.

Depending on the dependent variables, different
econometric models are introduced. Considering the
count nature of crash frequency that violates normal
distribution, we always utilize the count data models
(lognormal, Poisson, and negative binomial regres-
sion analyses) or generalized linear regression models
instead of linear regression. Bauer and Harwood (2000)
examined the performance of count data models for
intersection crashes with explanatory variables of inter-
section geometric design, traffic control, and traffic
volume variables. They also identified the applicabi-
lity of models according to intersection design layouts.
Generally, negative binomial regression models were
developed to fit the accident data at rural, three- and
four-leg, STOP-controlled intersections and urban,
three-leg, STOP-controlled intersections. On the other
hand, lognormal regression models were found more
appropriate for modeling accidents at urban, four-leg,
STOP-controlled and urban, four-leg, signalized inter-
sections. The decision to use negative binomial or
lognormal regression analysis was based on evaluation
of the accident frequency distribution for the specific
categories of intersections. Souleyrette et al. (2004)
extended the generalized linear mixed model with
covariance components that can address the correlated
dependent variables while estimating crash frequencies
and confirmed the outperformance of generalized
linear models and its combination with covariance
components. However, there are no extensive discus-
sions on performance between the count data model
and generalized linear mixed model, while modeling
the crash frequencies.

Instead of crash frequencies, the crash ratio, or the
probability of crashes at intersections are alternative
dependent variables. For the crash probability specifica-
tions, the logistic regression is much popular. Lombardi
et al. (2017) introduced the multivariate logistic regres-
sions to investigate the impacts of ages on crash ratios.
Ale et al. (2014) used the logistic regression for safety
performance of right-turn lanes. Ale (2012) proposed
binary logistic regression to model the probabilities of
crashes caused by right-turning vehicles.

Except for crash frequencies or ratios, few studies
explored the contributing factors for crash severity.
Obviously, the crash severity can be ranked based on
property damage, injury, and death. Ordered logit or
probit model are frequently adopted for the variable,
for example, Jin et al. (2010) modeled the right-angle
crash severity with ordered probability model; and
Anowar et al. (2014) analyzed intersection crash severity
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with ordered probit model. However, few studies also
processed the crash severity without rank and specify
with multinomial logistic regression model (Ale, 2012).

An alternative method to econometric models is
classification tree (Miller et al., 2011). Based on the
classification techniques in data mining, researchers
can identify a bunch of variables that will lead to a
certain type of crash, such as rear-end and right-angle.
These classification trees gave average error rates of
12.21% (angle crashes) and 16.20% (rear-end crashes),
which for all intersection classes were lower than the
error rates that would have resulted from an educated
guess.

2.3.2 Influencing Factors

Considering the compound effects on intersection
crashes, we should have a comprehensive understand-
ing of influencing factors, including drivers, facilities,
environment, vehicles, and road. The analyses should
not be limited to the impacts of right-turn lanes on
right-turn related crashes. In the following section, we
will summarize current findings on variables related to
traffic and roadway characteristics, environment and
intersection characteristics, and road users.

2.3.2.1 Variables related to traffic and roadway
characteristics. In Bauer and Harwood (2000) study,
the regression models of the relationships between acci-
dents and intersection geometric design, traffic control,
and traffic volume variables were found to explain
between 16% and 39% of the variability in the accident
data. However, most of that variability was explained
by the traffic volume variables (major road and cross-
road average daily traffic volumes). Geometric design
variables accounted for only a small additional portion
of the variability. In another study by Miller et al.
(2011), traffic and roadway characteristics, including
vehicle speed, alignment, traffic control, driver visibility
obstruction, traffic volume, shoulder width, and surface
condition, together with few environment-related vari-
ables, were major variables for classify various crashes.

Wang and Abdel-Aty (2007) studied 197 four-leg
signalized intersections in Florida and discovered the
significance of conflicting flows and geometric designs.
The logarithm of the product of the conflicting through
movements is consistently the most significant variable
to explain right-angle crashes. The significance of this
factor confirms the assumption that the frequency of
collisions is related to the traffic flow to which the colli-
ding vehicles belong and not to the sum of the entering
flows for right-angle crashes. For geometric design
features, the number of through lanes and angle of the
intersections were identified as significant.

Schattler et al. (2016) discovered a set of variables
having stronger relationship with right crashes: right-
turn approach ADT, right-turn radius, and right-turn
approach speed. Furthermore, the right-turn lane design
was discussed based on seven test intersections. App-
roaches with right-turn angles less than 45 degree and

head-turn angles greater than 140 degree were associated
with significantly higher crash rates. Fitzpatrick et al.
(2016) found that the older Texas drivers are similarly
involved in right-turn related crashes under different
levels of corner radii. Pernia et al. (2002) found that
intersections with higher ADT, with more than four
lanes, located either in urban or business areas would
have more crashes than intersections with lower ADT,
with four or less lanes, and located ether in rural or in
other areas. Intersections with posted speed higher than
45 mph (72.41 km per hour) and paved shoulder would
have fewer crashes than with posted speed lower or equal
to 45 mph (72.41 km per hour) and with other types of
shoulder. Intersections with median would have more
crashes than without median except for rear-end crashes
before signalization. In reference to the impacts of sig-
nalization on intersection crashes, based on average
number of crashes estimated from the models, all crashes
would increase except when low volume, angle crashes
would decrease except for several cases on intersections
with more of four lanes, left-turn crashes would decrease,
rear-end crashes would increase except for several cases,
and all other crashes would increase except for several
cases of intersections with low volume.

Cooner et al. (2011) implemented a field study of 20
dual right-turn lanes in Texas urban areas and indicated
that presence of channelization was a major contribut-
ing factor to high rear-end crash rates at dual right-turn
lanes. The angle crashes at dual right-turn lanes can be
caused by ‘‘trapped’’ through drivers on the curbside
exclusive right-turn lane under unfriendly geometric
conditions and inappropriately designed elements (e.g.,
small radii, confusing turning guidelines).

Abdel-Aty et al. (2006) investigated 1,335 intersec-
tions in six counties in Florida and concluded that
expected crash frequency increased as the total number
of lanes increased at all types of intersections and increase
rate higher at four-legged two-way intersections than
others. The dominant crash types were different at diffe-
rent intersection types, angle crashes at four-legged one-
way intersections unlike rear-end crashes at other inter-
sections. In addition, the crashes with higher severity
were generally at four-legged two-way intersections and
T-intersections.

Clarke and Tracy (1995) reported that 13% of all
bicycle/motor vehicle crashes resulted when motorists
were making a right-turn movement, and a majority of
these crashes involved a straight-through bicyclist being
struck by a right-turning motor vehicle. This is a little
higher than another study reporting 5% of bicycle/
motor vehicle crashes occurred when a motorist made a
right-turn and 4% of bicycle/motor vehicle crashes occur-
red at an intersection controlled by a signal at which the
motorist struck the bicyclist while making a right-turn-
on-red. They also indicated that many bicyclists find
changing lanes difficult or choose to ignore signage and
pavement markings. Asgarzadeh et al. (2017) analyzed
the bicycle related crashes in New York City and con-
firmed the crashes at non-orthogonal intersections are
1.37 times than those at orthogonal intersections. Crashes
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involved a truck or bus were twice as likely to result in a
severe injury. In contrast, street width was not signifi-
cantly associated with injury severity.

2.3.2.2 Variables related to environment and inter-
section characteristics. Choi (2010) found that crash
occurrence while ‘‘turning right’’ at stop sign may be
attributed to ‘‘false assumption of other’s action.’’
Preston and Storm (2003) worked on a sample of rural
thru-stop controlled intersections with high crash
frequency and identified the causality of the crashes,
including increasing the conspicuity of traffic control
devices by using bigger, brighter or additional signs
and markings appears to lower the frequency of Ran
the STOP crashes; rumble strips do not appear to be
effective at reducing the frequency of Ran the STOP
crashes (intersections with and without rumble strips
had the same frequency of crashes); intersection sight
distance does not appear to be related to the frequency
of gap selection related crashes; and proximity to
other controlled intersections may be related to crash
frequency.

Wang and Abdel-Aty (2007) concluded that high
design speed was associated with more right-angle
crashes. Chin and Haque (2012) showed that red light
cameras were effective in reducing the proneness of at-
fault right-angle crash involvements of light and heavy
vehicles and hence the vulnerability of motorcyclists in
right-angle collisions and the probability of potential
right-angle collisions was reduced when red light
cameras were installed in any or both of the interacting
approaches. Quddus et al. (2001) confirmed the impor-
tance of existence of surveillance camera, number of
phases per cycle and high imposed approach speed in
higher likelihood of motorcycle crashes, together with
heavy approach traffic volumes, the presence of uncon-
trolled left-turn lane, and larger approach road width.
On the other hand, a higher number of bus bays, the
presence of an acceleration section or exclusive right-
turn lane and the average cycle time and the adaptive
signal control will decrease the likelihood of crashes.

Bui et al. (1990) implemented a before-after study on
217 intersection approaches in Australia and quantified
the safety benefits of right-turn phase. Installation of
partially controlled right-turn phases had no apparent
safety benefits. From no control to fully controlled
right-turn phase showed a 45% reduction in accidents,
especially in right through crashes (right-turn with
through vehicle from opposing lanes), however a 72%
increase in rear-end and left-rear accidents. From parti-
ally controlled to fully control right-turn phase showed
higher reductions in crashes, 65%, but lower increase in
rear-end and left-rear crashes. Another recent study by
Kloeden et al. (2007) measured the impacts of traffic
control directly from Australian crash data and showed
similar advantages of right-turn phase. Full control of
right-turn movements at signalized intersections was a
highly effective method of reducing right-turn crashes
at such intersections but partial control of right-turn
movements at signalized intersections (where the traffic

signals control right-turns for only part of the time)
appears to be ineffective in reducing right-turn crashes
at such intersections. In addition, the right-turn arrows
are most effective when also in operation during peak
traffic periods and red-light cameras and in particular
those that also measure vehicle speeds have the poten-
tial to reduce right-turn crashes at signalized. Wang and
Abdel-Aty (2007) also confirmed that a flashing opera-
tion during the late-night and early-morning hours
increases right-angle crashes. Moreover, the signal
timing is also significant for intersection crashes, such
as normalized all-red intervals at the entering roadway
and the differences between the real values and the
standard values for yellow and all-red intervals. In
contrast, Souleyrette et al. (2004) worked on 228 inter-
sections in Minneapolis but results did not support the
commonly held hypothesis that an all-red clearance
interval inherently improves traffic safety at signalized
intersections.

Preston and Storm (2003) also documented the light
condition as one causality of the crashes, based on the
facts that vehicles are running the STOP signs at inter-
sections without street lights at twice the statewide
average for all crashes. Mitra (2014) evaluated the
impacts of sun glare on intersection crashes and mainly
examined crashes along the east bound directions in the
morning and those along the west during the evening
glare window. Results indicate that odds of glare crash
occurrence are higher in east and west bound compared
to north and south bound directions. Adverse effect of
glare is found to be greater in early spring, fall and in
winter compared to summer months. There is some
evidence that rear-end and angle crashes at signalized
intersections are affected by sun glare.

2.3.2.3 Variables related to road users. The socio-
economic status of road users is attracting more
attentions while analyzing intersection crashes, as the
country is aging. Researchers have identified that the
right-turn maneuver is more problematic for aging
drivers compared with young or middle-aged drivers,
presumably as a result of age-related diminished visual,
cognitive, and physical capabilities. Lombardi et al.
(2017) investigated the national fatal crash database
and indicated that the aged drivers are more likely to be
involved in fatal crashes. Choi (2010) found that drivers
54 and younger are generally involved in crashes at
intersections controlled by traffic signals due to ‘‘dis-
traction,’’ ‘‘inattention,’’ ‘‘illegal maneuver,’’ or ‘‘too fast
for conditions/aggressive driving.’’ Similarly, Kloeden
et al. (2007) concluded that both older and young
drivers are at particular risk of being involved in a crash
while turning right at a signalized intersection, based on
South Australian crash data. Braitman et al. (2007)
showed that drivers 80 years and older had fewer rear-
end crashes than drivers ages 35–54 and 70–79, and
both groups of older drivers had fewer ran-off-road
crashes than drivers ages 35–54. Crashes where drivers
failed to yield the right-of-way increased with age and
occurred mostly at stop sign–controlled intersections,
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generally when drivers were turning left. The reasons
for failure-to-yield crashes tended to vary by age. Com-
pared with drivers ages 35–54 and 80 and older, drivers
ages 70–79 made more evaluation errors—seeing another
vehicle but misjudging whether there was adequate
time to proceed. In contrast, drivers 80 and older
predominantly failed to see or detect the other vehicle.
Drivers ages 35–54 also tended to make search errors,
but theirs were due more often to distraction. Preston
and Storm (2003) indicated that drivers under 20 and
over 85 are overrepresented in STOP and Pull Out
crashes and drivers between the ages of 25 and 40 were
overrepresented in Ran the STOP crashes at rural thru-
stop controlled intersections.

In addition, Choi (2010) examined the impacts of
gender on intersection crashes. The involvement of female
drivers of all ages in the intersection-related crashes may
be attributed to ‘‘distraction’’ or ‘‘inattention.’’ On the
other hand, male drivers of all ages are likely to be invol-
ved in such crashes due to ‘‘illegal maneuver,’’ or ‘‘too fast
for conditions/aggressive driving.’’

Aust et al. (2012) concluded that drivers who were
performing a turning maneuver in these crashes faced
perception difficulties and unexpected behavior from
the primary conflict vehicle; on the other hand, drivers
who were going straight had less perception difficul-
ties but largely expect any turning drivers to yield,
which led to either slow reaction or no reaction at all.
Fitzpatrick et al. (2016) found that Texas drivers with
different miles driven are similarly involved in right-
turn related crashes.

The summary of the literature review for the right-
turn lane geometric design can be seen in the Table 2.1.

2.3.3 Data Preparation

To have a comprehensive understanding of contri-
buting factors, we should collect data from multiple
sources covering roadway characteristics, crash records,
road users, etc. In general, the data on intersection
geometric is sponsored by state or national Depart-
ment of Transportation (DOT) or collected from team
member experiences, Google Earth/Maps, and Google
Street View. The dataset includes number of legs, type
of intersection traffic control, presence of street light-
ing; angle between approach and the cross street
(whether skewed), corner radius, island dimension,
turn lane type and characteristics, design speed, and
neighboring significant intersection exist within 300 ft
of the subject intersection on the approach leg. Another
important database is the crash record or police report,
which should collect directly from state or national
transport authorities. Within the crash record or police
report, we can obtain detail descriptions on crash time,
location, reasons, environment, drivers, and vehicles.
Few additional databases are also very interesting. The
national household travel survey database presents
the number of interviewed drivers and their average
annual miles driven. US DOT, together with US census
data provide number of drivers in spatial units of

interest. State Traffic Count Database can estimate the
most-to-update Annual Average Daily Traffic event at
link level. All these databases yield insights into crash
occurrence and causality.

Green and Agent (2003) developed a simple three
step to combine multi-source database into a unified
one. First, they utilized milepoint log database contain-
ing an inventory of the location of various landmarks
including intersections for all state-maintained routes in
Kentucky to identify candidate intersections, according
to the objectives and expectations. Second, they deter-
mine intersection volumes from most up-to-date average
annual daily traffic. Last, they combine crashes with
intersections.

In addition, the Manual of Transportation Engine-
ering Studies (Schroeder et al., 2010) provides an equa-
tion to estimate the sample size required to obtain a
given accuracy to a specified confidence and margin of
error shown below:

N~
SK

E

� �2

where, N is sample size, S is the estimated standard
deviation, K is the corresponding constant applicable to
the level of confidence for the study, 1.96 if under a
95% confidence level, and E is the allowable error in the
estimation of the sample mean.

2.4 Best Practices

Mitigating right-turn-lane related crashes has many
countermeasures, including but not limited to right-
turn lane geometry (e.g., channelization and dedicated
lanes), intersection geometry (e.g., improve sight dis-
tance), traffic control (e.g., signal phasing), and bicycle/
pedestrian protections. In the following sections, we
will select few countermeasures from each of above four
categories and summarize current guidelines on coun-
termeasure implementation and safety impacts (both
proven and promising).

2.4.1 Right-Turn Lane Geometry

Many states have posted their warrants for right-turn
lanes. The North Dakota DOT (2014) considers the
traffic control at intersections, turning volumes, and
crashes. In general, the following conditions should be
met for non-controlled approaches:

N a posted speed is greater than 50 mph (not controlled
with traffic signal, stop sign, or yield sign),

N turning traffic volumes are above the critical volume, and

N all installations of right-turn lanes should implement
engineering judgement.

Oregon DOT (2003) also takes volume, crash, and
engineering judgement into account. In addition, they
also consider few special cases, such as railroad cros-
sings, passing lane, geometric/safety concerns, signa-
lized intersections, and all additions should compile
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TABLE 2.1
Literature review of the geometric design for intersection and right-turn lanes

Study Sample Sizes Intersections Variables Models

Bauer and Harwood
(2000)

1,434 intersections All types Geometric designs, traffic
controls, and traffic
volumes

Regression

Miller et al. (2011) 72,218 crashes/
.6,000
intersections

All types Environment-related
variables,
and traffic and roadway
characteristics

Regression and crash
estimation models

Wang and Abdel-Aty
(2007)

197 intersections Four-leg
signalized
intersections

Geometric designs, number of
through lanes, and angle of
the intersections

Regression

Schattler et al. (2016) 3,174 crashes at 10
intersection

Right-turn Right-turn approach ADT,
right-turn radius, and
right-turn approach speeds

Regression, crash
modification factors

Cooner et al. (2011) 20 intersections Dual right-turn
lanes

Geometric and signal designs Collision diagrams, field
conflict study, and
comparison study

Abdel-Aty et al. (2006) 26,603 crashes at
1,335 intersections

Signalized
intersections

Intersection geometries,
number of lanes,
angle of
intersections

Regression

Asgarzadeh et al.
(2017)

3,266 bicycle motor
vehicle crashes

All types AADT, design speed,
geometric designs, road
surfaces, road characters,
time of day, vehicle types,
and individual socio-
demographic
characteristics

Regression

Choi (2010) 2,188,969 crashes
(787,236
intersection
crashes)

All intersections
and non-
intersections

Turned with obstructed views,
traffic control devices,
external distractions, and
atmospheric conditions

Descriptive statistics,
relative ratio,
generalized logit
model, and configural
frequency analysis

Preston and Storm
(2003)

2,296 crashes at 1,604
intersections

All types Signs, intersection sight
distances, sight obstructions
to signs, presence of other
devices, proximity
(distance) to other
controlled intersections,
daily traffic volumes

Descriptive analysis

Wang and Abdel-Aty
(2007)

197 intersections Four-leg
signalized
intersections

Geometric designs, number of
through lanes, angle of the
intersections, and traffic
signals

Regression

Chin and Haque (2012) 8,613 two-vehicle
right-angle crashes

All types Number of lanes, traffic
signals, vehicle types, and
red-light cameras

Relative crash
vulnerability

Quddus et al. (2001) 54 intersections For-leg
signalized
intersections

Surveillance cameras, signal
controls, design speed,
traffic volumes, road
characteristics, bus bays,
and intersection designs

Regression

Bui et al. (1990) 129 intersection Right-turn
intersections

Type of intersections, number
of right-turn lanes, divided/
undivided roads, number of
opposing lanes, tram route/
non-tram routes, and signal
controls

Descriptive analysis, and
regression

Kloeden et al. (2007) Fatality: 24
Casualty: 37,476
All report crashes:

203,184

Right-turn
signalized
intersections

Traffic flow, traffic phrasings,
genders, drivers’ ages, and
vehicle types

Descriptive analysis

Mitra (2014) 67,491 crashes at 291
intersections

Signalized
intersections

Sun glare Descriptive analysis
(Anova and
frequency)
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with access management spacing standards and con-
form to applicable local, regional, and state plans. Iowa
DOT (2010) proposes few critical volume, for instance,
30 vehicles per hour for right-turn volume, 400 vehicles
per hour for approach volume, and 20 vehicles per
hour for approach truck traffic. In addition, at some
intersections on four-lane expressways within 5 miles
(8 kilometers) of some urban areas with a population
of 20,000 or greater, drivers have used the granular
shoulders as right-turn lanes. Right-turn lanes should
be provided at all school locations regardless of turning
and approach volumes. Other locations where right-
turn lanes may be judged to be warranted by the project
management team include main entrances for towns,
shopping areas, housing developments, attraction loca-
tions such as recreational areas, and locations that
would have special users such as truck traffic or campers.
Special attention should be given to intersections
serving locations that attract elderly drivers such as
drug stores, grocery stores, retirement developments,
medical facilities, nursing homes, etc. Intersections
with paved side roads should also be considered for
right-turn lanes. Washington State DOT (2017) iden-
tify the candidate intersections for right-turn lanes
based on volumes and two-lane and multilane road-
ways with a posted speed of 45 mph or above. Michigan
DOT (2008) does not provide details in guidelines
besides few situations. A right-turn lane may be appro-
priate in situations where there are an unusually high
number of rear-end collisions on a particular approach.
Installation of a right-turn lane on one major road
approach at a signalized intersection is expected to reduce
total crashes. Arizona DOT (2019) simply propo-
ses three concerns: (1) the combination of through traffic
volume and turning traffic volume, (2) the posted
roadway speed, and (3) the number of through lanes
on the roadway. The Federal Highway Administration
recommends the right-turn lanes for unsignalized inter-
sections with a high frequency of rear-end crashes result-
ing from conflicts between (1) vehicles turning right and
following vehicles and (2) vehicles turning right and
through vehicles coming from the left on the cross street
(FHWA, 2014a). Moreover, FHWA recommends longer
right-turn lanes for unsignalized intersections that have
an existing right-turn lane that is not long enough to store
all right-turning vehicles and that is experiencing a high
frequency of rear-end crashes resulting from the con-
flict between vehicles waiting to turn right and following
vehicles (FHWA, 2014a).

Among all practices of right-turn lanes, Washington
State DOT (2017) indicates an overall crash reduction.
Michigan DOT (2008) presents the safety benefits that
are 65% reductions in rear-end right-turn crashes and
20% reductions in others, sideswipe same direction
crashes after installing right-turn lanes. FHWA con-
cluded based on related research that added right-turn
lanes are effective in improving safety at rural unsig-
nalized intersections. Installation of a single right-turn
lane on a rural major road approach would be expected
to reduce total intersection crashes by 14%. Right-turn

lane installation reduced crashes on individual appro-
aches to four-legged rural unsignalized intersections by
27%. Installing a right-turn lane on one approach to a
signalized intersection can reduce crashes by 4% and by
8% on two approaches. Lengthening of right-turn lanes
may also reduce the potential for rear-end collisions
between right-turning vehicles by providing longer
entering taper and deceleration lengths. While there is
no consensus on a quantitative estimate of the safety
effectiveness of lengthening right-turn lanes, one study
indicated that crashes could be reduced up to 15%. This
effectiveness is likely to depend on the existing length of
the right-turn lane, the proportion of time during which
the storage capacity of the lane is exceeded, the volume
and speed of traffic on the intersection approach,
and the available sight distance to the rear of the right-
turn queue. Potts et al. (2006), funded by National
Cooperative Highway Research Program (NCHRP),
discussed the relationship between lane width and
crashes. A number of past studies have been conducted
to determine the traffic safety effects of lane width, but
results are varied. Despite the extensive research that
has been conducted on the effect of lane width on
motor vehicle safety, it is difficult to draw any defi-
nite conclusions about the relationship. Furthermore,
researchers do agree that increasing the space between
bicyclists and vehicles should result in increased bicycle
safety. No studies have determined a quantitative rela-
tionship between lane width and bicycle safety, as well
as between lane width and pedestrian safety. Harwood
et al. (2002), funded by FHWA, compared hundreds
of improved intersections with right-turn lanes with
hundreds of intersections without right-turn lanes
across eight states. Adding right-turn lanes are effective
in improving safety at signalized and unsignali-
zed intersections in both rural and urban areas. Instal-
lation of a single right-turn lane on a major-road
approach would be expected to reduce total intersec-
tion accidents at rural unsignalized intersections by 14%

and accidents at urban signalized intersections by 4%.
Right-turn lane installation reduced accidents on indi-
vidual approaches to four-leg intersections by 27%

at rural unsignalized intersections and by 18% at urban
signalized intersections. Only limited results were found
for right-turn lane installation at three-leg intersections.
Installation of right-turn lanes on both major-road
approaches to a four-leg intersections would be expec-
ted to increase, but not quite double, the resulting
effectiveness measures for total intersection accidents
turn-lane improvements at rural intersections resulted in
larger percentage reductions in accident frequency than
comparable improvements at urban intersections. there
is no indication that any type of turn-lane improve-
ment is either more or less effective for different accident
severity levels.

A variation of right-turn lane is the offset right-turn
lane. It is adjacent to the through lane and give drivers
on the minor approach (at the stop bar) an unob-
structed view of through traffic in the near lanes, which
allows for more effective use of gaps. There are two
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main types of offset right-turn lanes: the parallel-type
and the tapered-type, shown in Figure 2.5.

The North Dakota DOT (2014) implemented engi-
neering judgement for installation of offset right-turn
lanes and proposes few examples of locations where
offset right-turn lanes may be beneficial, including
intersections where a crash trend (susceptible to cor-
rection by an offset right-turn lane) has been identified,
intersections with large volumes of turning trucks, or
intersections with sight distance issues. Iowa DOT
(2010) stated that offset (tapered) right-turn lanes may
be considered in areas where sightline difficulties may
occur, such as: at the base of a long or steep decline
(grade 5 5% or larger) or at the crest of a hill. Michigan
DOT (2008) just mentioned offset right-turn lanes as
one countermeasure for certain crashes without detail
guidelines on installation. Schurr and Foss (2012),
funded by Nebraska Department of Roads, focused
upon whether a standard or offset right-turn lanes is the
optimal choice at a given location where a right-turn
lane is warranted along the major roadway of a two-
way stopped-controlled intersection. Results of driver
behavior studies at existing locations of offset right-
turns lanes indicate that drivers are not performing
as expected at parallel-type offset right-turns lanes,
rendering its presence useless. Tapered-type offset right-
turns lanes appear to be much more intuitive to driver
expectancy and appropriate for the three-dimensional
characteristics of all vehicle types. FHWA (2014a)
recommends the offset right-turn lanes at unsignalized
intersections with a high frequency of crashes between
vehicles on the minor road that are turning left, turning
right, or proceeding straight through, and vehicles on
the major road. No research has been conducted on
offset right-turn lanes to determine their safety effec-
tiveness. Safety effectiveness is likely to depend upon

the traffic volumes of the conflicting turning and
through movements and the amount of offset between
the right-turn lanes at the intersection.

Another widely adopted variation of right-turn lanes
is channelized right-turn lanes. Based on a survey,
about 87% of state and local highway agencies are
using channelized right-turn lanes (Potts et al., 2011).
As a popular design, it has many guide books in the
US, such as A Policy on Geometric Design of High-
ways and Streets, Guide for the Planning, Design,
and Operation of Pedestrian Facilities, Manual on Uni-
form Traffic Control Devices (MUTCD), Intersection
Channelization Design Guide (report 279 from NCHPR)
and the Traffic Engineering Handbook from the Insti-
tute of Transportation Engineers. However, all of the
above guidance generally discusses the purpose, con-
siderations, and design elements of the channelized
right-turn lanes without addressing justifications for use
or the type of traffic control used. Based on the survey
by Al-Kaisy and Roefaro (2012), using channelized
right-turn lanes and type of traffic control heavily
relies on engineering judgement by most state and
local agencies, given limited guidance available. This is
particularly true for selection of traffic control, as only
12% of state and 27% of local agencies reported the
use of warrant studies in installing signal control at
channelized right-turn lanes. In addition, an over-
whelming perception by most state and local agencies
about the safety benefits of signal control at channe-
lized right-turn lanes. But have not been supported by
studies or statistics.

One of the advantages of using curbed medians and
intersection channelization is that it provides a better
indication to motorists of the proper use of travel lanes
at intersections. In general, the raised traffic islands are
more effective than flush marked islands in reducing

Figure 2.5 The offset right-turn lanes.
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night crashes particularly in urban areas, little differ-
ence at rural intersections. The right-turn channeliza-
tion affects the speed at which drivers make right-turns
and the likelihood that they will stop before making
a right-turn on red. Potts et al. (2006) reviewed current
knowledge of safety effects of channelized right-turn.
It is generally accepted that channelized right-turns
improve safety for motor vehicles at intersections where
they are used, but there is only limited quantitative
data to demonstrate this. No studies have been found
concerning pedestrian safety at channelized right-turns
that have used crash data to document the pedestrian
safety implications of channelized right-turns because
motor vehicles entering the channelized right-turn
roadway must weave across the path of bicycles travel-
ing straight through the intersection, but no studied
based upon crash history are available to support this
presumption. However, this same type of conflict
between through bicyclists and right-turn vehicles is
present at conventional intersections as well. Potts et al.
(2014) implemented both crash analysis and simulation
and confirmed the advantages of channelized right-
turn lanes for improving operations and safety at inter-
sections. The annual crash predictions for channelized
right-turn lanes and shared through/right-turn lanes were
found to be similar, and 70%–80% lower than those
for conventional right-turn lanes. However, to achieve
these benefits they should have consistent design and
traffic control and should be used at appropriate loca-
tions. The research provides design guidance for chan-
nelized right-turn lanes that addresses geometric elements
such as crosswalk location, special crosswalk signing and
marking, island type, radius of turning roadway, angle
of intersection with cross street, acceleration and decele-
ration lanes, and traffic control.

The next variation of right-turn lanes is the improved
channelized right-turn lanes with tighter turning radii to
reduce turning speeds to approximately 17 to 18 mph,
decrease pedestrian crossing distances and optimize the
right-turning motorists’ line of sight. This is also called
right-turn slip lanes, as shown in Figure 2.6. The
improved channelized right-turn lane design will place a
sharper curve at the downstream end of the lane, which
will force drivers to negotiate the lane more slowly; and

by having the slip lane intersect the destination street at
a larger angle, a driver will have better sight lines of
approaching traffic on the destination street. Known
implementations of this design include an intersection
in Charlotte, NC, and several intersections in Florida
and Texas (Brewer et al., 2014; Gemar et al., 2015).
Nevada also includes the improved channelization in
the state Strategic Highway Safety Plan. Schattler et al.
(2016) examined the safety benefits of improved
channelized right-turn lanes in Illinois and found that
older-driver crash analysis revealed a 70% significant
reduction in right-turn crashes at the subject approach
and younger-driver crash analysis revealed significant
reductions of 43% for intersection crashes, 63% for app-
roach crashes, and 66% for right-turn-related crashes at
the subject approach.

The last variation of right-turn lanes is the combina-
tion of right-turn lanes with deceleration lanes at
upstream and acceleration lanes at downstream. Potts
et al. (2014) listed the advantages of deceleration lanes
before right-turns, including a means for safe decelera-
tion outside the high-speed through lanes for right-
turning traffic; a storage area for right-turning vehicles
to assist in optimization of traffic signal phasing; and a
means for separating right-turning vehicles from other
traffic at stop-controlled intersection approaches. Their
survey showed that 89% of the state highway agencies
and 70% of the local agencies that use channelized
right-turn lanes indicated that they have used decelera-
tion lanes in advance of those channelized right-turn
lanes for at least some locations. In addition, 77%

of the state highway agencies and 43% of the local
agencies that use channelized right-turns indicated that
they have used acceleration lanes downstream of those
channelized right-turns for at least some locations. One
agency responded that acceleration lanes are generally
used when the angle between turning roadway and
intersecting roadway is less than 60 degrees. However,
channelized right-turn lanes with acceleration lanes
appear to be very difficult for pedestrians with vision
impairment to cross. Therefore, the use of acceleration
lanes at the downstream end of a channelized right-turn
lane should generally be reserved for locations where
no pedestrians or very few pedestrians are present.

Figure 2.6 The standard and improved channelized right-turn lanes (FHWA, 2014c).
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Typically, these would be locations without sidewalks
or pedestrian crossings; at such locations, the reduction
in vehicle delay resulting from addition of an accelera-
tion lane becomes very desirable. FHWA (2014a) only
recommends the acceleration lanes for unsignalized
intersections that experience a high proportion of
rear-end and/or sideswipe crashes related to the speed
differential caused by vehicles making a right-turn
maneuver onto the highway. By removing the slower
right-turning vehicles from the through lanes, this
strategy is expected to reduce rear-end and sideswipe
crashes resulting from conflicts between vehicles mak-
ing a right-turn maneuver onto the highway and through
vehicles on the highway. Research has shown that right-
turn acceleration lanes at intersections function effectively
and do not create safety problems. However, no quanti-
tative estimates of the safety effectiveness of right-turn
acceleration lanes at intersections are available.

2.4.2 Intersections Geometry

In real world, it is impossible to build all intersections
following the standard orthogonal layout. Those non-
orthogonal intersections with a certain angle are called
skewed intersections. However, there is some incon-
sistency among reference sources concerning the degree
of skew that can be safely designed into an intersection.
AASHTO green book recommend that factors to adjust
intersection sight distances for skewness are suggested
for use only when angles are less than 60 degrees. ITE
and the Traffic Engineering Handbook provide a larger
one with 75 degrees and define severe skew angles as
60 or less. Skewed intersections pose particular pro-
blems for aging drivers. many aging drivers experience
a decline in head and neck mobility, which compares
advancing age and may contribute to the slowing
of psychomotor responses. Joint flexibility has been
estimated to decline by approximately 25% in aging
adults due to arthritis, calcification of cartilage and
joint deterioration.

One countermeasure for right-turns at skewed inter-
sections is the right-turn-on-red (RTOR) prohibit.
Michigan DOT (2008) proposes a few conditions for
RTOR prohibit, including (1) intersections have sight
distance restrictions to the left that inhibit right-turns
from that approach; (2) more than three RTOR crashes
reported in a 12-month period for the particular app-
roach; and (3) a signalized intersection with a railroad
crossing (and pre-signal) in close proximity (less than
100 feet) shall have a ‘‘No Turn On Red,’’ shown in
Figure 2.7, if one of the following conditions exists: (1)
insufficient clear storage distance for a design vehicle
between the signalized intersection and the railroad
crossing or (2) the highway-rail grade crossing does
not have gates. Institute of Transportation Engineers
also concluded that a significant proportion of drivers
do not make a complete stop before executing an
RTOR, and a significant portion of drivers do not yield
to pedestrians (Schroeder et al., 2010). FHWA (2014a)
adopts the RTOR prohibits at signalized intersections

Figure 2.7 No-turn-on-red sign at skewed intersections
(FHWA, 2014b).

with a high frequency of crashes related to turning
maneuvers. The target of this strategy is right-turning
vehicles that are involved in rear-end or angle crashes
with cross-street vehicles approaching from the left or
vehicles turning left from the opposing approach, and
crashes involving pedestrians. One study in Florida
concluded that prohibiting left turns at intersections
(signalized and unsignalized) can reduce all crashes by
45% and left turn crashes by 90%. That same study
determined that prohibiting right-turn-on-red can
reduce right-angle crashes by 30% and rear-end crashes
by 20%. Sometimes, the standard ‘‘No Turn On
Red’’ sign was added with the supplementary ‘‘When
Pedestrians Are Present’’ message. It was effective at
several sites with low to moderate right-turn vehicle
volumes. However, it was less effective when RTOR
volumes were high. The supplemental message when
added to the ‘‘No Turn On Red’’ sign with the circular
red symbol reduced total pedestrian conflicts at one
site and increased RTOR usage (as desired, from 5.7%

to 17.4%), compared with full-RTOR prohibitions. It
was recommended that the supplemental message be
added to the MUTCD for the ‘‘No Turn On Red’’ sign
with the circular red symbol, under low to moderate
right-turn vehicle volumes and light or intermittent
pedestrian volumes.

Except for signs, the split phasing at signalized
skewed intersections is an alternative countermeasure.
Split phasing allows opposing movements on the same
roadway to proceed through the intersection at diffe-
rent times and is a way to address several geometric
situations that pose safety problems for vehicles on
opposite approaches. Split phasing targets crashes that
occur related to opposing movements proceeding on
the same phase through an intersection. Crash types
related to this situation include angle, head-on left turn,
rear-end-left turn, and other rear-ends. Though studies
have not conclusively proven that implementation of
split phases reduces fatalities and severe injuries at
signalized intersections, the elimination of conflicts
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can logically be expected to reduce crashes. (Michigan
DOT, 2008)

2.4.3 Traffic Control—All Red Interval

The purpose of an all-red clearance interval is to
allow additional time for motorists already in the inter-
section to clear the intersection on the red indication
before conflicting traffic movements are released. All-
red may also be useful in mitigating amber dilemma
zone problems, particularly at high-speed intersections.
Generally, the duration of the all-red clearance interval
is from 0.5 to 3.0 seconds.

Most studies have reported safety benefits from
addition of the all-red clearance interval, but a handful
of studies have produced mixed results. Many studies
have examined the effects of the all-red clearance
interval for several months to a year before-and-after
the implementation. Over time, if drivers become fami-
liar with the presence and length of the all-red interval,
they might push the limits trying to make it through the
signal. If this is the case, over a longer time period
intersection crashes might return to pre implementation
rates.

Based on the crash reductions published by Michigan
DOT, all red intervals can reduce 10% of all types
of crashes. Clearance intervals that are too short in
duration can contribute to rear-end crashes related
to drivers stopping abruptly and right-angle crashes
resulting from signal violations. According to Texas
A&M Transportation Institute, increasing all-red clear-
ance interval can reduce crash by 20% and adding
all-red interval can reduce crashes by 4%. A study con-
ducted in Detroit, Michigan (Datta et al., 2000) showed
that fewer crashes were observed at signals with the
all-red clearance interval. In addition, there was a
reduction in right-angle injury crashes at the treated
intersections. It is important to note that all intersec-
tions studied in this before-and-after analysis were
improved at the same time the all-red clearance interval
was implemented. Therefore, results probably cannot
be wholly attributed to implementation of the interval.
A before-and-after crash analysis in Oakland County,
Michigan (Schattler et al., 2003) was completed at the
three intersections for 2 years before and 2 years after
the signal retiming. At the time of publication of the
study, intersection crashes were reduced at the three
study intersections, but no follow-up research is pub-
lished on final results. A study conducted in Indiana
(Roper et al., 1990) took a different approach to evalu-
ate the effectiveness of the all-red clearance interval.
Rather than looking at only the short term before-and-
after effect of implementation of the all-red clearance
interval, this study examined 2 years before and 2 to 4
years after implementation of the all-red clearance
interval. During the 1-year treatment period, the total
crash rates, left turn crash rates, rear-end crash rates,
right-turn crash rates, and right-angle crash rates
decreased. This immediate decrease in crash rates
was attributed to the implementation of the all-red

clearance interval. Although crash rates decreased
initially, for the 2 years following the treatment year,
crash rates increased to rates similar to or higher than
the initial rates during the before period. The study
compared the intersection crash rates of 28 intersections
with the all-red clearance interval versus 28 intersec-
tions without the all-red clearance interval. Each inter-
section was paired with an intersection based on
entering Average Annual Daily Traffic (AADT), app-
roach speed, and angle of intersection. This compar-
ison showed no significant difference in intersection
crash rates between intersections with and without the
all-red clearance interval. The Indiana DOT is aware of
the study conducted by Purdue University, which
concludes that intersection delay outweighs the safety
impacts of the all-red clearance interval. However, they
have decided to continue using the all-red interval ‘‘in
order to provide the safest roadway system possible.’’

2.4.4 Bicycle and Pedestrian Protections

Statistics gathered by the Oregon DOT (Dixon et al.,
1999) showed that 19% of vehicle-pedestrian crashes
occurred at intersections from drivers making right-
turns. According to crash records information system
by Texas Department of Transportation for the years
2007 to 2012, there was a recent upward trend in total
number of crashes, including pedestrian-related inci-
dents. Of the highway agencies that use channelized
right-turn roadways, 23% of state highway agencies
and 40% of local highway agencies indicated that they
consider pedestrian issues in determining the radius
and/or width of a channelized right-turn roadway. Of
the highway agencies that use channelized right-turn
roadways, approximately 23% of state highway agen-
cies and 17% of local highway agencies have encoun-
tered pedestrian-related safety problems at channelized
right-turn roadways.

According to FHWA (2014a), geometric or physical
improvements that can be made to a signalized inter-
section with high frequencies of pedestrian and/or
bicycle crashes and on routes serving schools or other
generators of pedestrian and bicycle traffic. Possible
countermeasures include continuous sidewalks, signed
and marked crosswalks, sidewalk set-backs, median
refuge areas, pedestrian overpasses, intersection light-
ing, physical barriers to restrict pedestrian crossing
maneuvers at higher-risk locations, relocation of transit
stops from the near side to the far side of the inter-
section, widening outside through lanes (or adding bike
lanes), providing median refuge areas, providing inde-
pendent crossing structures, upgrading storm drain
grates with bicycle-safe designs, implementing lighting,
and other traffic calming applications to reduce vehicle
speeds or traffic volumes on intersection approaches.
Although there are no proven safety benefits of these
improvements, few studies presented some preliminary
results. The presence of sidewalks on both sides of the
street has proven to significantly reduce the ‘‘walking
along roadway’’ pedestrian crash risk compared to
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locations where no sidewalks/walkways exist. Reduc-
tions of 50%–90% of these types of pedestrian crashes
have occurred. The Federal Highway Administration
(Zegeer et al., 2005) found that a raised median (or
raised crossing island) was associated with a signifi-
cantly lower pedestrian crash rate at multilane crossing
locations, with both marked (46% reduction) and
unmarked (39% reduction) crosswalks. In contrast,
painted (not raised) medians and center two-way left-
turn lanes did not offer significant safety benefits to
pedestrians on multilane roads, compared to no median
at all. In addition, the signalization is thought to be an
effective countermeasure for pedestrian- and bicycle-
related crashes. One study (Campbell, 2015) showed a
25% decrease in pedestrian-related crashes with the
installation of pedestrian countdown signal heads.

The Manual on Uniform Traffic Control Devices
(Agenda, 2017) and bicycle guide from the American
Association of State Highway and Transportation
Officials (Toole, 2010) recommend breaking bicycle
lane markings ahead of the intersection and then
marking the bicycle lane again at the intersection itself,
to the left of the right-turn lane. This positions bicy-
clists traveling straight through the intersection away
from any conflict with right-turning vehicles and allows
a merge area for right-turning vehicles to get into right-
turn lane.

Gemar et al. (2015) configured the intersections that
may be problematic for pedestrians was a right-turn slip
lane as it presents a crossing location outside of the
physical area of the intersection. This separation facili-
tated larger curb radii and consequently, higher turning
speeds. Typically, the crossing location along the
turning roadway was essentially uncontrolled; there-
fore, it is important to produce guidelines for the pro-
per design of right-turn slip lanes that take pedestrian
safety into account.

For pedestrian crossing on channelized right-turn
lanes with an adjacent pedestrian refuge island, the
crosswalk should be located approximately one car
length from the yield line for the intersection, which
allow drivers on the approach leg to look for and yield
to pedestrians before reaching the intersecting roadway
and scanning for gaps in traffic. Since consistency in
locating crosswalks is important and since current
practice shows a clear preference for crosswalk loca-
tions near the center of a channelized right-turn lane,
design guidance should recommend placing crosswalks
near the center of the channelized right-turn lane for
channelized right-turn lanes with yield control or no
control at the entry to the cross street (Potts et al.,
2014). Where the channelized right-turn lane has STOP
sign control or traffic signal control, the crosswalk
should be placed immediately downstream of the stop
bar. If the channelized right-turn roadway intersects
with the cross street at nearly a right angle, the stop bar
and crosswalk can be placed at the downstream end of
the channelized right-turn roadway. There has been
little research that evaluates how the crosswalk location
affects crossings by pedestrians with vision impairment,

and more research would be desirable to provide more
concrete recommendations.

Moreover, turning vehicles yield to pedestrians is
recommended wherever engineering judgement indi-
cates a clear potential for right-turning vehicles to come
into conflict with crossing pedestrians. The ‘‘Turning
Traffic Must Yield to Pedestrians’’ sign was effective in
significantly reducing pedestrian-vehicle conflicts dur-
ing right-turns. The sign was installed at six marked
crosswalks in Nebraska, where right-turn vehicle-pede-
strian conflict data were collected before and after its
installation in an observational field study. For the six
study crosswalks combined, a conflict occurred in 51%

of the observations in the before period, but in only
38% of the observations during the after period. The
reductions in pedestrian-vehicle conflicts across the
observation sites ranged from 15%–30% and were
statistically significant.

In the study by Hunter et al. (2000), the conflict zone,
defined as the place where the paths of bicyclists and
motorists crossed most often, was treated with blue
pavement markings at ten intersections in Portland,
Oregon. The treatment resulted in a safer riding envi-
ronment and a heightened awareness on the part of
both bicyclists and motorists. The city of Portland
continues to use this treatment at six of the ten loca-
tions today. Harkey et al. (1998) examined the behav-
iors of bicyclists and motorists at a ‘‘combined’’ bicycle
lane/right-turn lane used in Eugene, Oregon. the
combined bicycle lane/right-turn lane to be an effective
treatment that could be beneficial at locations where
right-of-way constraints exist.

Lastly, we introduced the ‘‘Strategy to prevent
accidents between straight going bicycles and right-
turning lorries,’’ a collaboration between the Danish
National Police, the Danish Transport and Con-
struction Authority and the Danish Road Directorate.
In Denmark (Vejdirektoratet, n.d.b), approximately
25% of all cyclists involved in accidents between right-
turning lorries and cyclists going straight ahead die
from their injuries. The number of killed cyclists varies
significantly from year to year. But seen over a longer
period, cyclists in right-turn accidents involving lorries
constitute 15%–20% of all cyclists killed in traffic.
Two-thirds of the fatal right-turn accidents occur at
signalized intersections.

In terms of the geometric design and the basic regu-
lation type, there are generally three alternatives which
are recommended in signalized intersections. Regarding
right-turn lane and cycle track (possibly cycle lane), the
following measures are considered:

1. Removal of reserve between carriageway and cycle track.

a. On the last 30 m–50 m before the stop line, there

should only be kerbed edges or a wide, raised edge
line between the cycle track and the nearest lane

(right-turn lane).

2. Advanced stop lines for bicycles and possible bike box,
shown in Figure 2.8.
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a. When there is a cycle track or lane right up to the
intersection, an advanced stop line for bicycles will
make cyclists visible in the natural field of vision of
the right-turning drivers. This applies, however only
to the situation where both parties after stopping for
red light start to move simultaneously at a green
light. A bike box is an additional area for bicycles in
front of the vehicle stop line in the right-turn lane,
where the area is clearly marked with for example
blue paint with a white bicycle symbol.

3. ‘‘Pre-green’’ for cyclists.

a. If it is not possible to retract the stop line for cars by
5 m, it is possible to combine a slightly shorter
retraction of the stop line by giving a pre-green light
for cyclists a few seconds before the cars. This gives
drivers a chance to see the cyclists, who will also be
able to pass through the intersection before the cars
start to turn right.

Another solution is right-turn lane and truncated
cycle track (possibly cycle lane), shown in Figure 2.9. It
would be to interrupt the cycle track or lane 15–25 m
before the stop line and let the cyclists continue in a
right-turn lane together with the right-turning cars. This
reduces the accident risk since cyclists and right-turning
motorists are given the chance of weaving before the
intersection, and the cyclists going straight ahead can

position themselves on the left-hand side of the right-
turning cars. This solution should only be used when the
right-turn lane for car traffic is a designated right-turn
lane that is not also used by traffic going straight ahead.
This solution works well in safety terms—especially on
sections with downhill grade towards the intersection—
but it is done partly at the expense of the cyclists’ per-
ceived safety and mobility since they will need to weave
with the motor vehicle traffic towards the intersection.
If the bicycle traffic volume is large, it may also be
difficult for right-turning drivers to weave into the flow of
cyclists. The truncated cycle track can be combined with
a cycle lane for the cyclist going straight ahead and turn-
ing left which is placed between the lane for cars going
straight ahead and the right-turn lane. This cycle lane
must be at least 1.50 m wide including edge. This solution
is only applicable on roads with speeds of 50 km/h or less.

Separate phasing is a technical solution where each
traffic flow is regulated by its own separate signals. In
general, intersections with separate phasing/conflict-
free signal control work well in road safety terms. The
Danish Road Directorate has no documentation to the
effect that significant safety differences should exist
between the different solutions. However, separate
signal control takes up some of the capacity, and in
intersections with heavy traffic, this solution may result

Figure 2.8 Advance stop lines and add a bike box (Vejdirektoratet, n.d.a, n.d.c).

Figure 2.9 Two types of truncated cycle track (Vejdirektoratet, n.d.f, n.d.e).

Figure 2.10 Offset bicycle passage (Vejdirektoratet, n.d.d).
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in long waiting times for both drivers and cyclists.
Moreover, separate phasing (depending on how many
flows that are controlled separately in the intersection)
requires a lot of space, meaning that this solution
cannot be established in all intersections.

The last countermeasure is the offset passage, shown
in Figure 2.10. Cycle lanes have been led around the
corners of the intersection, and cyclists’ crossing of the
intersecting road is slightly offset towards the right in
relation to the original direction of travel. The design
makes it possible to exempt cyclists from the signal
control when driving into the intersection. The right-
turning cyclists can thus bypass the signal control, and
the cyclists going straight ahead will not be controlled
by a signal until the stop lines right by the intersecting
road.

3. DATA COLLECTION

In this study, we collect two main datasets which are
right-turn lane charactersitics and crashes. The right-
turn lane charactersitics data includes geometric design
variables, traffic condition, and traffic management
which are collected for right-turn lanes located on inter-
state highways, state higways, ramps, and local roads.
In addition, the crash data is also collected at the census
and zip code levels. The data collection methods used in
this study are illustrated in Figure 3.1.

3.1 Intersection Sampling

3.1.1 Candidate Counties and Intersection Inventory

We select 10 out of 92 counties in Indiana, con-
sidering their spatial locations and importance. The
distributions of the 10 counties are shown in Figure 3.2.
In addition, we summarize the subdivisions for each of
the 10 counties, mainly using spatial units of ZCTA
(Zip Code Tabulation Area) and the census tract, in
Table 3.1.

3.1.1.1 Major highways (US/state). The geodatabase,
shared by INDOT, contains all the US and state
highways intersections. There is no information about
intersections on inter-state and local highways in the
dataset. In total, it presents 1,449 intersections across
the whole Indiana state. Within the geodatabase, it
provides turn-lane types (i.e., right-turn, left turn, both
left and right, multiple right, multiple left, or multiple

Figure 3.2 Spatial distribution of candidate counties.

Figure 3.1 Data collection framework.
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TABLE 3.1
List of candidate counties and corresponding subdivisions

Code County Name # of ZCTA # of Census Tract

003 Allen 35 96

019 Clark 19 26

057 Hamilton 24 39

059 Hancock 18 10

063 Hendricks 24 21

091 La Porte 21 28

095 Madison 23 37

097 Marion 45 224

157 Tippecanoe 21 37

163 Vanderburgh 16 49

Total 246 567

both left and right) for each intersection, as well as
location information, as shown in Figure 3.3.

3.1.1.2 Interstate highways (entry/exit ramps). In
general, almost all ramps are installed right-turn lanes
while intersecting with regular highways. As such, we
assume right-turn lanes are designed for all exit and
entry ramps at the downstream and upstream, respec-
tively. Therefore, if we have a full list of ramps, we can
run a random sampling.

We use a new geodatabase from the US Census
Bureau, called Tiger/Line. The geodatabase contains
complete road networks for all counties in the US. For
instance, the left plot in Figure 3.4 shows the completed
road network in Tippecanoe County in Indiana. More
importantly, the database provides a road type of each
road segment, such as ‘‘I-interstate,’’ ‘‘US-US highways,’’
and ‘‘- undefined.’’ In this geodatabase, the ramps are

labeled as undefined road type. Therefore, we first filter
out the links labeled as ‘‘I-interstate’’ highways and
‘‘undefined,’’ as shown in the right plot of Figure 3.4.
Then, spatial selection is run in ArcGIS to find undefined
links, which intersect interstate highways. Finally, the
outputs from spatial selection (i.e., undefined links inter-
secting interstate highways) are the sets of ramps in those
10 counties.

The ramps identified from the proposed method,
however, may include a few errors. The errors happen
when an overpass bridge is plotted as a separate link
and is labeled as an ‘‘undefined’’ road type in the
database. Under this circumstance, the overpass bridge
link intersects the interstate highway link, and we will
wrongly recognize the intersection as a ramp. However,
this is not a common case.

3.1.1.3 Local roads (county/driveways). As per the
Access Management Manual, right-turn deceleration
lanes will be designed in the following circumstances:
(1) the speed is over 45 mph and the right-turn volume
is more than 50 vph; (2) the speed is less than or equal
to 45 mph and the right-turn volume is more than
60 vph; or (3) because of other factors, such as crash
records, heavy peak flow, large truck volumes, or
limited sight distance. It is not common to have right-
turn lanes at local (county) roads where have low speed
and volume. However, a few roads are within the
mentioned circumstances, so right-turn lanes need to be
installed.

In this study, we utilize Google Maps for collecting
needed data. Google Maps has advantages of up-to-
date street view and detailed configurations at local
levels. An example of a Google Maps local roads
network is illustrated in Figure 3.5.

Figure 3.3 Information available in the shared INDOT geodatabase.
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Figure 3.4 Illustration of data processing for ramp identification.

Figure 3.5 The Allen County road network (local roads are colored in white) (Google, n.d.m).

3.1.1.4 Right-turn lane intersections in each candidate
county. The plots in Figure 3.6 show the distribution of
right-turn lane intersections in each candidate county.
Note that the plots only illustrate intersections with
right-turn lanes on US/state highways and all exit and
entry ramps (not include intersections with right-turn
lanes on local roads).

3.1.2 Sampling Method

3.1.2.1 Major highways (US/state). Considering the
future models will be estimated under different aggre-
gation levels, such as county, ZCTA, and census tract,
we run random sampling in the smallest spatial unit
(i.e., census tract), then merge the sampled intersections
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Figure 3.6 Right-turn lane intersections at 10 selected counties.

into a larger dataset for ZCTA and county based on
spatial location. The following steps will be implemented:

1. We aggregate intersections at census tract levels and obtain
the total numbers of intersections that are located in each
of census tracts.

2. We conduct random sampling at a given ratio in each
census tract and round the number to a nearest integer.
For example, if one census tract has 3 intersections, we
should randomly select 0.3 intersection given the sampling
ratio of 10. The 0.3 will be rounded to 0, thus no
intersections will be chosen in the census tract. However,
for another case of 0.6 intersections, we will randomly
select 1 intersection since we can round 0.6 to 1.

3. Based on spatial locations, we can identify the ZCTAs and
counties of the sampled intersections.

The total numbers of all and sampled intersections
(only considering three sampling ratio levels of 10%,
20%, and 30%) in each county are presented in Table 3.2.
The full list of number of intersections in each census
tract is separately shown in the attached worksheet.

3.1.2.2 Interstate highways (entry/exit ramps). The
sampling method for ramps is slightly different from
that of for major highways. This is mainly due to small
numbers of ramps. If ramps are aggregated at census
tract level, there are more likely to have less than
4 ramps in each census tract since there is only one
interstate highway access for one or multiple census
tracts. If we apply the previous method, we may not
sample any ramp after rounding to nearest integers.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/26 19



TABLE 3.2
Number of intersections under different sampling ratio

Code County Name # of Census On Major Highways 10% 20% 30%

003 Allen 96 180 14 33 57

019 Clark 26 75 5 14 24

057 Hamilton 39 168 18 30 52

059 Hancock 10 50 4 9 15

063 Hendricks 21 97 8 19 29

091 La Porte 28 76 6 15 20

095 Madison 37 148 15 30 46

097 Marion 224 434 36 76 129

157 Tippecanoe 37 128 12 28 40

163 Vanderburgh 49 93 7 14 27

Total 567 1,449 125 268 439

TABLE 3.3
Number of ramps under different sampling ratios

Code County name Ramps (exit and entry) 10% 20% 30%

003 Allen 108 11 22 32

019 Clark 48 5 10 14

057 Hamilton 15 2 3 5

059 Hancock 13 1 3 4

063 Hendricks 26 3 5 8

091 La Porte 33 3 7 10

095 Madison 11 1 2 3

097 Marion 290 29 58 87

157 Tippecanoe 16 2 3 5

163 Vanderburgh 41 4 8 12

Total 601 61 121 180

Accordingly, we implement a random sampling with 
a given ratio at the county level other than at the census 
tract level (see Table 3.3). Then, the sampled ramps can 
be categorized to the ZCTA and census tract where they 
locate. This can enable us to obtain ramps at different 
levels, namely county, ZCTA, and census tracts.

3.1.2.3 Local roads (county/driveways). Identify right-
turn lanes on local roads involve the screening of 
segments on Google Maps. To obtain random samples, 
the following procedures are needed.

1. For each county, five segments are selected. They should

be distributed at Northwest, Northeast, Center, South-

west, and Southeast areas on the county map.

2. Each segment is about 2–5 miles in length.

As a result, the spatial distributions of segments in
corresponding county are displayed in Figure 3.7. The
list of segments including starting and ending points is
displayed in Table 3.4.

3.2 Data Collection

3.2.1 Intersection Design and Traffic Characteristics

The intersection design and traffic characteristics
include a set of measurements, for instance, intersection

geolocation, name, and number of lanes of the road
and the intersecting roads, right-turn lane layout, right-
turn channelization, design speed, right-turn lane geo-
metry, traffic control, traffic volume, and vulnerable
traffic. All these measurements are manually surveyed
through two data sources, namely Google Maps for
designs and INDOT traffic count database system for
traffic volume. The Table 3.5 summarizes all measure-
ments, as well as the survey method. The summary of
surveyed right-turn lanes is presented in Table 3.5,
Table 3.6, and Figure 3.8.

3.2.2 Crash Data

The crash data is collected from the Automated
Reporting Information Exchange System (ARIES),
which records police crash reports. Considering the
project needs, we request a 4-year crash dataset from
2013 to 2016. The dataset contains all crashes that
happened in the 10 candidate counties, on both road
intersections and road segments, summarized in
Table 3.7. In the dataset, intersections are defined as
a segment of ‘‘T-intersection,’’ ‘‘Y-intersection,’’ ‘‘four-
way intersection,’’ ‘‘five point or more,’’ ‘‘traffic circle/
roundabout,’’ ‘‘railroad crossing,’’ ‘‘interchange,’’ and
‘‘ramp.’’ Around 40% and 60% of crashes are at inter-
sections and road segments, respectively. In our study,
intersections are the locations of interests for design
modifications in order to improve safety. As such, we
only collect intersection-related crashes in which each
data observation is recorded in detail. Besides, the
combination of crash data and Google survey data has
detailed characteristics which are summarized into
categories at Table 3.8.

3.3 Data Fusion

Crashes are a vital factor to examine the safety
performance. However, the crash dataset and surveyed
dataset on sampled right-turn lanes which are collected
from two different data sources (ARIES and Google
Maps), do not have a common and unique ID for any
intersection or right-turn lane. Therefore, the major
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Figure 3.7 Spatial distributions of sampling segments in local roads.
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TABLE 3.4
Detailed locations of local segments

Segment No. From To

Allen

1 41.189673, -85.285574 41.195992, -85.143732
2 41.181026, -85.013025 41.183784, -84.873169
3 41.096354, -85.135515 41.097591, -85.092668
4 40.991980, -85.264449 41.002060, -85.192922
5 40.976317, -85.003051 40.978873, -84.881343

Clark

6 38.565220, -85.867325 38.491955, -85.774419
7 38.541569, -85.543259 38.485684, -85.617034
8 38.452253, -85.672144 38.406420, -85.751808
9 38.346138, -85.816610 38.319024, -85.794455
10 38.418602, -85.915932 38.400585, -85.808280

Hamilton

11 40.160100, -86.128010 40.161229, -86.052393
12 40.176435, -85.939694 40.177687, -85.865077
13 40.022070, -86.117353 40.021960, -86.042158
14 39.955602, -86.219722 39.956422, -86.149364
15 39.972166, -85.956989 39.973039, -85.893503

Hancock

16 39.927721, -85.921062 39.929617, -85.820207
17 39.879768, -85.691446 39.880029, -85.575920
18 39.813738, -85.791234 39.814659, -85.726861
19 39.741407, -85.935710 39.742395, -85.879025
20 39.742676, -85.703417 39.742122, -85.607318

Hendricks

21 39.893769, -86.688445 39.861952, -86.644343
22 39.806833, -86.396546 39.808047, -86.326642
23 39.747574, -86.433548 39.748401, -86.367009
24 39.674186, -86.438620 39.674713, -86.376822
25 39.674092, -86.687758 39.673825, -86.617431

La Porte

26 41.752845, -86.677953 41.753163, -86.601749
27 41.665791, -86.849301 41.657374, -86.765422
28 41.518306, -86.668982 41.520389, -86.573551
29 41.317540, -86.834550 41.317111, -86.756285
30 41.259034, -86.567756 41.259000, -86.501831

Madison

31 40.291375, -85.861445 40.292028, -85.786944
32 40.328405, -85.673050 40.328400, -85.588969
33 40.087416, -85.699173 40.087310, -85.677485
34 40.019155, -85.679330 40.018895, -85.614772
35 39.948705, -85.864964 39.958763, -85.814945

Marion

36 39.910941, -86.263536 39.911992, -86.201824
37 39.904973, -86.041247 39.898255, -85.978247
38 39.780370, -86.231115 39.780951, -86.175337
39 39.662099, -86.303277 39.663034, -86.230956
40 39.680909, -86.079781 39.681502, -86.017726

Tippecanoe
41 40.504908, -87.029007 40.504140, -86.916011
42 40.461194, -86.810158 40.465232, -86.708346
43 40.410054, -86.892865 40.410575, -86.851924
44 40.258510, -87.072467 40.258621, -87.006515
45 40.301707, -86.843101 40.301346, -86.731286

Vanderburgh

46 38.123142, -87.553304 38.122567, -87.528756
47 38.049685, -87.638834 38.035070, -87.622150
48 37.984219, -87.600412 37.984758, -87.559900
49 37.952751, -87.659979 37.960397, -87.618952
50 37.948049, -87.511281 37.947979, -87.459869

objective of data fusion is to obtain the crashes at our
manually surveyed intersections. Another big concern is
the quality of intersection sampling. We should obtain
a full list of crashes at all intersections with right-turn
lanes, not limited to the surveyed intersections. Thus,
the second objective of data fusion is to obtain the
full list of intersections with right-turn lanes, as well as
corresponding crashes.

The major objective can be achieved by finding a
common identity across datasets and matching iden-
tities. The main identities that we use for both datasets
are the roadway name and intersecting roadway name.
The matching step yields a subset of crashes happened
at the intersections with target right-turn lanes. The
following string-matching method is proposed to com-
plete data fusion:

1. Generate unique crash location ID by combining the
road name and the intersecting road name. For example,
a crash at the intersection of state road 1 (SR1) and north
main street (NMAIN) will have a unique location ID of
‘‘SR1NMAN.’’

2. Similarly, generate unique location ID for surveyed inter-
sections (road names from Google Maps).

3. Compute similarity ratio of two location IDs and do
string matching

sr~
2�len(cs)

len(s1)zlen(s2)
ðEq: 3:1Þ

where, sr is the similarity ratio; len() returns the length of
one string; cs is the common characters from the first
occurrence of common characters; s1 is the string 1; and
s2 is the string 2.

4. Match surveyed intersections with crashes if correspond-
ing similarity ratio is greater than 0.85.

The second objective can be achieved by a proposed
two-step method. First, we determine the road names
for right-turn lanes in INDOT Geodatabase. Since the
geodatabase only provides geolocation but not any
road name information for right-turn lanes. Then we
can repeat the matching process developed for the
major objective, just replacing the surveyed intersec-
tions with all intersections in INDOT geodatabase.

In the first step of road name determinations, we can
complete with the following procedures:

1. Get potential intersection points (black points in
Figure 3.9) with road name information with road net-
work shapefile from US census, which can be completed
with the ‘‘intersection’’ tool in ArcGIS.

2. Compute the distance between every intersection point
and its closest right-turn lane (the red line in Figure 3.9).

3. Filter out target intersection points with a threshold of
0.0005 (around 60 m).

4. Assign a unique intersection ID if distance between two
intersection points are less than 100 m or if two inter-
section points have same name. Note that one physical
intersection may have multiple intersection points in the
road network shapefile, since one road may have multi-
ple road names and two directions separated by median,
shown in Figure 3.10.
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TABLE 3.5
Survey on intersection design and traffic characteristics

Measurement Survey Method Note

Geolocation Any point locates on right-turn lane, identified
on Google Maps, and presented with
longitude and latitude

(Google, n.d.h)

Road name Manually measured from Google Maps

(Google, n.d.i)

Intersecting road name
Number of lanes on the road
Number of lanes on the intersecting road
Skewness
Number of legs

Number of right-turn lane Manually measured from Google Maps

(Google, n.d.l)

Channelization type
Turning radius
Right-turn lane layout (deceleration/ acceleration)

Length of right-turn lane Manually measured from Google Maps

(Google, n.d.e)

Width of right-turn lane

Length of acceleration lane Manually measured from Google Maps

(Google, n.d.a)

Width of acceleration lane

Design speed on the road Manually measured from Google Street
View on Google Maps

(Google, n.d.b)
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TABLE 3.5
(Continued)

Measurement Survey Method Note

Traffic signal Manually measured from Google Street
View on Google Maps

(Google, n.d.j)

Pedestrian crossing Manually measured from Google Maps

(Google, n.d.f)

Truncated bicycle lane Manually measured from Google Maps

(Google, n.d.k)

Railroad crossing Manually measured from Google Maps

(Google, n.d.g)

Traffic volume in both directions Measured from INDOT traffic count
database

(Google, n.d.c)

Traffic volume in the same direction
Traffic volume in the opposite direction
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TABLE 3.6
Number of surveyed intersections

Code County

On Major Highways Ramps Local
Total

Surveyed

Surveyed

IntersectionsPopulation Sampled Surveyed Population Sampled Surveyed Segments Surveyed

003 Allen 180 57 50 108 32 27 1 1 78 72

019 Clark 75 24 22 48 14 12 2 2 36 30

057 Hamilton 168 52 47 15 5 7 2 8 62 53

059 Hancock 50 15 15 13 4 5 2 6 26 21

063 Hendricks 97 29 30 26 8 11 3 14 55 49

091 La Porte 76 20 21 33 10 1 1 1 24 20

095 Madison 148 46 45 11 3 3 2 2 50 46

097 Marion 434 129 133 290 87 79 0 0 212 175

157 Tippecanoe 128 40 43 16 5 2 2 4 49 43

163 Vanderburgh 93 27 25 41 12 9 4 6 40 36

Total 1,449 439 431 601 180 156 19 44 631 545

Figure 3.8 Spatial distribution of surveyed right-turn lanes.

Finally, we identify 1,319 intersections (with road
names) for all 1,449 right-turn lanes in INDOT Geo-
database. The road name matching further yields a set
of crashes on all intersections with right-turn lanes. The
INDOT Geodatabase only presents the right-turn lanes
on regular highways, for instance, US/state/county high-
ways and urban streets, other than ramps of interstate
highways. Regarding the full list of crashes on ramps,
we assume the intersections connecting the interstate
highways with regular highways must have special right-
turn designs, such as channelization and right-turn
lanes. Thus, we can just filter out crashes on ramps as
the full list then compare with the set of crashes on
sampled ramps. The crash frequency of every intersec-
tion (including sampled and not sampled) is shown in
Figure 3.11.

TABLE 3.7
Crash frequency summary

Items 2013 2014 2015 2016 Total

All crashes

On segments

At intersections

% of intersection

crashes

74,760

44,757

29,955

40.06%

79,400

47,835

31,531

39.71%

86,815

52,310

34,467

39.70%

91,930

55,550

36,338

39.53%

332,905

200,452

132,291

39.74%

Tables 3.9, 3.10, 3.11, and 3.12 show the crash
frequency by year, locations, and crash types. Overall,
we can conclude that the intersection with right-turn
lanes have relatively more crashes than intersections
without right-turn lanes. Since the 1,319 regular inter-
sections with right-turn lanes, as well as 601 ramps,
have around 24% of intersection crashes, but the num-
ber of intersections with right-turn lanes are far smaller
than the total number of intersections. Because right-
turn lanes are mainly built on large intersections with
heavy flows and frequent turns. Table 3.9 also indicates
that crashes are likely to distributed randomly and
there are almost no significant high-risk or low-risk
intersections, given the fact that 30% of intersections
yield around 30% of crashes. Comparing the percentage
in Table 3.10 and 3.11, we also observe several addi-
tional interesting points, including (1) both right-turn
related and rear-end crashes are significant crash types
on regular highways but only rear-end crashes are signi-
ficant on ramps; (2) installing right-turn lanes can
reduce right-turn related crashes; and (3) installing
right-turn lanes can increase the rear-end crashes.

3.4 Selection Bias During Sampling

The selection bias is one popular bias during samp-
ling, which results from the different crashes by values
of variables between sampled and population dataset.
The objective of this section is to validate whether
our sampling during manual survey presents selection
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TABLE 3.8
Attributes of crash records from ARIES

Classification Attributes

Crash location and time Date

Time

County

Township

City

Locality

Longitude and latitude

Crash descriptions Number of dead

Number of injured

Number of deer

Number of vehicles involved

Number of trailers involved

Direction

Damage estimates

Primary factor

Collision manner

Roadway characteristics Roadways name

Roadway number

Roadway ramp number

Intersecting roadway name

Intersecting roadway number

Median type

Junction type

Road character (straight or not; at grade or not)

Road surface type

Number of legs

Marking traffic island

Exclusive shared right turn lane

Number of lanes in RTL

Direction of the RTL

Length of the RTL

Width of the RTL

Acceleration/Deceleration lane

Acceleration lane length

Acceleration lane width

Turning radius

Skewness

Pedestrian crossing at RTL

Truncated bicycle lane

Railroad crossing

Environment and surroundings School zone

Construction

Light

Leather

Surface condition

Traffic characteristics Traffic control

Traffic control devices

Rumble strips

Volume both direction (major road)

Volume POS (major road)

Volume NEG (major road)

Volume both direction (minor road)

Volume POS (minor road)

Volume NEG (minor road)

Design speed

Drivers’ characteristics Aggressive driving

Hit and run
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Figure 3.9 Illustration of road name determinations for
right-turn lanes.

Figure 3.10 Illustration of multiple intersection points for
physical intersection.

Figure 3.11 Continued.
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Figure 3.11 Crash frequency of all intersections and sampled intersections.

TABLE 3.9
Crash frequency by year and locations

Items 2013 2014 2015 2016 Total

All Crashes at Intersections in the 10 Counties

Without right-turn lanes

With right-turn lanes

% of right-turn crashes

22,504

7,451

24.87%

23,820

7,711

24.45%

26,244

8,223

23.86%

27,718

8,620

23.72%

100,286

32,005

24.19%

All Crashes at Intersections with Right-Turn Lanes

No. of crashes

On major highways

On ramps

7,451

5,198

2,253

7,711

5,439

2,272

8,223

5,643

2,580

8,620

5,727

2,893

32,005

22,007

9,998

All Crashes at 30% of Surveyed Intersections with Right-Turn Lanes

No. of crashes

On major highways

On ramps

% of crashes at surveyed intersections

2,152

1,885

267

28.89%

2,402

2,152

250

31.15%

2,266

2,008

258

27.56%

2,454

2,180

274

28.47%

9,274

8,225

1,049

28.98%
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TABLE 3.10
Frequency of right-turn related crashes

Items 2013 2014 2015 2016 Total % of All Crashes

Right-Turn Related Crashes at All Intersections

Crashes

Without right-turn lanes

8,651

7,089

9,291

7,601

9,470

7,816

10,170

8,402

37,582

30,908

28.41

30.82

Right-Turn Related Crashes at Intersections with Right-Turn Lanes

Crashes

On major highways

On ramps

1,562

1,341

221

1,690

1,478

212

1,654

1,457

197

1,768

1,516

252

6,674

5,792

882

20.85

26.31

8.82

Right-Turn Related Crashes at 30% of Surveyed Intersections with Right-Turn Lanes

Crashes

On major highways

On ramps

472

445

27

576

556

20

557

524

33

583

552

31

2,188

2,077

111

23.59

25.25

10.58

TABLE 3.11
Frequency of crashes by year

2013 2014 2015 2016 Total % of All Crashes

8,651 9,291 9,470 10,170 37,582 28.41

7,089 7,601 7,816 8,402 30,908 30.82

1,562 1,690 1,654 1,768 6,674 20.85

1,341 1,478 1,457 1,516 5,792 26.31

221 212 197 252 882 8.82

472 576 557 583 2,188 23.59

445 556 524 552 2,077 25.25

27 20 33 31 111 10.58

TABLE 3.12
Frequency of rear-end crashes

Items 2013 2014 2015 2016 Total % of All Crashes

Rear-End Crashes at All Intersections

Crashes

Without right-turn lanes

10,430

7,073

10,766

7,417

11,739

8,137

12,704

8,928

45,639

31,555

34.50

31.46

Rear-End Crashes at Intersections with Right-Turn Lanes

Crashes

On major highways

On ramps

3,357

2,249

1,108

3,349

2,285

1,064

3,602

2,402

1,200

3,776

2,394

1,382

14,084

9,330

4,754

44.01

42.40

47.55

Rear-End Crashes at 30% of Surveyed Intersections with Right-Turn Lanes

Crashes

On major highways

On ramps

975

845

130

1,066

939

127

988

866

122

1,065

933

132

4,094

3,583

511

44.14

43.56

48.71
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bias, as well as to identify what variables are biased if
possible.

The chi-square method is proposed to compare the
crash distribution between population and sampled
datasets. The null hypothesis is that the two distribu-
tions in both datasets are statistically same at the con-
fidence level of 95%. The main steps are as follows:

1. Group crash data by levels of one specific variable with a

cross tabulation.

2. Compute the chi-square statistics and degree of freedom, then

compare with critical values drawn from chi distribution.

3. Reject the null hypothesis if the computed statistic exceeds

the critical one, which indicates the selection bias.

With the methods, we validate the selection bias in
the dataset of crashes on regular highways, and in the
dataset of crashes on ramps. This also indicates that
we cannot remove selection bias even focusing on a
certain type of crashes. Overall, two key variables show
the significant selection bias, which are number of
injuries and number of deaths. The two variables are
very important for safety performance measurement,
thus should be addressed appropriately in our model-
ing structure. The three other variables also demon-
strate selection bias but only if we model crashes
separately on regular highways or ramps, including
manner of collision, number of involved vehicles, and
number of involved deer. Several variables, for instance,
season, light condition, weather, aggressive driving,
school zone, and road surface condition, presents
selection bias. The remaining variables are without
any selection bias, including location/locality, year, and
road design characteristics. The test results are summar-
ized in Table 3.13. Furthermore, we also identify the
selection bias in the dataset of both right-turn related
and rear-end crashes, in the dataset of right-turn rela-
ted crashes, and in the dataset of rear-end crashes.
The corresponding test results are shown in Table 3.14.
We can observe almost same set of variables with
selection bias.

3.5 Crash Severity Measurement

The severity of each crash is measured in terms of the
total monetary costs associated with the crashes.
According to Crash Cost for Highway Safety Analysis
(FHWA Safety Program), the crash cost calculation
includes fatality cost, injury cost, property-damage-
only (PDO) cost, economic crash unit cost, and qua-
lity-adjusted life years (loss of life quality costs)
(Harmon, 2018). Besides, we calculate the cost adjusted
per year for the state of Indiana using consumer price
index (CPI) and national and state per capita income
(PCI). The national KABCO person-injury unit cost is
regarded as the base year calculation and the corres-
ponding transferred value in each year can be seen in
Table 3.15.

Where the cost of a fatality is K, and the cost of an
injury is the average of A, B, and C injury levels. The
property damage only (PDO) is the average value within
the range of the damage estimate variable in the dataset.

3.6 Statistics Over Crashes

The statistics of crashes simply reveals the crash
distributions by right-turn lane and intersection
designs, mainly based on the crashes on intersections
with right-turn lanes. Additionally, we also examine the
safety performance of right-turn lanes by comparing
the crash distribution between intersections with and
without right-turn lanes. The comparison is also based
on the proposed chi-square based method for selection
bias test. From the comparison results shown in Table
3.16, we can conclude that (1) there are almost no
differences in crash severity when all crash types are
considered; (2) there are reduced death and injuries in
the two major crash types (i.e., right-turn related and
rear-end) if installing right-turn lanes on regular
intersections and ramps; and (3) there are increased
injuries in right-turn related crashes in the presence of
right-turn lanes on regular US/state/county highways
and urban streets.

TABLE 3.13
Variables with selection bias in the dataset with all crash types

Variables Rear-End Crashes On Ramps On Major Highways

Injured/Death More injured less death More injured/– Less injured and death

Trailers/Vehicles – – Less involved trailers/–

Deer – Less with deer –

Rumble strips/Aggressive

driving

– Less with rumble strips/Less with

aggressive driving

–

Damage – More with losses –

School zone Less with school zone – More with school zone

Hit and run More hit and run – Less hit and run

Light More in dawn and daylight More in dawn/Dusk More in dawn and daylight

Road surface condition – More on dry, snow, and icy surface –

Seasons More in winter Less in winter –

Weather – – More in clear, raining, and foggy days

Road character/Road surface –/– More on straight/More on concrete –/–
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TABLE 3.14
Variables with selection bias in the dataset with two major crash types

Variables Rear-End Crashes On Ramps On Major Highways

Dataset with Both Right-Turn Related and Rear-End Crashes

Injured/Death More injured less death – Less injured and death

Trailers More without trailers More with trailers More without trailers

Deer More without deer More with deer –

Vehicles More with multiple vehicles – More with multiple vehicles

involved involved

Rumble strips/ – More without rumble strips/With –

Aggressive driving aggressive driving

Damage – More with lower or higher losses More with moderate or higher

losses

Manner of collision – More with right-turns –

School zone More with school zone More without school zone More with school zone

Hit and run More hit and run – Less hit and run

Light More in dark More in dark and dawn/Dusk –

Road surface condition – More on dry and snow surface –

Seasons/Year More in summer, fall, winter/– More in summer/In 2013 to 2015 More in fall, winter/–

Weather More in clear and raining days More in cloudy and foggy days More in clear and raining days

Road character/ – More on straight/Level and straight/ –/More on concrete

Road surface Hillcrest/Concrete

Dataset with Only Right-Turn Related Crashes

Injured/Death More crashes with injuries, – –

but less with death

Trailers More crashes without trailers More crashes with trailers More crashes without trailers

Deer More without deer – –

Vehicles – More 2-vehicle crashes –

Rumble strips/ –/– More with rumble strips/Less with –/–

Aggressive driving aggressive driving

Road surface/ More on concrete/Curve-level and –/Curve-grade and straight-hillcrest More on concrete

Road character straight-hillcrest

Year/Location More in 2014 to 2016/– More in 2015/Rural areas More in 2014 to 2016/–

School zone/ Less with school zones/More

Construction zone without construction zone

Hit and run More hit and run

Light More in dark, dawn, dusk

Road surface condition More in dry and snow

Seasons More in summer and fall

Weather More in raining, blowing, clear days More in cloudy, blowing days More in clear, blowing days

Dataset with Only Rear-End Crashes

Variables Rear-end crashes On Ramps On major highways

Injured/Death More crashes with injuries, – –

but less with death

Trailers More crashes without trailers – –

Deer More with deer – –

Vehicles More one-vehicle crashes – More 1-vehicle crashes

Rumble strips/ – More without rumble strips/More with More with rumble strips

Aggressive driving aggressive driving

Damage More with lower or higher losses – More with moderate losses

Location More in urban areas – –

School zone More with school zones Less with school zones More with school zones

Hit and run More without hit and run More hit and run More without hit and run

Light More in dark More in dark and dawn/Dusk More in dark and dawn/Dusk

Road surface condition More on wet and water surface More on dry and snow surface –

Seasons/Year More in summer, fall, and winter/– More in summer/In 2013, 2014 More in fall and winter/–

Weather More in cloudy, foggy, and raining More in cloudy, foggy, and snow More in clear, raining and

days snow

Road character/ –/– More on level, straight, hillcrest, concrete –/More on concrete

Road surface
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TABLE 3.15
Crash cost calculation and transferred monetary value (Harmon, 2018)

National KABCO Person-Injury Unit Costs (2010 dollars)

Severity

Economic Person:

Injury Unit Costs ($)

QALY Person:

Injury Unit Costs ($)

Comprehensive Person:

Injury Unit Costs ($)

K 1,398,916 7,747,082 9,145,998

A 84,507 363,324 447,832

B 32,105 97,974 130,079

C 21,749 49,926 71,675

O 5,717 2,563 8,280

Indiana KABCO Person-Injury Unit Costs (2010 dollars)

Severity 2013 ($) 2014 ($) 2015 ($) 2016 ($)

K 1,317,805.72 1,320,902.61 1,314,494.71 1,436,616.32

A 79,607.22 79,794.30 79,407.20 81,347.63

B 30,243.53 30,314.60 30,167.54 30,904.73

C 20,487.98 20,536.12 20,436.50 20,935.89

O 5,385.52 5,398.18 5,317.99 5,503.27

TABLE 3.16
Crash distribution between intersections with and without right-turn lanes

Severity Right-Turn Related Rear-End

Both Regular Intersections and Ramps

Death 0.01% more crashes without death

0.01% more crashes with 1 death

0.01% less crashes with 3 death

0.03% more crashes without death

0.01% more crashes with 1 death, 0.01% more crashes

with 2 death

Injuries 0.26% more crashes without injuries

1% less crashes with 1 injury

0.64% more crashes with 2 injuries

0.1% more crashes with 3 injuries

0.05% more crashes with more than 5 injuries

—

Deer 0.02% less crashes without deer

0.02% more crashes with 1 deer

0.01% less crashes with more than 5 deer

0.03% less crashes without deer

0.01% more crashes with 1 deer

0.01% less crashes with 2 deer

0.02% more crashes with more than 5 deer

Regular Intersections

Death 0.04% more crashes without death

0.02% more crashes with 1 death

0.01% more crashes without death

0.03% more crashes with 1 death

0.01% more crashes with 2 death

Injuries 0.30% less crashes without injuries

0.7% less crashes with 1 injury

0.77% more crashes with 2 injuries

0.24% more crashes with 3 injuries

0.01% less crashes with 4 injuries

0.06% more crashes with more than 5 injuries

—

Deer 0.06% more crashes without deer

0.08% less crashes with 1 deer

0.01% more crashes with 2 deer

0.01% less crashes with more than 5 deer

0.04% less crashes without deer

0.02% more crashes with 1 deer

3.6.1 Crash Frequency by Location

There are around 9,274 crashes and were found at 355
unique intersections. As such, the average crashes per inter-
section is around 26 crashes. Figure 3.12 presents crashes
at intersection by frequencies from smallest to largest.

Table 3.17 shows a list of top 5 most-frequent-crash
intersections. The intersection of Georgetown road and
38th street is found to have the largest number of
crashes (213 crashes) over 4 years from 2013 to 2016.
This intersection is located at Marion County in Indian-
apolis area.
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Figure 3.12 Crash frequency by intersection.

TABLE 3.17
The most frequent crash intersections are in the Indianapolis metro area

Roadway Intersection County City Frequency (crashes)

South N Creasy Ln Tippecanoe Lafayette 155

E Virginia N Burkhardt Rd Vanderburgh Evansville 156

E 116th St Keystone Pkwy Hamilton Carmel 162

W 146th St Spring Mill Rd Hamilton Carmel 175

Georgetown 38th St Marion Indianapolis 213

3.6.2 Crash Frequency by Time of Day

There are 6,896 crashes at daytime and 2,379 crashes
at night time (daytime: 6:00 am–18:00 pm; night time:
18:00 pm–6:00 am the second day). Besides, the crash
frequency in Marion is much higher than other counties.
The possible reasons are that the day traffic volume is
much higher than it is at night; Indianapolis, the capital
of Indiana, is in Marion County and has higher traffic
volume than other counties. Statistical analyses of the
crash frequency in different locations with the time of
day include the following:

N The highest crash frequency by roadway class: Local/city
Road: 7,078 (76% in total crashes).

N The highest crash frequency by time and roadway class:
Local/city Road (day: 5,288, night: 1,790). It is shown at
Figure 3.13.

N The highest crash frequency at the county level: Marion
(4,828).

N The highest crash frequency by time and county: Marion
(day: 3,505, night: 1,323). See Figure 3.14.

3.6.3 Crash Severity by Time of Day

The overall crash cost at local/city road is higher
than other roadway class at both day and night. How-
ever, the state road has the highest cost per crash at
daytime ($29,559) and US road has the highest cost per
crash at nighttime ($25,113). The crash cost in roadway

Figure 3.13 Crash frequency at roadway class level by time
of day.
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class level by time of day can be seen in Table 3.18
and Figure 3.15. The overall crash cost in Marion is
highest among all other counties at both day and night
(see Figure 3.16). Besides, Clark has the highest cost
per crash at both daytime ($37,313) and nighttime
($24,084); There are over 38% of crashes associated
with intersection designs as presented in Table 3.19.

3.6.4 Crash Frequency by Geometric Design Factors

Significant performance metrics are found at differ-
ent right-turn traffic control at traffic light intersec-
tions. Right-turn-on-red signal intersections crated a
large number of crashes (about 60%), while full stop or
no-turn-on-red signal intersections only generated very
few crashes (about 3%) (see Figure 3.17). About 70% of
crashes were happened at four-way intersections as can
been seen at Figure 3.18.

3.6.5 Crash Frequency by Right-Turn Lane Types

More than 80% of crashes are found to happen at
exclusive right-turn lanes. In which, over 60% crashes
happened at urban-road intersections, while only a few
crashes happened at interstate- and rural-road inter-
sections (see Figure 3.19). The highest numbers of
injuries and dead are found at exclusive right-turns
lanes (see Figure 3.20).

In straight/level shared right-turn and exclusive right-
turn lanes, there were a majority of crashes as can be
seen in Table 3.20. For the manner of collision, right-
angle and rear-end crashes have been found as the most
frequent crashes as shown in Table 3.21.

Figure 3.14 Crash frequency at the county level by time of
day.

Figure 3.15 Crash severity at roadway class level by time of day.

Figure 3.16 Crash severity at the county level by time of day.
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TABLE 3.18
Crash cost at roadway class level by time

Roadway Class Day Cost Day Cost per Crash Night Cost Night Cost per Crash

Local/City road

State road

US road

Interstate road

County road

185,036,716

13,094,658

9,431,864

3,202,565

279,832

19,402

29,559

21,883

12,608

19,988

37,364,929

3,307,618

3,541,037

175,324

75,301

24,262

19,688

25,113

18,695

15,060

TABLE 3.19
Top main factors contribute to crashes

Main Factor Crash Frequencies Crashes (%)

Unsafe speed

Ran off road right

Unsafe backing

Speed too fast for weather conditions

Driver distracted–explain in narrative

Improper turning

Unsafe lane movement

Improper lane usage

Other (driver)–explain in narrative

Disregard signal/reg sign

Failure to yield right of way

Following too closely

152

168

174

251

253

267

304

305

422

917

2,317

3,198

1.65

1.82

1.88

2.72

2.74

2.89

3.29

3.30

4.57

9.92

25.08

34.61

Figure 3.17 Crash share by traffic control types.
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Figure 3.18 Crash frequency at roadway junction type.

Figure 3.19 Crashes and spatial distributions.

Figure 3.20 Crash severity at right-turn lane types.
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TABLE 3.20
Crashes by alignment types and right-turn lane types

Road Characters Shared Right-Turns Exclusive Right-Turns Both Shared and Exclusive Right-Turns

Curve/Hillcrest 7 46 –

Straight/Hillcrest 32 152 1

Curve/Grade 45 248 2

Curve/Level 79 477 –

Straight/Grade 98 621 5

Straight/Level 1,084 6,281 70

TABLE 3.21
Manner of collision by right-turn lane types

Manner of Collision Shared Right-Turns Exclusive Right-Turns Both Shared and Exclusive RTLs

Collision with deer

Collision with object in road

Rear to rear

Non-collision

Opposite direction sideswipe

Left/Right-turn

Right-turn

Other–explain in narrative

Backing crashes

Head on between two motor vehicles

Ran off road

Left turn

Same direction sideswipe

Right angle

Rear end

2

1

1

3

14

15

20

17

32

41

34

117

145

289

613

4

6

7

24

83

122

146

152

154

252

255

688

893

1,568

3,462

–

–

–

–

–

–

5

1

2

2

1

8

17

23

19

4. METHODOLOGY AND ESTIMATION

4.1 Variables Dataset Preparation

4.1.1 Traffic Volume Modification

In order to eliminate the crashes due to the effect
of the traffic volume, we adopted the safety perfor-
mance function (SPF) from the federal Highway Safety
Manual (Part, 2009) and modified the traffic volume.
The new variable that we created is called ‘‘volume
balanced.’’ The SPF is as below:

Nbimv~ exp azb|In AADTmaj zc|In AADTminð
� �

Þ
� �

where,

AADTmaj is the average daily traffic volume (vehicle/
day) for major road (both directions of travel combined);

AADTmaj is the average daily traffic volume (vehi-
cles/day) for minor road (both directions of travel
combined); and

a, b, c are the regression coefficients, which are diffe-
rent according to intersection joint types and crash
types (i.e., fatality, injury, or PDO).

4.1.2 Homogeneity of Counties

A hierarchical agglomerative clustering procedure
(Lukasová, 1979) was applied to group counties

and infer the homogeneity of counties based on the
sociodemographic population, the percentage of people
having at least high school level education, and the
yearly household income. Thus, the generated new
variable ‘‘cluster,’’ explores the effect of the socioecono-
mic management on crash frequency. The agglomerative
strategy is a ‘‘bottom-up’’ approach, where each observa-
tion starts in its cluster, and pairs of clusters are merged
as one. Then, they move up the hierarchy, as shown in
Figure 4.1. The second derivative distance (‘‘elbow’’) is
conducted to measure the efficiency of the hierarchy
algorithm. Finally, three clusters were obtained based
on the hierarchical agglomerative clustering procedure.
The cluster 0 (county: Marion) represents the county
that has the highest population, the lowest percentage of
the educated population, and lowest yearly household
income. Cluster 1 (counties: Hamilton and Hancock)
represents counties that have the middle population, the
highest percentage of the educated population, and the
highest yearly household income. Cluster 2 (counties:
Madison, Tippecanoe, Clark, Harrison, Vanderburgh,
Allen, and La Porte) represents counties that have the
lowest population, the middle percentage of the educated
population, and the middle yearly household income.

4.1.3 Methodology Description

The right-turn lane performance estimation has two
specific measurements: crash frequency and crash
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Figure 4.1 Hierarchical clustering for counties.

severity. We define three scenarios for each of the
measurements: (1) the performance is estimated via
the all crashes; (2) the performance is estimated on the
crashes at right-turn lanes at the county level; and (3)
the performance is estimated on the crashes at right-
turn lanes in roadway class level. A set of variables are
used to test the effects on the crash frequency and crash
severity of the right-turn lane, which includes right-turn
lane geometric design variables, intersection character-
istics, spatial and temporal factors, and environmental
factors. The description of the influencing factors can be
seen in the following section.

4.1.4 Variable Descriptions

Summary statistics of explanatory variables and their
correlation matrix can be seen in Table 4.1, Table 4.2,
and Figure 4.2.

4.2 Hypothesis for Crash Frequency and Crash Severity

4.2.1 Hypotheses for Crash Frequency

Based on the study interests, we mainly focus on the
effects of the right-turn lane geometric design variables
on the crash frequency. As a consequence, we propose
six hypotheses as below:

1. The presence of solid traffic island at RTL significantly

decreases crash frequency compared with the RTL

having no traffic island or RTL having marking traffic

island.

2. RTLs in the poor visibility in wet surface conditions

increases crash frequency.

3. The presence of roundabout/traffic circle in the intersec-

tion reduces crash frequency than other intersection

types.

4. RTL with large turn radius decreases the crash frequency.

5. Intersection with high traffic volume increases crash

frequency than Intersection with low traffic volume.

6. Exclusive RTL decreases crash frequency compared with

shared RTL.

4.2.2 Hypotheses for Crash Severity

Correspondingly, we propose the following six hypo-
theses on crash severity, which are measured by the crash
cost in the right-turn lane:

1. The presence of solid traffic island at RTL significantly
decreases crash cost relative to the RTL having no traffic
island or RTL having marking traffic island.

2. RTLs in the poor visibility in wet surface conditions
increases crash cost.

3. The presence of roundabout/traffic circle in the intersec-
tion reduces crash cost than other intersection types.

4. RTL with large turn radius decreases the crash cost.
5. Exclusive RTL decreases crash cost compared with

shared RTL.
6. RTL having a design speed above 35 mph increases the

crash cost.

4.3 Methodology

4.3.1 Crash Frequency Model Specifications

4.3.1.1 Basic model selection. Previous studies (Lord
& Mannering, 2010) suggested that most of the crash
data are extremely over-dispersed. Thus, directly assu-
ming it follows the Poisson distribution may not be
realistic. Poisson model (Null hypothesis: the true
dispersion is close to 1).

Since the crash data may have over-dispersion (see
Table 4.3), we tested the data via different general
assumptions: gamma, Weibull, negative binomial (NB),
and generalized-gamma. The benchmark model is selec-
ted from five methods. Besides, we adopt the Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) as model selection criteria (Vrieze,
2012). Based on the estimation results in Table 4.4
and Table 4.5, the NB model is selected as the bench-
mark model as it has the lowest AIC and BIC values.
To capture the potential spatial-correlated heterogene-
ity, we furtherly propose the random effect of explana-
tory variables (RENB) on the benchmark model and
test if there is a nested spatial correlation among
intersections (also ramps or interchange) within the
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TABLE 4.1
Description of explanatory variables

Explanatory Variables Abbreviation Unit Min/Max Avg/Sd or Dist

Intersection Characteristics

Design speed, 1 if design speed is above 35 mph, 0 if not otherwisea Spl . 35/Spl # 35 n/a 0/1 64.12/36.88

Intersection AADT AADT vpd 3165/109908 35002/16936

Environmental Factors

Visibility condition, 1 if the visibility is good, 0 if not otherwise visgo/vispo n/a 0/1 82.31/18.69

Surface condition, 1 if roadway surface is wet, 0 if not otherwise suwe/sudr n/a 0/1 45.42/55.58

Spatial Factors

Cluster 1, 1 if the county is in cluster 1, 0 if not otherwise clu1/clu0 n/a 0/1 38.27/61.73

Cluster 2, 1 if the county is in cluster 2, 0 if not otherwise clu2/clu0 n/a 0/1 23.24/76.76

Locality, 1 if urban area, 0 if not otherwise loub/lora n/a 0/1 95.06/5.94

Temporal Factors

Time, 1 if nighttime, 0 if not otherwiseb night/day n/a 0/1 40.68/60.32

RTL Geometric Factors

RTL type, 1 if exclusive RTL, 0 if not otherwise exRTL/shaRTL n/a 0/1 84.11/16.89

Acceleration lane, 1 if RTL associates acceleration lane, 0 if not

otherwise

accye/accno n/a 0/1 2.08/98.92

RTL channelized type, 1 if the channelized type is traffic island,

0 if not otherwise

chtraf/chno/mark n/a 0/1 16.56/84.44

Traffic signal control, 1 if yes, 0 if not otherwise trafsg/trafno n/a 0/1 68.87/31.13

Traffic sign control, 1 if yes, 0 if not otherwise trafsn/trafno n/a 0/1 31.28/68.72

Length len inch 45.22/1340 340.36/206.5

Width wid inch 8.29/38.39 13.13/2.96

Turn radius tur inch 12.56/740 80.09/77.73

aStudies (Ye et al., 2001) mentioned that the design speed below 35 mph in Indiana is regarded as ‘‘low speed,’’ And the approach design speed of

school zone and work zone is usually below 35 mph (Gambatese et al., 2013; Mountain et al., 2005).
bDay: 6:00am–18:00pm; night: 18:00 pm–6:00 am (the next day). Avg/sd is the mean value and standard deviation of continuous variables. Dist is

the percentage value for indicator variables.

TABLE 4.2
The correlation matrix of the explanatory variables

Spl . 35 AADT Visgo Suwe Clu1 Clu2 Loub Night ExRTL Accye Chtraf Trafsg Trafsn Len Wid Tur

Spl . 35

AADT

Visgo

Suwe

Clu1

Clu2

Loub

Night

ExRTL

Accye

Chtraf

Trafsg

Trafsn

Len

Wid

Tur

1.00

0.14

0.02

0.05

0.12

0.10

0.15

0.01

0.08

0.05

0.06

0.05

0.05

0.05

0.03

0.01

0.14

1.00

0.02

0.01

0.16

0.23

0.14

0.04

0.12

0.23

0.14

0.01

0.01

-0.03

0.04

0.25

0.02

0.02

1.00

0.06

0.04

0.02

0.05

0.11

0.03

0.02

0.00

0.01

0.04

0.02

0.00

0.03

0.05

0.01

0.06

1.00

0.02

0.01

0.05

0.10

0.00

0.03

0.02

0.06

0.02

0.02

0.02

0.03

0.12

0.16

0.04

0.02

1.00

0.46

0.04

0.01

0.00

0.06

0.13

0.14

0.04

0.02

0.06

0.13

0.10

0.23

0.02

0.01

0.46

1.00

0.23

0.01

0.09

0.06

0.08

0.15

0.00

0.01

0.12

0.05

0.15

0.14

0.05

0.05

0.04

0.23

1.00

0.03

0.01

0.20

0.11

0.18

0.16

0.10

0.02

0.23

0.01

0.04

0.11

0.10

0.01

0.01

0.03

1.00

0.00

0.00

0.00

0.02

0.02

0.02

0.01

0.02

0.08

0.12

0.03

0.00

0.00

0.09

0.01

0.00

1.00

0.06

0.01

0.04

0.04

0.05

0.02

0.07

0.05

0.23

0.02

0.03

0.06

0.06

0.20

0.00

0.06

1.00

0.21

0.10

0.06

0.02

0.06

0.05

0.06

0.14

0.00

0.02

0.13

0.08

0.11

0.00

0.01

0.21

1.00

0.30

0.37

0.08

0.27

0.20

0.05

0.01

0.01

0.06

0.14

0.15

0.18

0.02

0.04

0.10

0.30

1.00

0.64

0.04

0.13

0.20

0.05

0.01

0.04

0.02

0.04

0.00

0.16

0.02

0.04

0.06

0.37

0.64

1.00

0.06

0.19

0.23

0.05

-0.03

0.02

0.02

0.02

0.01

0.10

0.02

0.05

0.02

0.08

0.04

0.06

1.00

0.01

0.18

0.03

0.04

0.00

0.02

0.06

0.12

0.02

0.01

0.02

0.06

0.27

0.13

0.19

0.01

1.00

-0.05

0.01

0.25

0.03

0.03

0.13

0.05

0.23

0.02

0.07

0.05

0.20

0.20

0.23

0.18

-0.05

1.00

Note:

The correlation between continuous variables and continuous variables is measured by Pearson correlation measurement.

The correlation between indicator variables and indicator variables is measured by Cramér’s V measurement.

The correlation between continuous variables and indicator variables is measured by ANOVA partial eta squared measurement.
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Figure 4.2 Summary of the variable dataset.

TABLE 4.3
The over-dispersion test

Dispersion z-score p-value

3.7723 5.8707 2.17E-09

TABLE 4.4
Likelihood ratio test: (basic model: Poisson model)

Alternative Model Chisq Df Critical Value

NB

Weibull

Gamma

Generalized-gamma

2,591.424

2,271.198

2,281.536

2,489.756

1

1

1

2

3.841459

3.841459

3.841459

5.991465

TABLE 4.5
Model comparison

Model AIC BIC

Gamma

Wei bull

NB

Generalized-gamma

Poisson

9,121.988

9,132.326

8,814.1

8,915.767

11,401.524

9,321.419

9,331.757

9,019.229

9,120.896

11,595.257

county. The null hypothesis states that no significant
variations between crashes in a specific intersection/
ramp within the county (the nested term is the location
ID and the county ID). Then, a robustness test is
applied to confirm the stability of estimates. Finally, the
insights are obtained based on the comparison of the
two models.

4.3.1.2 Model specification. Previous studies pointed
out that the standard errors of regression coefficients
are underestimated if the spatial-correlated effects
are ignored (Chen & Tarko, 2014). The crash data in
our study were collected from a set of intersections or
ramps over 4 years. Intuitively, there might exist
unobserved spatial-related factors that affect crash fre-
quency. Nevertheless, the fixed NB model assumes no
spatial-correlated effects over time in our case. The
random-effects negative binomial (RENB) model, there-
fore, was selected as the comparison. The fixed NB
assumes that crash observation yi is independent over
time (Chen & Tarko, 2014).

E yið Þ~ci~exp bXizeið Þ ðEq: 4:1Þ

where Xi is the vector of explanatory variables for
intersection i, and b is a vector of estimated coefficients.
The exp(ei) is a gamma-distributed error term with
mean one and variance a, and ci is the expected number
of crashes for intersection i. The mean-variance
relationship is as follows:

Var(yi)~E(yi) 1zaE(yi½ Þ� ðEq: 4:2Þ

The NB reduces to a Poisson distribution if a51.
Otherwise, data is over-dispersed or under-dispersed.
On the other hand, the spatial-correlated RENB model
essentially layers a random spatial effect (ui) on the
parent NB by assuming that the over-dispersion para-
meter is randomly distributed across groups (Chen &
Tarko, 2014). The variance-to-mean ratio of being
unconstrained as constant across locations is the key
advantage of this approach (Lord & Mannering, 2010).

1
The RENB assumes that follows the beta distri-

1zai

bution of Beta(r,s), where ai is the dispersion variable.
The estimation of the b vector can be conducted
through the standard maximum likelihood procedures.
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The structure of the RENB model is as follows:

E yið Þ~exp bXizuizeið Þ Eq: 4:3Þð
Instead of using a linearizing link function to trans-

form the expectation of the response variable ci to
its linear predictor, we applied a logarithmic function
to extract the relationship between crash frequency
and the continuous factors. The non-linear logarithmic
function provides a general assumption that suits the
statistical inferences and eliminates the heteroscedasti-
city for the variances of regression residuals. Therefore,
the linear predictors Xi in Equation 4.4 are adopted to
the indicator variables, and the nonlinear predictors are
rearranged as log(Xi). For example, RTL length, RTL
width, RTL turn radius, intersection AADT.

The model goodness of fit was conducted by the
McFadden pseudo-R-squared, which is expressed as:

R2~1{
LL bð Þ
LL Cð Þ ðEq: 4:4Þ

where LL(b) represents the log-likelihood of the full
model and LL(C) represents the log-likelihood of the
restricted model (constant only model).

4.3.2 Crash Severity Model Specification

4.3.2.1 Basic model selection. The dependent variable
of the crash severity model is crash cost, which is a con-
tinuous variable. To estimate the effects of influencing
factors, we start from the linear model. Besides, we adopt
the logarithm transformation for the explanatory vari-
ables to better fit the statistic inference and eliminate the
heteroscedasticity for the variances of regression resi-
duals. As a consequence, the linear model and the log-
linear model are two base models. The model selection
can be found in Table 4.6, where the linear model out-
performs the log-linear model. The formula of the linear
model can be seen as below. Furthermore, to capture the
spatial correlation among crashes in difference right-turn
lane within the same counties, we again propose the
random effect to the base model.

In yið Þ~bjxi,jze ðEq: 4:5Þ

where,
yi is the crash cost of the right-turn lane i;
bj is the coefficient of the influencing factor j;
xi,j is the jth influencing factor in the jth right-turn

lane; and
e is the error term.
In the log-linear model, the explanatory variables are

expressed as In(xi,j).
The comparison of the base model:

TABLE 4.6
Crash severity model selection

Model Comparison Adj. R2

Linear 0.132

Log-linear 0.111

4.3.2.2 Model specification. From the comparison,
the log-linear model better fits the data. Therefore, the
random effect is adopted to the log-linear model. The
expression is as follows:

In(yi)~biIn xi,j zmZze ðEq: 4:6Þ
� �

where,

yi, bi, and e are the same as aforementioned log-linear
function; and

Z is the design matrix for random effects, and m is a
vector of the random effects.

5. ECONOMETRIC MODEL B FOR CRASH
FREQUENCY

5.1 Model Robustness Testing

A robustness test for the RTL geometric factors and
compound effects in the overall model is presented in
Table 5.1 (for RENB and NB). The effects of RTL
geometric factors and compound effects have been
computed in each specification. The first three regres-
sions examine the specification with only RTL geometric
factors and compound factors. In all specifications, we
use different combinations of environmental-related
controls and spatial-temporal controls (B1, B2, and B3
are controlled from one in three; C1, C2, and C3 are
controlled from two in three; D is the full model with
all variables). Based on the results of the robustness
test, the effects of both ‘‘len’’ and ‘‘wid’’ are nonsig-
nificant in any specification, which confirms the con-
sistent estimates of ‘‘len’’ and ‘‘wid.’’ Besides, the
robustness test suggests that the effect of cluster 1 is
not significantly different from cluster 0. Thus, the
final model takes both cluster 0 and cluster 1 into one
group as the reference level. Furthermore, the effects of
compound factors, such as channelized type with
traffic volume (AADT) and the right-turn type with
design speed, are not significant under any specifica-
tions in the NB model. It means those compound
factors are not sufficiently significant in the NB model
even the NB (D) full model suggests that the effects of
these compound factors are significant at 0.1 level.
Thus, we will not consider it into the final NB model.
However, these compound effects are significant in the
RENB model.

Table 5.2 presents the final estimations for RENB
and NB models. The RENB model has more significant
variables (such as ‘‘design speed’’) than the NB model,
which confirms that RENB can capture more variance
and better fit the data than the NB model. Besides,
variables in the RENB model have a higher significant
level than they are in the NB model. For example, the
effect of ‘‘ExRTL : Spl . 35’’ is at 0.05 significance level
in the RENB model but at 0.1 significance level in the
NB model. Furthermore, the RENB model outper-
forms due to a higher Log-likelihood value. The result
of the bootstrapping test for the nested random effect
term indicates that the crashes variability is significant
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TABLE 5.1
Robustness test of the RTL geometric factors

Explanatory Variables A1 A2

Overall RENB Model

A3 B1 B2 B3 C1 C2 C3 D

Log (len) 0.010 0.063

Log (wid) 0.027

Log (tur) 0.275***

ExRTL

Accye

Chtraf

0.035

-0.068

0.347***

-0.717***
{7.493

3.857*

0.035 0.044 0.038 0.047

-0.065 -0.066 -0.065 -0.063

0.290*** 0.305*** 0.316*** 0.280***

-0.598*** -0.681*** -0.670*** -0.668***
{ {6.338 8.261* 7.341 8.105*
{ { {3.495 4.151 4.385 4.650*

0.037

-0.064

0.269***

-0.641***

6.149*
{4.296

0.038

-0.059

0.251***

-0.561***
{7.043
{3.880

0.043

-0.059

0.231***

-0.605***
{6.836

4.618*

Trafsn

Trafsg

Spl . 35

Log (AADT )

Visgo

Suwe

0.255**

0.184

0.490**

0.296***

0.299** 0.288** 0.252** 0.284**

0.245* 0.242* 0.169 0.226**

0.313* 0.507** 0.411** 0.431**

0.310*** 0.274** 0.334*** 0.313***

1.192***

-0.336**

0.308***

0.222*
{0.248

0.354***

1.066***

-0.396***

0.340***

0.301**

0.344*

0.300***

1.190***

-0.333**

0.345***
{0.278

0.279*

0.339***

0.345***

0.278*

Clu1

Clu2

0.039 0.032
{ {-0.158 -0.160

0.087

-0.162*

0.074

-0.165*

Loub 0.516** 0.510** 0.455** 0.492**

Night

ExRT : Spl . 35

Accye : Log (AADT)

Chtraf : Log (AADT)

Visgo : Suwe

Log-likelihood -4825.7 -4809.1

McFadden pseudo R2 0.008 0.012

Over-dispersion parameter 1.34 1.36

Observations 2173 2173

0.292

-0.645*

-0.303*

-4716.5

0.031

1.56

2173

-0.653*** -0.653***
{ {0.252 0.292 0.323* 0.323*
{ {-0.543 -0.697* -0.632 -0.685*
{ { {-0.283 -0.326 -0.350 -0.370

-0.789***

-4344.3 -4710.2 -4618.3 -4612

0.107 0.032 0.051 0.052

2.52 1.55 1.75 1.75

2173 2173 2173 2173

-0.638***

0.308*
{-0.527
{-0.351

-0.766***

-4232.9
0.130

3.17

2173

0.244*
{-0.592

-0.313*

-0.794***

-4337.6
0.109

2.51

2173

-0.639***

0.300*

-0.574*

-0.376*

-0.771***

-4225.8
0.132

3.18

2173

A1 A2

Overall NB Model

A3 B1 B2 B3 C1 C2 C3 D
{Log (len) -0.0001 0.048

Log (wid) 0.041

Log (tur) 0.228***

ExRTL

0.045

-0.025

0.269***

-0.445***

0.03 0.051. 0.042 0.048

0.001 -0.019 -0.024 -0.018

0.257*** 0.239*** 0.259*** 0.230***

-0.328*** -0.435*** -0.431*** -0.420***

0.029

-0.001

0.251***

-0.334***

0.02

0.008

0.225***

-0.308***

0.029

0.007

0.219***

-0.317***

Accye

Chtraf

Trafsn

7.844*

2.390

0.232***

6.825* 9.170* 7.771* 9.012*

1.847 3.134* 2.729. 3.414*

0.226*** 0.289*** 0.236*** 0.289***

6.807*

2.22

0.265***

8.0459*
{2.618

0.331***

8.037*

2.967*

0.333***

Trafsg

Spl . 35

Log (AADT )

Visgo

Suwe

0.190*

0.169

0.286***

0.238** 0.255** 0.185* 0.247**

0.118 0.213 0.134 0.175

0.303*** 0.297*** 0.321*** 0.330***

1.190***

-0.292*

0.227**

0.077

0.338***

1.052***

-0.341**

0.306***

0.166

0.325***

1.189***

-0.291

0.295***

0.124

0.357***

1.052***

-0.340**

Clu 1 0.017 0.019 0.075 0.071

Clu 2 -0.195*** -0.183*** -0.190** -0.185***

Loub 0.467*** 0.45*** 0.402*** 0.419***

Night

ExRTL : Spl . 35

Accye : Log (AADT)

Chtraf : Log (AADT)

Visgo : Suwe

Log-likelihood -4865.94 -4844.63

McFadden pseudo R2 0.000 0.004

Over-dispersion parameter 1.2019 1.2264

Observations 217 2173

0.256*

-0.688*

-0.182

-4764.64

0.021

1.3297

2173

-0.664*** -0.661***
{0.191 0.267* 0.269* 0.281*

-0.600* -0.785* -0.682* -0.773*
{-0.141 -0.243 -0.211 -0.267*

-0.811***

-4413.75 -4752 -4667.17 -4655.18

0.093 0.023 0.041 0.043

1.9438 1.3464 1.4733 1.4936

2173 2173 2173 2173

-0.617***

0.220*

-0.600*

-0.173

-0.781***

-4317.82

0.113

2.2424

2173

0.196

-0.690*

-0.204*

-0.815***

-4398.6

0.096

1.9811

2173

-0.616***
{0.227

-0.690**
{-0.233

-0.786***

-4302.04

0.116

2.2944

2173

Note
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001
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TABLE 5.2
The estimations of overall final models

Explanatory Variables

RENB NB

Coefficient Standard Deviation Coefficient Standard Deviation

Constant -2.650*** 0.804 -2.744*** 0.508

RTL Geometric Factors

Log (tur) 0.220*** 0.051 0.211*** 0.032

ExRTL -0.590*** 0.128 -0.296 *** 0.085

Accye 6.103* 3.066 7.137* 2.84

Chtraf 3.991* 2.023 2.599* 1.225

Trasn 0.353*** 0.092 0.338*** 0.059

Trasg 0.265* 0.11 0.289*** 0.071

Intersection Characteristics

Spl . 35 0.295* 0.144 0.139 0.099

Log (AADT )a 0.343*** 0.08 0.362*** 0.05

Environmental-Related Factors

Visgob 1.063*** 0.073 1.052*** 0.074

Suwe -0.394*** 0.115 -0.342** 0.116

Spatial Factors

Clu2 -0.160* 0.08 -0.180*** 0.049

Loub 0.475** 0.155 0.407*** 0.111

Temporal Factors

Night -0.639*** 0.042 -0.616*** 0.043

Compound Effects

ExRTL : Spl . 35 0.287* 0.145 0.212{ 0.11

Chtraf : Log (AADT) -0.367* 0.184 -0.228{ 0.117

Visgo : Suwe -0.770*** 0.123 -0.784*** 0.125

Accye : Log (AADT) -0.579* 0.291 -0.697** 0.263

Bootstrapping 1.6778e-10*** –

Observations 2137 2137

Over-dispersion parameter 3.17 2.293

Log-likelihoodc -4,226.5(-4865.9) -4,302.617(-4865.9)

McFadden pseudo R2 0.131 0.116

Note:
aLog (AADT) is equal to Log (intersection AADT).
bLight 1 : Surface 1 is equal to Light condition 1 : Surface condition 1.
cThe log-likelihood of constant only model is in the parentheses.
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

across different intersections within the county. All
influencing factors are acceptable when the significant
level is below 0.05, as suggested in previous studies
(Venkataraman et al., 2013).

5.2 Marginal Effect and Elasticity Estimation

The average marginal effects and elasticities of
explanatory variables in the overall model of both
RENB and NB models are presented in Table 5.3. The
marginal effects describe the changes in the conditional

mean of the crashes in response to a unit change in the
explanatory variables. Meanwhile, the elasticity mea-
sures the percentage changes of the crash frequency in
response to a unit percentage change in the continuous
explanatory variables. Therefore, the elasticity is
adopted to interpret the effects of continuous variables,
and the marginal effects are more appropriate to
measure the effects of nominal variables. In particular,
the coefficients of the continuous explanatory variables
in the logarithm function directly estimate the elasticity.
The final overall model is presented in Table 5.3.
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TABLE 5.3
Average marginal effect and elasticity

RENB NB

RTL Geometric Factors

Log (tur)a 0.220 0.211

ExRTL -0.691 -0.750

Accye 25.763 25.039

Chtraf 13.012 18.653

Trafsn 0.785 0.749

Trafsg 0.647 0.717

Intersection Characteristics

Spl . 35 0.426 0.310

Log (AADT)a 0.343 0.362

Environmental-Related Factors

Visgo 1.783 1.801

Suwe -0.779 -0.770

Spatial Factors

Clu 2 -0.626 -0.413

Loub 0.549 0.778

Temporal Factors

Night -1.321 -1.344

Compound Effects

ExRTL : Spl . 35 0.362 0.479

Chtraf : Log (AADT) -0.432 -0.520

Visgo : Suwe -1.636 -1.665

Accye : Log (AADT) -1.692 -1.588

aElasticity measurement is estimated for continuous variables (turn

radius, AADT). Marginal effect is estimated for nominal variables.

5.3 Interpretation

5.3.1 Overall Level

5.3.1.1 Intersection characteristics. The ‘‘design
speed’’ and the ‘‘AADT’’ have significant impacts on
the crash frequency in the overall model. Besides, these
two variables have component effects associated with
the right-turn lane geometric design variables. The inter-
pretation of these two variables and their component
effects is presented in the section of ‘‘right-turn lane
geometric deign variables and component effect.’’

5.3.1.2 Right-turn lane geometric design variables and
component effect. The parameter of the logarithm of the
RTL turn radius to be 0.220 in the RENB model indi-
cates that the RTLs with a large turn radius has more
crashes than RTLs with a small turn radius. Besides,
the elasticity estimation (Table 5.1) suggests a 1%
increase in the RTL turn radius leads to 0.22% more
crashes, which is similar to the findings in previous
studies (Rifaat et al., 2011). The corner radius affects
drivers’ judgments on the speed they choose for the
right turning; it also affects the pedestrians in dealing
with the speed of the turning vehicles. A large turn
radius not only increases the pedestrian and vehicle

crossing time but also increases the vehicle’s turning
speed. Therefore, it potentially leads to a worse situ-
ation in right turning. However, as studies (Fitzpatrick
et al., 2006) mentioned, a large radius also contributes
to reducing the rear-end conflicts due to a smaller-speed
differential of the vehicle following.

For traffic control estimations, the RTLs having
yield/stop sign or RTLs with no traffic control tend to
be more dangerous than RTLs having signal control.
Marginal effects for the traffic control in Table 5.1
show that the RTLs having yield/stop sign has 0.785
more crashes on average relative to signal control, and
the RTLs with no traffic control have 0.647 more
crashes on average relative to signal control. Intuitively,
signal control can separate different entities, thus
reduces conflicts. As mentioned by studies (Al-Kaisy
& Roefaro, 2012), the installment of signal control in
channelized RTLs can even get more safety benefits in
reducing the rear-end collisions.

There are three significant compound effects between
RTL geometric factors and intersection characteristics.

1. First, the reference level for the compound factor of
‘‘ExRTL : Spl . 35’’ is the shared RTL with the design
speed below or equal to 35 mph. The risk ratio for an

exclusive RTL with the design speed over 35 mph to the
shared RTL with the design speed over 35 mph is 0.74,
which suggests the exclusive RTL with the high design
speed has 16% fewer risk of crashes than the shared RTL

with the high design speed. Furthermore, exclusive RTLs
with the design speed below or equal to 35 mph has 45%

fewer risk of crashes than shared RTLs with the design
speed below or equal to 35 mph. The compound effect

implies that exclusive RTLs reduce the risk of crashes. As
mentioned by Gao et al. (2019), the exclusive RTL reduces
the risk of crashes between the through and right-turn
traffic flow because of separating space for the through

movement and the right-turn traffic flow. The marginal
effect of the compound effect between RTL types and
design speed shows in Table 5.1. For exclusive RTLs
estimation, the design speed over 35 mph has 0.788 more

crashes on average than the design speed below or equal to
35 mph. In addition, shared RTLs with design speed over
35 mph are found to has 0.426 more crashes on average
relative to shared RTLs with design speed below or equal

to 35 mph keeping other conditions equal.

2. Second, the reference level for the ‘‘Accye : Log (AADT)’’

is the effect of the combination of RTLs without an acce-
leration lane and intersection AADT. The risk ratio for
RTL with acceleration lane is less than the risk ratio for the

RTL without acceleration lane when AADT is above
37,120 vpd, which means RTL acceleration lane having
fewer crashes than without acceleration lane under that
condition. However, the effect of the RTLs with accelera-

tion lane is different depending on the volume of
intersection AADT. For example, the risk ratio for the
RTL with acceleration lane to the RTL without accelera-
tion lane is 0.57 when intersection AADT is 100,000 vpd,

which means RTL with acceleration lane has 43% fewer
risk of crashes than the RTL without acceleration lane
when AADT is 100,000. Besides, as indicated by elasticity
in Table 5.1, a 1% increase in intersection AADT leads to

0.343% more crashes on average.
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3. Third, the reference level of ‘‘Chtraf : Log (AADT)’’ is the

effect of the combination of the traffic channelized type of

RTL and the intersection AADT. The risk ratio for the

presence of traffic island is less than the channelized type of

nothing or making when the intersection AADT is above
52,821 vpd. In addition, the effects of the compound factor

are different along with the change of AADT. For

example, the risk ratio for the presence of traffic island is

0.79 when intersection AADT is 100,000 vpd, which means

traffic island has 21% fewer crashes than channelized type

to be nothing or marking when AADT is 100,000 vpd. This
finding supplements with Dixon et al. (2000), where the use

of a traffic island appears to reduce the number of right-

angle crashes. The traffic island serves as refuge points for

pedestrians and provides suitable locations to place traffic

control devices (Al-Kaisy & Roefaro, 2012). Besides,
studies (Harwood et al., 2002) found the installation of a

raised median island reduced the pedestrian accident rate

by 11.5%.

5.3.1.3 Environmental variables. Visibility condition
affects the driver’s vision, and surface condition measures
the friction of the road. The estimates of ‘‘Visgo : Suwe’’
suggest a significant compound effect between the
visibility condition and road surface condition on crash
frequency. The reference level of the environmental
compound factor is the poor visibility with the dry
road surface. The risk ratio for the RTLs in the good
visibility with the wet road surface to the poor visibility
with the wet road surface to be 1.34 indicates RTLs in
good visibility with wet road surface has 34% more
crashes than RTLs in the poor visibility and wet road
surface. And the good visibility with the wet road
surface is found to significantly increase crashes by an
average of 0.147 relative to the poor visibility with the
wet road surface as estimated by the marginal effect.
The RTLs in the good visibility and wet road surface
has 69% more crashes than RTLs in the good visibi-
lity and dry road surface. Besides, the poor visibility
and the wet road surface has 77% fewer crashes than
the good visibility and dry road surface. RTLs in the
poor visibility and wet road surface have 0.779 fewer
crashes comparing to RTLs in the poor visibility
and dry road surface as estimated in marginal effect.
The insights infer that RTLs in the poor visibility
and wet road surface seems to be the safest situation
among the four kinds of environmental conditions,
which is in contrast to Atalar and Thomas (2019).
In Atalar and Thomas’s study, crashes decrease during
the daytime or at night in the presence of light. How-
ever, as Mannering and Bhat (2014) mentioned, other
factors will impact the estimation results, such as
drivers tend to avoid the bad weather (e.g., snow and
sand storm) and would be more careful when the
visibility condition is not good. Therefore, the obser-
ved traffic flow will be much less than it is on normal
days and lead to the reduction of risk exposure.
Empirically, the estimation would be biased when the
unobserved factors come to the picture.

5.3.1.4 Spatial and temporal variables. The RTL
location is the primary consideration for the spatial
effects. The parameter estimates for the county cluster
2 (including Madison, Tippecanoe, Clark, Harrison,
Vanderburgh, Allen, and La Porte) of -0.160 indicates
fewer crashes in cluster 2 compared with the reference
level of cluster 0 and cluster 1. The underlying reason is
the counties with fewer populations have fewer crashes
due to low traffic flow. Besides, the estimation for
‘‘Loub’’ of 0.475 implies RTLs in the urban area have
more crashes than RTLs in the rural area. Marginal
effects in Table 5.1 show that RTLs in the urban area
has 0.549 more crashes on average relative to RTLs in
rural area due to the complicated traffic conditions,
which is in contrast with the findings presented by Ouni
and Belloumi (2019). However, Ouni and Belloumi also
supported that the hot zones in the Urban area have
more crashes. In terms of temporal factors, the negative
marginal effect of ‘‘Night’’ indicates RTLs in the
nighttime having 1.321 fewer crashes on average than
the RTLs in the daytime. This insight is consistent with
Shaheed et al. (2013). But it is in contrast to Kumar and
Toshniwal (2017), where they suggested the crashes
mostly occur at night.

5.3.1.4.1 Sites with High Crashes. We ranked the
high risk intersections based on the crash frequency
using the tools of intersection safety performance
function (SPF). SPFs for multiple-vehicle intersection-
related collisions are applied below (Part, 2009):

Nbimv~exp(azb|In AADTmaj zc|In AADTminð Þ

ðEq: 4:7Þ

� �

where,

AADTmaj5average daily traffic volume (vehicles/
day) for major road (both directions of travel
combined);

AADTmin5average daily traffic volume (vehicles/
day) for minor road (both directions of travel com-
bined); and

a, b, c5regression coefficients.

Based on the SPF, we rank the intersections by road-
way class and county. The rank result is in Figure 5.1.

5.3.2 County Level

As described in the section 4.1.2, there are three
classes of counties. Class A is Marion County; class B is
Hamilton County and Hancock County; class C is
Madison County, Tippecanoe County, Clark County,
Harrison County, Vanderburgh County, Allen County,
and La Porte County.

5.3.2.1 County class A. Among all variables, AADT,
hour, light condition and turn radius have high con-
tribution on crash frequency. Besides, the significant
right-turn lane geometric design variables are traffic
control and the channelized type of the right-turn lane.
The estimation result can be seen in Table 5.4. RTLs
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Figure 5.1 High risk sites based on the crash frequency.

TABLE 5.4
Estimation result for counties in class A

Estimate Std. Error Pr(.|z|)

Junction type (intersection) 0.56 0.22 *

Design speed 1 0.50 0.11 ***

Locality (urban) 0.99 0.20 ***

Hour night -0.86 0.08 ***

Visibility condition (lighted) 1.15 0.14 ***

Surface condition WET -0.64 0.23 **

Visibility condition (lighted) : Surface condition WET -0.56 0.24 *

Log (turn radius) 0.59 0.08 ***

RTL type 1 -0.42 0.15 **

Log (AADT) 0.17 0.14 *

Traffic control (signal) -0.45 0.18 *

Traffic control (yield/stop) 0.38 0.20 *

Channelized type (traffic island) 8.98 2.82 **

Log (AADT) : Channelized type (traffic island) -0.87 0.27 **

Note:

*p , 0.05

**p , 0.01

***p , 0.001

having signal control at intersection have 0.67 times
risk relative to RTLs with no traffic control; RTLs
having yield/stop sign have 1.46 times more risk than
RTLs with no traffic control. The channelized type of
traffic island has fewer crashes than nothing/marking
when AADT is higher than 30,389 veh/day.

5.3.2.2 County class B. Among all variables, AADT,
hour and surface condition have high contribution on
crash frequency. Besides, the significant right-turn lane
geometric design variables are the channelized type and
the exclusive and shared right-turn lane. The estimation
result can be seen in Table 5.5. The channelized type of
traffic island has 0.53 times risk relative to nothing/
marking. Exclusive RTL have fewer crashes than shared
RTL when AADT is higher than 25,491 veh/day.

5.3.2.3 County class C. Among all variables, AADT
and turning radius have high contribution on crash
frequency. Besides, the significant right-turn lane geo-
metric design variables are the exclusive and shared
right-turn lane and traffic control. The estimation result
can be seen in Table 5.6. The effects of roundabout/
traffic circle are non-significant; Exclusive RTL has
fewer crashes than shared RTL when AADT is higher
than 11,520 veh/day.

5.3.2.4 County level estimates conclusion

1. RTL with large turn radius increases crashes.

2. RTL with high design speed has more crashes than low

design speed.
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3. Exclusive RTL reduce crashes and the effects depend on
the AADT and county type.

4. The presence of pedestrian crosswalk at RTL increa-
ses crashes while the effects are different for county
types.

5. Signal control has fewer crashes and yield/stop sign has
more crashes than no traffic control for counties in
cluster 0 and cluster 2. However, the effect of traffic
control is insignificant for counties in cluster 1.

6. The channelized type of traffic island has less crashes
than nothing/ marking and the effects depend on the
AADT and county type.

7. Intersections with high traffic volume have more crashes
than intersection with low traffic volume.

5.3.3 Roadway Class Level

The estimation for the right-turn lane performance is
based on the roadway class level: city/local road, US

road, interstate road, and state road. The detail inter-
pretation can be found in the following sections.

5.3.3.1 City/local road. Among all variables, hour,
light condition, design speed and turn radius have high
contribution to the crash frequency. The significant
right-turn lane geometric design variables are exclusive
and shared right-turn lane and channelized type of
right-turn lane. The estimation result can be seen in
Table 5.7. Exclusive RTL has fewer crashes than shared
RTL when AADT is higher than 6,447 veh/day; RTL
with traffic island has fewer crashes than the chan-
nelized type of nothing/marking when AADT is higher
than 35,672 veh/day. Besides, the junction type of
roundabout/traffic circle has 2.61 times more risk than
interchange/ramp.

5.3.3.2 State road. Among all variables, right-turn
lane turning radius and surface condition has high
contribution to crash frequency. The estimation result
can be seen in Table 5.8. One unit increases in turn
radius results in the incidence rate ratio increase by a
factor of 1.75; RTL with high design speed has 2.24
times more risk than RTL with low design speed.

5.3.3.3 US road. Among all variables, surface, hour,
signal, and turn radius have high contribution to crash
frequency. The estimation result can be seen in Table
5.9. Exclusive RTL has fewer crashes than shared RTL
when AADT is higher than 23,035 veh/day.

5.3.3.4 Interstate road. Among all variables, design
speed, exclusive RTL, and the component effects
between traffic island and Log (AADT) have high
contribution to crash frequency. The significant right-
turn lane geometric design variables are exclusive

TABLE 5.5
Estimation result for counties in class B

Estimate Std. Error Pr(.|z|)

Design speed 1 0.54 0.16 ***

Hour night -0.83 0.13 ***

Visibility condition (lighted) 0.81 0.17 ***

Surface condition (wet) -1.07 0.12 ***

Pedestrian crosswalk at RTL 1 0.40 0.22 *

Log (turn radius) 0.49 0.14 ***

RTL type 1 9.03 4.05 *

Log (AADT) 1.52 0.38 ***

Channelized type (traffic island) -0.64 0.48 {

RTL Type1 : Log (AADT) -0.89 0.40 *

Note:
{p , 0.1

*p , 0.05

**p , 0.01

,***p 0.001

TABLE 5.6
Estimation result for counties in class C

Estimate Std. Error Pr(.|z|)

Junction type (intersection)

Junction type (traffic circle/roundabout)

Design speed 1

Locality (urban)

Hour night

Visibility condition (lighted)

Surface condition (wet)

Pedestrian crosswalk at RTL 1

Log (turn radius)

RTL type 1

Log (AADT)

Traffic control (signal)

Traffic control (yield/stop)

RTL type 1 : Log (AADT)

0.75

1.01

0.39

2.16

-0.71

1.20

-1.19

0.20

0.28

5.05

1.02

-0.41

0.14

-0.54

0.23

0.72

0.10

0.84

0.06

0.10

0.07

0.12

0.08

2.64

0.24

0.17

0.20

0.25

***

Insignificant

***

**

***

***

***

{
***

*

***

*

Insignificant

*

Note:
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001
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TABLE 5.7
Estimation result for right-turn lanes in city/local roads

Estimate Std. Error Pr(.|z|)

Junction type (intersection) 0.96 0.22 ***

Junction type (traffic circle/roundabout) 0.88 0.39 *

Design speed 1 0.44 0.07 ***

Locality (urban) 1.50 0.48 **

Hour night -0.81 0.05 ***

Cluster 1 -0.07 0.18 Insignificant

Cluster 2 -0.37 0.12 **

Visibility condition (lighted) 1.46 0.10 ***

Surface condition (wet) -0.29 0.15 *

Visibility condition (lighted) : Surface condition (wet) -0.96 0.16 ***

Pedestrian crosswalk at RTL 1 0.21 0.10 *

Log (turn radius) 0.36 0.07 ***

RTL type 1 3.07 1.84 *

Log (AADT) 0.79 0.18 ***

Traffic control (signal) -0.38 0.13 **

Traffic control (yield/stop) 0.16 0.16 Insignificant

Channelized type (traffic island) 5.87 2.70 *

Exclusive RTL 1 : Log (AADT) -0.35 0.18 *

Log (AADT) : Channelized type (traffic island) -0.56 0.26 *

Note:
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

TABLE 5.8
Estimation result for right-turn lanes in state roads

Estimate Std. Error Pr(.|z|)

Design speed 1

Hour night

Visibility condition (lighted)

Surface condition (wet)

Log (turn radius)

0.81

-0.65

0.59

-1.00

0.56

0.21

0.15

0.21

0.15

0.18

***

***

**

***

**

Note:

**p , 0.01

***p , 0.001

TABLE 5.9
Estimation result for right-turn lanes in US roads

Estimate Std. Error Pr(.|z|)

Junction type (intersection)

Design speed 1

Hour night

Visibility condition (lighted)

Surface condition (wet)

Log (turn radius)

RTL type 1

Log (AADT)

Traffic control (signal)

Traffic control (yield/stop)

RTL type 1 : Log (AADT)

1.44

0.38

-0.69

1.14

-1.32

0.36

13.46

1.78

-0.79

1.33

-1.34

0.78

0.19

0.18

0.22

0.19

0.13

4.91

0.42

0.27

0.31

0.47

*

*

***

***

***

**

**

***

**

***

**

Note:

*p , 0.05

**p , 0.01

***p , 0.001

and shared RTL and the component effect between
channelized type of right-turn lane and AADT. The
estimation result can be seen in Table 5.10. Exclusive
RTL has fewer crashes than shared RTL when the
AADT is higher than 41,212 veh/day. The presence of
traffic island has fewer crashes than the channelized
type of nothing/marking when the AADT is higher
than 18,919 veh/day.

5.3.3.5 Roadway class level estimates conclusion

1. The presence of roundabout/traffic circle increases

crashes for RTL in local road.

2. RTL with high design speed increases crashes, and the

effects are different on road classes.

3. Pedestrian crosswalk at RTL increases crashes for RTL

in local road.

4. RTL with large turn radius has more crashes than small

turn radius, and the effects are different on road classes.

5. Exclusive RTL reduce crashes and the effects depends on

the AADT and road class.

6. Signal control has fewer crashes and yield/stop has more

crashes than RTLs with no traffic control in local road

and US road. The effects of traffic control are different

for RTL in local and US road.

7. RTL with traffic island decreases crashes than nothing/

marking for RTL in local and interstate road.

8. Intersection traffic volume increase crashes.
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TABLE 5.10
Estimation result for right-turn lanes in interstate roads

Estimate Std. Error Pr(.|z|)

Junction type intersection 3.63 0.77 ***

Design speed 1 0.34 0.12 **

Locality (urban) 1.00 0.38 **

Hour night -0.96 0.13 ***

Cluster 1 1.20 0.95 Insignificant

Cluster 2 -1.58 0.27 ***

Visibility condition lighted 1.07 0.18 ***

Surface condition (wet) -1.43 0.13 ***

Log (turn radius) 1.07 0.11 ***

RTL type 1 8.82 3.36 **

Log (AADT) 1.38 0.28 ***

Channelized type (traffic island) 16.84 9.28 *

RTL type 1 : Log (AADT) -0.83 0.32 **

Log (AADT) : Channelized type (traffic island) -1.71 0.91 *

Note:

*p , 0.05

**p , 0.01

***p , 0.001

6. ECONOMETRIC MODEL B FOR CRASH
SEVERITY

6.1 Model Robustness Testing

A robustness test for the RTL geometric factors and
compound effects in the overall severity log-linear
model is presented in Table 6.1. The effects of RTL
geometric factors and compound effects have been
computed in each specification. The first three regres-
sions examine the specification with only RTL
geometric factors and compound factors. In all specifi-
cations, we use different combinations of environmen-
tal-related controls and spatial-temporal controls
(B1, B2, and B3 are controlled from one in three; C1,
C2, and C3 are controlled from two in three; D is the
full model with all variables). Based on the results of
the robustness test, the effects of both ‘‘len’’ is nonsigni-
ficant in any specification, which confirms the con-
sistent estimates of ‘‘len.’’ Besides, the robustness test
suggests that the effect of cluster is nonsignificant. The
geometric design variable ‘‘Accye’’ and the intersection
characteristics variable ‘‘Spl . 35’’ are nonsignificant in
any specification. Furthermore, the effects of com-
pound factors, such as channelized type with intersec-
tion traffic volume (AADT) and the right-turn type
with design speed, are not significant under any speci-
fications. Thus, we won’t consider it into the final Log-
linear model.

6.2 Marginal Effect and Elasticity Estimation

The average marginal effects and elasticities of expla-
natory variables in the overall model of log-linear
models is presented in Table 6.1. The marginal effect
describes the changes in the conditional mean of the
crashes in response to a unit change in the explana-
tory variables. Meanwhile, the elasticity measures the

percentage changes of the crash frequency in response
to a unit percentage change in the continuous expla-
natory variables. Therefore, the elasticity is adopted to
interpret the effects of continuous variables, and the
marginal effects are more appropriate to measure the
effects of nominal variables. In particular, the coeffi-
cients of the continuous explanatory variables in the
logarithm function directly estimate the elasticity. The
final overall model is presented in Table 6.2.

6.3 Interpretation

6.3.1 Overall Level

6.3.1.1 Intersection characteristics. There are two
significant intersection characteristics factors: the
presence of intersection junction type and the design
speed. The effect of the presence of roundabout/traffic
circle is insignificant compared with the RTLs in inter-
change/ramp and the presence of intersection junction
has more crash cost than RTLs in interchange/ramp
(0.36% of crash cost or $12,260) (see Figure 6.1).
Besides, right-turn lane with a design speed exceed 35
mph increase 0.21% of crash cost ($12,423).

6.3.1.2 Right-turn lane geometric design variables. The
significant right-turn lane geometric design variables
are the presence of bicycle lane, right-turn lane turn
radius, right-turn lane width, the presence of traffic
island, and the right-turn lane type (exclusive RTL or
shared RTL). Among all right-turn lane geometric
design variables, the presence of bicycle lane and right-
turn lane turn radius have the most significant contri-
butions to crash cost (see Figure 6.2). The presence of
bicycle lane is worse than no bicycle lane in the RTL,
where the crash cost of the presence of the bicycle lane
is 0.57% ($10,445) more than no bicycle lane. Increasing
the RTL turn radius will make the situation even worse,
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TABLE 6.1
Robustness test of the RTL geometric factors in overall log-linear model

Explanatory Variables

Log-Linear

A1 A2 A3 B1 B2 B3 C1 C2 C3 D

Log (len) 0.046 0.131{ 0.118 0.111 0.092 0.125 0.101 0.120{ 0.080 0.0898

Log (wid) -0.339{ -0.334{ -0.402{ -0.202{ -0.336{ -0.207* -0.402{ -0.291{ -0.299{

Log (tur) -0.189** -0.195** -0.231*** -0.199** -0.196** -0.200** -0.232*** -0.219** -0.220**

ExRTL -0.212 -0.289{ -0.226* -0.245{ -0.257{ -0.331{ -0.290* -0.330*

Accye 11.894 9.264 11.379 11.365 10.877 8.555 8.855 8.164

Chtraf 2.846 2.954 2.571 3.109 2.834 3.245 2.803 3.090

Trafsn 0.166 0.244* 0.160 0.171 0.165 0.251* 0.254* 0.262*

Trafsg 0.022 0.113 0.009 0.023 0.010 0.113 0.112 0.113

Spl . 35 0.043 0.028 0.052 0.014 0.023 -0.007 0.049 0.015

Bicla (bicycle lane) -7.006* -7.105* -7.110* -7.012* -6.205* -6.983* -6.173* -6.423*

Log (AADT ) 0.041 0.069 0.026 0.057 0.042 0.087 0.058 0.075

Intsec (intersection) 0.312{ 0.317{ 0.298{ 0.279{ 0.343* 0.356* 0.352*

Rouab (round about) 0.223 0.254 0.221 0.259 0.231 0.297 0.294

Visgo 1.058*** 1.021*** 1.059*** 1.022***

Suwe -0.491** -0.510** -0.499** -0.519**

Clu1 0.141 0.136 0.208{ 0.201{

Clu2 0.170 0.163 0.154 0.145

Loub -0.198 0.294 -0.126 -0.106

Night -0.274*** -0.270*** -0.638*** -0.325***

ExRTL : Spl . 35 0.099{ 0.194{ 0.091{ 0.137{ 0.128{ 0.241{ 0.184{ 0.229{

Bicla : Log (AADT) 0.756* 0.724* 0.718* 0.694* 0.692* 0.772* 0.721* 0.753*

Chtraf : Log (AADT) -0.28 -0.293 -0.251 -0.308 -0.279 -0.323 -0.276 -0.305

Visgo : Suwe -0.680*** -0.695*** -0.671*** -0.687***

Adj R-squared 0 0.005 0.005 0.117 0.005 0.011 0.010 0.124 0.127 0.134

Observations 2173 2173 2173 2173 2173 2173 2173 2173 2173 2173

{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

where a 1% increase in RTL turn radius leads to 0.14%

more crash cost. The bicycle lane is implemented in the
intersections with high bicycle flow, and the high across
traffic flow (bicycle flow) or faster speed make the risk
exposure worse. Besides, from the statistical analysis,
increasing the RTL width will be beneficial to save crash
cost, where a 1% increase in RTL width leads to 0.38%

less crash cost. This is because the lane width provides
safe space for movement and ease of turning, which helps
to avoid the rear-end collision. Exclusive RTLs provide
space for the turning movement. Thus, it improves safety
performance. The presence of exclusive RTLs is bene-
ficial to save 0.07% of crash cost ($4,229) relative to
shared RTLs (see Figure 6.3). Furthermore, the presence
of traffic island is beneficial to save the crash cost by
0.15% ($7,799) (see Figure 6.4).

6.3.1.2.1 Environmental variables. The environ-
mental factors (visibility condition and surface condi-
tion) have the highest effects on crash cost among all
factors (see Figure 6.5). Good visibility in wet road
surface condition at RTLs is worse than poor visibility
in dry road surface condition at RTLs by introducing
0.17% ($5,453) more crash cost. The possible reason is
that drivers avoid the bad driving environment. The
good visibility condition at right-turn lanes leads to
0.75% ($19,235) more crash cost relative to poor

visibility condition at right-turn lanes. The wet surface
condition at right-turn lanes is beneficial to save 1.10%
of crash cost ($46,863) relative to dry surface condition
at right-turn lanes.

6.3.1.2.2 Spatial and temporal variables. Right-
turn lanes at nighttime is better than RTLs at daytime
by saving 0.33% of crash cost ($14,410).

Conclusion: the ranking of the contribution of right-
turn lane geometric design variables on crash severity at
overall level can be seen in Table 6.3.

6.3.2 County Level

As described in the section 4.1.2, there are three
classes of counties. Class A is Marion County; class B is
Hamilton County and Hancock County; class C is
Madison County, Tippecanoe County, Clark County,
Harrison County, Vanderburgh County, Allen County,
and La Porte County.

6.3.2.1 County class A. The estimation result of the
crash severity at county class A is shown in Table 6.4.
The most significant right-turn lane geometric design
variables for counties in class A is the presence of
bicycle lane and exclusive or shared right-turn lane. The
presence of bicycle lane results in 0.23% ($10,487) more
crash cost and the presence of pedestrian lane leads to
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TABLE 6.2
The estimations of overall final severity model and marginal effect

Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

Log (tur) -0.142* 0.065 -0.002

Log (wid) -0.375{ 0.204 -0.029

ExRTL -0.370* 0.175 -0.069

Bicla (bicycle lane) -6.98* 3.436 0.566

Chtraf 0.154{ 0.109 0.154

Trafsn 0.19{ 0.098 0.191

Trafsg 0.043 0.119 0.042

Intersection Characteristics

Intsec (intersection) 0.356* 0.156 0.356

Rouab (round about) 0.294 0.254 0.294

Spl . 35 -0.119 0.192 0.043

Log (AADT ) 0.035 0.077 0.001

Environmental-Related Factors

Visgo 1.038*** 0.119 0.751

Suwe -0.572*** 0.172 -1.096

Temporal Factors

Night -0.331*** 0.074 -0.331

Compound Effects

ExRTL : Spl . 35 0.394{ 0.214 –

Visgo : Suwe -0.642*** 0.189 –

Bicla : Log (AADT) 0.782* 0.359 –

Adj R-squared 0.134 – –

Observations 2173 – –

Note: Elasticity measurement is estimated for continuous variables (turn radius, width, AADT). Marginal effect is estimated for nominal

variables.
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

Figure 6.1 Effects of the intersection junction type (NACTO,
2017; Raleigh, 2010).

Figure 6.2 Effects of the presence of a bicycle lane (Fucoloro,
2014; Miyerov, 2021).

0.06% ($2,611) more crash cost. However, the exclusive
RTLs are worse than the shared RTLs with more crash
cost (0.48% ($14,077)). This might because the exclusive
RTLs are usually installed in the high turning traffic
intersections and the high turning traffic tends to

increase the crash risk. Another possible reason could
be non-appropriate design.

For the intersection characteristics, we find the pre-
sence of roundabout/traffic circle is better than inter-
section by saving 0.65% of crash cost ($36,037).
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For environmental and temporal factors, RTLs at
nighttime is beneficial to save 0.59% ($35,288) crash cost
relative to RTLs at daytime. Good visibility condition at
RTLs is worse than the poor visibility condition at RTLs
with 0.89% ($20,170) more crash cost relative to the poor

visibility condition at RTLs. The wet surface condition at
RTLs is beneficial to save 1.16% of crash cost ($42,072)
relative to the dry surface condition at RTLs.

6.3.2.2 County class B. The estimation result of the
crash severity at county class B is shown in Table 6.5.
The most significant right-turn lane geometric design
variables for counties in class B is the presence of
bicycle lane and RTL width. A 1% increase in RTL
turn radius is beneficial to save 0.17% of crash cost.
And the presence of bicycle lane is worse than no
bicycle lane with a 1% ($64,247) of crash cost. Besides,
a 1% increase in RTL width is beneficial to save 0.76%

of crash cost. Exclusive RTLs is beneficial to save
0.12% of crash cost ($8,945) relative to shared RTLs.
RTLs having traffic signal control is worse than RTLs
having traffic sign with 0.36% ($21,117) of crash cost
and RTLs having traffic sign is worse than RTLs with
no traffic control with 0.20% of crash cost ($11,731).
That is because RTLs having traffic control (signal or
traffic sign) usually have higher turning movement.

For environmental factors, we find good visibility
condition at RTLs is worse than poor visibility condi-
tion at RTLs with 0.74% of crash cost ($17,074).
Besides, wet surface condition at RTLs is beneficial to
save 1.15% of crash cost ($51,715) relative to dry
surface condition at RTLs.

For spatial and temporal factors, RTLs at urban
have more crash cost (2.63% ($48,299)) relative to

Figure 6.3 Effects of the RTL type (FHWA, 2016;
WKNZTA, n.d.)

Figure 6.4 Effects of the channelized type of RTLs (Cutrufo,
2015; ePermitTest, 2020).

Figure 6.5 Good visibility vs. bad visibility (ADOT, n.d.; Berg & Alaniz, 2018; Khanna, 2020; NOAA, n.d.).

TABLE 6.3
Ranked importance of crash severity in the overall model

Importance Ranking

1. Roadway junction

2. Presence of bicycle lane

3. RTL type

4. RTL turn radius

5. RTL width

6. Presence of traffic island
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TABLE 6.4
Severity estimation result for counties in class A

Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

ExRTL 23.639*** 6.186 0.476

Bicla (bicycle lane) 24.646** 8.41 0.228

Perdla (pedestrian lane) -6.42 3.913 0.06

Intersection Characteristics

Rouab (round about) -0.653** 0.245 -0.653

Log (AADT )* 2.311*** 0.687 0.001

Environmental-Related Factors

Visgo 0.888*** 0.2 0.888

Suwe -1.164*** 0.166 -1.164

Temporal Factors

Night -0.594*** 0.171 -0.594

Compound Effects

ExRTL : Log (AADT) -2.441*** 0.656 –

Bicla : Log (AADT) -2.574** 0.897 –

Perdla : Log (AADT) 0.683{ 0.411 –

Adj R-squared 0.193 – –

Observations 349 – –

Note:
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

RTLs at rural area. In addition, RTLs at nighttime is
beneficial to save crash cost ($23,644) relative to RTLs
at daytime.

6.3.2.3 County class C. The estimation result of the
crash severity at county class C is shown in Table 6.6.
The most significant RTL geometric design variables
for counties in class C is the RTL type (exclusive RTLs
or shared RTLs). For counties in class C, the exclusive
RTLs in these counties is better than shared RTLs by
saving 0.36% of total crash cost ($26,330). Besides, the
presence of intersection junction is worse than the
presence of interchange /ramp with more crash cost
($15,870). For environmental factors, the wet surface
condition at RTLs is better than dry surface condition
at RTLs by saving 1.10% of total crash cost ($43,646).
Good visibility condition at RTLs is worse than the
poor visibility condition at RTLs with 0.74% of total
crash cost ($23,334). Furthermore, we find RTLs at
nighttime is beneficial to save 0.29% of total crash cost
($20,729) relative to RTLs at daytime for RTLs in
county class C.

6.3.2.4 Conclusion for county level estimation

N The environmental factors (visibility condition and
surface condition) have the highest effects on crash cost
among all factors (see Figure 6.6).

N Exclusive RTLs and the presence of bicycle lane are the
most important factors among all geometric factors (see
Figure 6.7).

N RTL width is a significant factor for county class C,
where a 1% increase in RTL width at county class B is
beneficial to save 0.76% of crash cost.

Conclusion: the ranking of the contribution of right-
turn lane geometric design variables on crash severity at
the county level can be seen in Table 6.7.

6.3.3 Roadway Class Level

The estimation for the right-turn lane performance in
terms of crash severity is based on the roadway class
level: city/local road, US road, interstate road, and state
road. The detail interpretation can be found in the
following sections.

6.3.3.1 City/local road. The estimation result of the
crash severity at city/local road is shown in Table 6.8.
The most significant RTL geometric design variables
for RTLs in city/local road is the traffic control. RTLs
with signal control is better than RTLs with no traffic
control by saving 0.82% of crash cost ($61,399) and
RTLs with traffic sign control is better than RTLs with
no traffic control by saving 0.54% of crash cost ($40,
433). For the intersection characteristics, the presence of
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TABLE 6.5
Severity estimation result for counties in class B

Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

Log (tur) -0.174* 0.087 -0.002

Log (wid) -0.761* 0.302 -0.029

ExRTL -0.85** 0.289 -0.069

Bicla (bicycle lane) 0.991*** 0.216 0.566

Trafsn 0.198 0.191 0.191

Trafsg 0.355* 0.161 0.042

Intersection Characteristics

Spl . 35 -0.477 0.311 0.043

Environmental-Related Factors

Visgo 0.995*** 0.166 0.751

Suwe -0.685** 0.239 -1.096

Spatial Factors

Loub 2.632** 0.827 -0.331

Temporal Factors

Night -0.301** 0.1 -0.331

Compound Effects

ExRTL : Spl . 35 0.93** 0.341 –

Visgo : Suwe -0.561* 0.261 –

Adj R-squared 0.148 – –

Observations 1,132 – –

Note:

*p , 0.05

**p , 0.01

***p , 0.001

intersection junction is worse than RTLs in interchange/
ramp with 0.29% more crash cost, and the presence of
roundabout/traffic circle is beneficial to save 1.40% of
crash cost ($5,432) relative to RTLs in interchange/ramp.
Because the roundabout/traffic circle helps to slow down
the speed.

6.3.3.2 State road. The estimation result of the crash
severity at state road is shown in Table 6.9. For the
effects of environmental factors in state road, good
visibility at RTLs is worse than poor visibility at RTLs
by introducing 1.04% ($15,582) of crash cost. Besides,
wet surface condition is better than the dry surface condi-
tion at RTLs by saving 1.14% of crash cost ($55,760).

For the effects of spatial and temporal factors in the
state road, RTLs at nighttime is better than RTLs at
daytime by saving 0.66% of crash cost ($37,407) and
RTLs at school zone are worse than RTLs at non-school
zone by introducing 1.13% ($78,006) more crash cost. In
above two conditions, either more traffic flow presents in
daytime or more pedestrians cross the intersections.

6.3.3.3 US road. The estimation result of the crash
severity at state road is shown in Table 6.10. The most

significant right-turn lane geometric design variable for
RTLs in US road is the RTLs type (exclusive RTLs or
shared RTLs) and RTLs width. Exclusive RTLs is
beneficial to save 0.74% of crash cost ($38,496) relative
to the shared RTLs. A 1% increase in RTLs width leads
to 0.22% reduction of crash cost. Besides, the presence
of pedestrian lane is worse than no pedestrian by
introducing 0.78% ($49,808) of crash cost.

For the effects of the environmental variables, good
visibility condition at RTLs is worse than the poor
visibility condition at RTLs by introducing 0.80% of
crash cost ($24,328). And wet surface condition 0.73%

of crash cost ($37,157) relative to the dry surface
condition at RTLs.

6.3.3.4 Interstate road. The estimation result of the
crash severity at interstate road is shown in Table 6.11.
The most significant right-turn lane geometric design
variables for RTLs in interstate road is the RTL turn
radius and design speed. A 1% increases in RTL turn
radius leads to 1.78% increase in crash cost. This
because high speed of movement aggravates collision.
RTL with a design speed above 35 mph is worse than
RTL with a design speed below 35 mph by 3.95% of
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TABLE 6.6
Severity estimation result for counties in class C

Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

ExRTL -0.359* 0.165 -0.359

Intersection Characteristics

Intsec (intersection) 0.552** 0.210 0.552

Environmental-Related Factors

Visgo 1.167*** 0.218 0.737

Suwe -0.285{ 0.327 -1.099

Temporal Factors

Night -0.282* 0.136 -0.282

Compound Effects

Visgo : Suwe -0.995** 0.358 –

Adj R-squared 0.124 – –

Observations 692 – –

Note:
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

Figure 6.6 Effects of visibility (ADOT, n.d.; Berg & Alaniz, 2018; Khanna, 2020; NOAA, n.d.).

Figure 6.7 Effects of the RTL type and the presence of the bicycle lane (FHWA, 2016; Fucoloro, 2014; Miyerov, 2021;
WKNZTA, n.d.).
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crash cost ($94,567) relative to the RTL with a design
speed below 35 mph. Besides, we find the exclusive
RTLs are worse than the shared RTLs by introducing
2.69% ($58,125) of crash cost.

RTL types (exclusive RTLs and shared RTLs) either
introduce crash cost or reduce crash cost. Exclusive
RTLs provide space for turning movement and reduce
the crash risk due to the speed-difference. However, the
unappropriated design of the exclusive RTLs may

increase crashes. For example, in the location of
(39.91049465, -86.26956807), (40.493456, -86.86872).
The design speed is 40 mph at both RTLs, and there
is no acceleration lanes in the RTLs. The turn radius:
200 inch, 400 inch (the average turn radius is 67 inches
when the design speed is 40 mph). In such cases, there is
a large speed difference between the right-turn vehicle
and the through movement due to the lack of accelerate
lane or inappropriate design, thus leading to rear-end
collision (see Figure 6.8).

For the effects of the environmental factors, good
visibility condition is worse than poor visibility condi-
tion at RTLs by introducing 1.04% of crash cost
($12,795), and wet surface condition is better than the
dry surface condition at RTLs by saving 1.77% of crash
cost ($40,287).

For the spatial and temporal factors, RTLs at urban
area are worse than RTLs at rural area by introducing
2.75% of crash cost. RTLs at nighttime is better than
RTLs at daytime by saving 0.69% of crash cost
($18,228).

TABLE 6.7
Ranked importance of crash severity at the county level

Importance Ranking

1. RTL type

2. Presence of bicycle lane

3. Presence of pedestrian lane

4. Roadway junction

5. RTL turn radius

6. Traffic control

TABLE 6.8
Estimation result for right-turn lanes crash severity in city/local roads

City/Local Road Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

Log (tur)*

Log (wid)*

ExRTL

Bicla (bicycle lane)

Chtraf

Trafsn

Trafsg

-0.194*

-0.677**
{-0.346

-8.679*
{0.207

0.382*

0.512***

0.077

0.237

0.189

3.664

0.124

0.162

0.128

-0.004

0.055

0.019

0.608

0.207

0.382

0.512

Intersection Characteristics

Intsec (intersection)

Rouab (round about)

Spl . 35

Log (AADT)*

0.578*

0.807*

-0.3

0.045

0.226

0.322

0.233

0.102

0.578

0.807

0.146

0.001

Environmental-Related Factors

Visgo

Suwe

1.014***

-0.633**

0.14

0.201

0.734

-1.146

Temporal Factors

Night -0.355*** 0.083 -0.355

Compound Effects –

ExRTL : Spl . 35 0.514* 0.251 –

Visgo : Suwe

Bicla : Log (AADT)

-0.618**

0.959**

0.22

0.381

–

–

Adj R-squared 0.142 – –

Observations 1,648 – –

Note:
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001
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TABLE 6.9
Estimation result for right-turn lanes crash severity in state roads

State Road Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

Log (tur)

Trafsn

-0.392

-0.535

0.26

0.339

-0.008

-0.535

Trafsg -0.815* 0.345 -0.815

Intersection Characteristics

Intsec (intersection)

Rouab (round about)

0.291

-1.398

0.873

1.041

0.291

-1.398

Environmental-Related Factors

Visgo

Suwe

1.037***

-1.138***

0.277

0.22

1.037

-1.138

Spatial Factors

School zone
{1.132 0.691 1.132

Temporal Factors

Night -0.655** 0.229 -0.655

Adj R-squared 0.142 – –

Observations 1,648 – –

Note:

*p , 0.05

**p , 0.01

***p , 0.001

TABLE 6.10
Estimation result for right-turn lanes crash severity in US roads

US Road Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

Log (wid)

ExRTL

Perdla (pedestrian lane)

1.878*

-0.736*

9.702

0.923

0.37

7.231

0.137

-0.736

-0.778

Intersection Characteristics

Log (AADT )* -0.218 0.349 0.001

Environmental-Related Factors

Visgo

Suwe

0.803*

-0.729**

0.319

0.276

0.803

-0.729

Compound Effects

Perdla : Log (AADT) -1.088 0.756 –

Adj R-squared 0.065 – –

Observations 190 – –

Note:

*p , 0.05

**p , 0.01
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TABLE 6.11
Estimation result for right-turn lanes crash severity in interstate roads

Interstate Road Coefficient Standard Deviation Marginal Effect

RTL Geometric Factors

Log (tur) 1.778* 0.729 0.008

ExRTL 2.692{ 1.496 2.692

Intersection Characteristics

Spl . 35 3.946* 1.766 3.946

Log (AADT ) -1.227 0.884 0.001

Environmental-Related Factors

Visgo 1.609*** 0.462 1.035

Suwe -0.763 0.681 -1.767

Spatial Factors

Lourb 2.745{ 1.471 2.745

Temporal Factors

Night -0.691* 0.332 -0.691

Compound Effects

Visgo : Suwe -1.317{ 0.763 –

Adj R-squared 0.286 – –

Observations 101 – –

Note:
{p , 0.1

*p , 0.05

**p , 0.01

***p , 0.001

Figure 6.8 Acceleration lane design (Google, n.d.n; Google, n.d.o)

6.3.3.5 Conclusion for roadway class level estimation

N The environmental factors (visibility condition and

surface condition) and the temporal factor (daytime/

nighttime) have the highest effects on crash cost among

all factors (see Figure 6.9).

N Traffic control in RTLs, RTL type, and the presence of

bicycle lane are the most important factors among all

geometric factors (see Figure 6.10).

N The presence of bicycle lane at RTLs also increases crash

cost.

Conclusion: the ranking of the contribution of right-
turn lane geometric design variables on crash severity at
the roadway class level can be seen in Table 6.12.
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Figure 6.9 Effects of temporal and environmental roadway factors on crash cost severity (ADOT, n.d.; Berg & Alaniz, 2018;
Khanna, 2020; NOAA, n.d.).

Figure 6.10 Effects of the RTL type and traffic control (roadway) on crash cost (FHWA, 2016; PNG All, 2020; Road Warrior,
2013; WKNZTA, n.d.).

TABLE 6.12
Ranked importance of crash severity at the roadway class level

Importance Ranking

1. Traffic control

2. RTL type

3. Presence of bicycle lane

4. RTL turn radius

5. Design speed

6. RTL width

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/26 59



7. MODELING CRASH FREQUENCY AND
SEVERITY

7.1 Key Geometric Design Factors

7.1.1 Overall Level Intersection Characteristics

7.1.1.1 Design speed. Design speed above 35 mph has
significant effects on both crash frequency and crash
cost.

RTL with a design speed above 35 is worse than
RTL with design speed below (equal to) 35 mph by
introducing 1.56 times crashes and 0.21% more crash
cost (see Figure 7.1).

7.1.1.2 Intersection junction type. The presence of
an intersection junction has significant effect on crash
frequency and crash cost relative to interchange/ramp.
The presence of roundabout/traffic circle has significant
effect on crash cost relative to interchange/ramp but no
difference in crash frequency.

An intersection junction has 1.97 times the crash
frequency risk and a 0.36% increase of crash cost rela-
tive to interchange/ramp. Roundabout/traffic circle is
worse than interchange/traffic circle by introducing
0.29% more crash cost (see Figure 7.2).

7.1.1.3 Right-turn lane geometric design variables

7.1.1.3.1 RTL turn radius and RTL type. RTLs
turn radius and RTL type have the most significant
effects on crash frequency and crash cost. A 1%

increase in RTLs turn radius increases 0.56% of crash
frequency and increases 0.21% of crash cost (see Figure
7.3). The exclusive RTLs with a design speed above
35 mph have 16% fewer crashes than the shared RTLs
with a design speed above 35 mph. The exclusive RTLs
with a design speed below 35 mph is better than the
shared RTLs with a design speed below 35 mph by
saving 0.07% of crash cost (see Figure 7.4).

7.1.1.3.2 RTL channelized type and the presence of
bicycle lane. The channelized type of traffic island has
significant effect on both crash frequency and crash
cost. The effect of the traffic island at RTL is different
depending on the AADT of the intersection (e.g., RTLs
with traffic island has 21% fewer crashes when AADT
is 100,000). RTLs with traffic island increase 0.15% of

Figure 7.1 The effects of the design speed (overall) on
frequency and severity (Wikipedia Commons, n.d.).

Figure 7.2 Effects of the intersection junction type (overall) on frequency and severity (NACTO, 2017; NCDOT, n.d.; Raleigh,
2010).

Figure 7.3 Effects of the RTL turn radius (overall) on
frequency and severity (sfbetterstreets, n.d.)
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Figure 7.4 Effects of RTL types (overall) on frequency and severity (FHWA, 2016; Wikipedia Commons, n.d.; WKNZTA, n.d.).

Figure 7.5 Effects of RTL channelized type (overall) on
frequency and severity (Cutrufo, 2015; ePermitTest, 2020).

TABLE 7.1
Ranked importance for both crash frequency and crash severity at
the overall level

Importance Ranking

1. RTL turn radius

2. RTL type

3. Channelized type

4. Design speed

5. Intersection junction type

Figure 7.6 Effects of the design speed (county) on frequency
and severity (Wikipedia Commons, n.d.).

crash cost (see Figure 7.5). The presence of bicycle lane
increases 0.57% of crash cost; and the sign control have
1.23 times risk on crash frequency more than no traffic
control.

Conclusion: the ranking of the contribution of right-
turn lane geometric design variables on both crash
frequency and crash severity at overall level can be seen
in Table 7.1.

7.1.2 County Level Intersection Characteristics

7.1.2.1 Design speed. Design speed above 35 mph has
significant effects on crash frequency. RTL with a
design speed above 35 has 1.5,1.7 times risk on crash
frequency (see Figure 7.6).

7.1.2.2 Intersection junction type. The presence of
intersection junction has significant effect on crash
frequency and crash cost. The presence of roundabout/
traffic circle is better than RTLs at intersection junction
by reducing 0.57 times crashes and saving 0.65% of
crash cost on county class A. The presence of inter-
section junction is worse than the presence of inter-

change /ramp by introducing 2.12 times more crashes
and 0.55% more crash cost on county class C (see
Figure 7.7).

7.1.2.3 Right-turn lane geometric design variables

7.1.2.3.1 RTL types and RTL turn radius. RTL
type and RTLs turn radius has the most significant
effects on crash frequency and crash cost. Exclusive
RTLs are worse than shared RTLs by introducing 1.53
times crashes and 0.48% of crash cost on county class
A, but exclusive RTLs are better than shared RTLs by
reducing 0.89 times crashes and saving 0.12% of crash
cost on county class B and reducing 0.8 times crashes
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Figure 7.7 Effects of the intersection junction type (county) on frequency and severity (NACTO, 2017; NCDOT, n.d.; Raleigh,
2010).

Figure 7.8 Effects of the RTL type (county) on frequency and severity (FHWA, 2016; WKNZTA, n.d.).

Figure 7.9 Effects of RTL turn radius (county) on frequency
and severity (sfbetterstreets, n.d.).

Figure 7.10 Effects of the bicycle lane at RTL (county) on
frequency and severity (Fucoloro, 2014; Miyerov, 2021).

and saving 0.36% of crash cost on county class C (see
Figure 7.8). A 1% increase in RTL turn radius leads to
0.17% reduction of crash cost on county class B, 1%

increase in RTL turn radius 0.59%–0.28% increase in
crash frequency for all counties (see Figure 7.9).

7.1.2.3.2 Bicycle lane and pedestrian lane. The
presence of bicycle lane and pedestrian lane is worse
than no bicycle lane in county class A and B by intro-
ducing 0.2%–1% of crash cost. The presence of bicycle
lane and pedestrian lane is worse than no bicycle lane in
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Figure 7.11 Effects of the traffic control (county) on frequency and severity (PNG All, 2020; Road Warrior, 2013).

Figure 7.12 Effects of the design speed (roadway) on frequency and severity (Wikipedia Commons, n.d.).

county class B and C by introducing 1.2–1.5 times more
crashes (see Figure 7.10).

7.1.2.3.3 Traffic control. RTLs having traffic
signal control are better than RTLs having no traffic
control by reducing the crash frequency for county class
A and C (see Figure 7.11). However, RTLs having
traffic sign control are better than RTLs having no
traffic control for county class A and C by reducing
crashes. RTLs having traffic signal are worse than
RTLs with no traffic control by introducing 0.36% of
crash cost and RTLs having traffic sign are worse than
RTLs with no traffic control by introducing 0.20% of
crash cost. Conclusion—the ranking of the contribu-
tion of right-turn lane geometric design variables on
both crash frequency and crash severity at the county
level can be seen in Table 7.2.

7.1.3 Roadway Class Level Intersection Characteristics

7.1.3.1 Design speed. Design speed above 35 mph has
significant effects on both crash frequency and crash
cost. RTL with a design speed above 35 mph is worse
than the RTL with a design speed below (equal to)

TABLE 7.2
Ranked importance of both crash frequency and crash severity at
the county level

Importance Ranking

1. RTL type

2. RTL turn radius

3. Presence of bicycle lane

4. Design speed

5. Traffic control

35 mph by introducing 3.95% of crash cost in RTLs in
the interstate road and increasing 1.4,2.2 times more
crashes in RTLs in different roadways (see Figure 7.12).

7.1.3.2 Intersection junction type. The presence of
intersection junction has significant effect on crash
frequency and crash cost. The presence of intersection
junction is worse than interchange/ramp in state road
by introducing 0.29% of crash cost and the presence of
roundabout/traffic circle is better than interchange/
ramp in state road by saving 1.40% of crash cost. The
presence of intersection junction has 2.61–4.22 times
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more crashes than the presence of interchange/ramp
and the presence of roundabout/traffic circle has 2.4
times more crashes than the presence of interchange/
ramp in local/city road (see Figure 7.13).

7.1.3.3 Right-turn lane geometric design variables

7.1.3.3.1 RTLs turn radius and traffic control of
RTLs. RTLs turn radius and traffic control of RTLs
have the most significant effects on crash frequency and
crash cost. The installment of traffic sign is better than
RTLs with no traffic control system by saving 0.38%,

1.64% of crash cost in different roadways. The install-
ment of traffic signal is better than RTLs with no traffic
control system by saving 0.82%,0.51% of crash cost in
different roadways. The installment of traffic sign is
worse than no traffic control system by introducing
1.17,3.78 times crashes and the installment of traffic
signal is better than no traffic control system by redu-
cing 0.45,0.68 times crashes in different roadways (see
Figure 7.14). A 1% increase in RTLs turn radius leads
to 0.38%,1.07% increase of crash risk in different
roadways and increases 1.78% of crash cost in the
interstate road and 0.19% of crash cost in the local/city
road (see Figure 7.15).

7.1.3.3.2 RTL type. Exclusive RTLs are better
than shared RTLs by reducing crashes in different
roadways, However, the exclusive RTLs have 2.69%

more crash cost than the shared RTLs in the interstate
road but are better than shared RTLs by saving 0.74%

of crash cost in the US road.

Conclusion: the ranking of the contribution of right-
turn lane geometric design variables on both crash
frequency and crash severity at roadway class level can
be seen in Table 7.3.

TABLE 7.3
Ranked importance of both crash frequency and crash severity at
the roadway class level

Importance Ranking

1. RTL turn radius

2. Traffic control

3. Design speed

4. Exclusive and shared RTL

5. Intersection junction type

Figure 7.13 Effects of intersection junction (roadway) on frequency and severity (NACTO, 2017; NCDOT, n.d.; Raleigh, 2010).

Figure 7.14 Effects of the traffic control (roadway) on frequency and severity (PNG All, 2020; Road Warrior, 2013).
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Figure 7.15 Effects of the RTL turn radius (roadway) on frequency and severity (sfbetterstreets, n.d.).

TABLE 7.4
Ranked importance of intersection characteristics and RTL
geometric design factors for both crash frequency and severity

Importance Ranking

1. RTL turn radius

2. Exclusive and shared RTL

3. Design speed

4. Traffic control

5. Intersection junction type

6. Presence of bicycle lane

7. RTL channelized type

7.2 Recommendations for Right-Turn Lane Geometric
Design

7.2.1 Key Factors Ranking

From the statistical analysis and modeling, based on
the statistical analysis, we rank the importance of the
intersection characteristics and RTL geometric design
factors based on their effects on both crash frequency
and severity.
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8. DISCUSSIONS AND CONCLUSIONS

8.1 Summary of Recommendations

8.1.1 The Recommendation for Crash Frequency

Based on the statistical analysis and modeling for the
crash frequency, we find the environmental factors
(visibility condition, road surface condition, and the
temporal factors) have the most significant effects on
number of crashes among all factors (geometric design
factors, intersection factors, temporal and spatial
factors). In the estimates, the good visibility condition
has more crashes than the poor visibility and the dry
surface condition of RTLs increases the risk exposure
comparing to the wet surface condition of RTLs.
Besides, RTLs at daytime has more crashes than RTLs
at nighttime. This seems to contradict our expectations,
since good environmental conditions (good visibility
and surface condition) usually improves the driving
vision. The reason behind that could be that drivers
tend to avoid the bad weather (e.g., snow and sand-
storm) and would be more careful when the visibility
condition is not good. Therefore, the observed traffic
flow will be much less than on normal days and leads to
the reduction of risk exposure.

For the intersection characteristics and geometric
design factors, the most significant factors affecting
crash frequency are the designed design speed, RTL type
(and acceleration lane design), RTL turn radius, traffic
channelized type, and traffic control. Other factors like
the intersection junction, the presence of bicycle lane/
pedestrian lane, channelized type, the installment of
acceleration lane, and RTL width also impact the
number of crashes.

8.1.1.1 The effect of the geometric design compound
factors. First, there is a significant effect between
designed design speed and the RTL type on the crash
frequency. In the overall level, the installment of the
exclusive RTL can reduce the risk of crashes compared
to the shared RTL. However, the high design speed
increases number of crashes. The compound factor of
these two variables significantly contribute to right-turn
related crashes: the exclusive RTL with design speed
over 35 mph have 16% fewer crashes than the shared
RTL with design speed over 35 mph. In the case when
the design speed is below or equal to 35 mph, the
exclusive RTL with design speed below or equal to
35 mph has 45% fewer crashes than the shared RTL
with design speed below or equal to 35 mph.

Second, the installment of acceleration lane and traffic
island in RTLs can either increase or decrease crashes
depending on the number of intersection AADT. The risk
ratio for RTL with acceleration lane is less than the risk
ratio for the RTL without acceleration lane when
AADT is above 37,120 vpd, which means RTL acce-
leration lane having fewer crashes than without
acceleration lane under that condition. However, the
effect of the RTLs with acceleration lane is different
depending on the volume of intersection AADT. For

example, the risk ratio for the RTL with acceleration
lane to the RTL without acceleration lane is 0.57 when
intersection AADT is 100,000 vpd, which means RTL
with acceleration lane has 43% fewer risk of crashes
than the RTL without acceleration lane when AADT is
100,000. Besides, a 1% increase in intersection AADT
leads to 0.343% increase in the crash frequency on
average.

Third, the risk ratio for the presence of traffic island is
less than the channelized type of nothing or making when
the intersection AADT is above 52,821 vpd. In addition,
the effects of the compound factor are different along
with the change of AADT. For example, the risk ratio
for the presence of traffic island is 0.79 when inter-
section AADT is 100,000 vpd, which means traffic island
has 21% fewer crashes than channelized type to be nothing
or marking when AADT is 100,000 vpd. The traffic island
serves as a refuge point for pedestrians and provides
suitable locations to place traffic control devices.

1. RTLs in the urban area have 0.549 more crashes on
average relative to RTLs in the rural area, and counties
with a high population have more crashes.

2. RTLs at daytime has 1.321 more crashes on average than
RTLs at nighttime.

3. The high design speed is worse than the low design speed
by introducing number of crashes, and the effects of the
designed design speed are different among roadway class
and county class.

4. Exclusive RTLs reduce crashes and the effects of the
exclusive RTL depends on the AADT of roadway class
and county class.

8.1.1.2 The effect of the RTL turn radius. The RTL
turn radius has positive effects on number of crashes.
Overall, we observe that a 1% increase in the RTL turn
radius is worse than no increase in the RTL turn radius
by increasing 0.22% more crashes. The effects of the
RTL turn radius are different among roadway class and
county class.

1. The interstate road RTLs turn radius has the highest
effects on crash frequency among all roadway classes
(local/city, interstate, state, and US), where a 1% increase
in the RTLs turn radius leads to 1.07% more crashes.

2. The effects of RTLs turn radius on crash frequency are
heterogenous in different counties. RTL turn radius has
the highest effects on the crash frequency when RTLs are
located in Marion County, where a 1% increases in the
RTLs turn radius results in 0.59% more crashes when
RTLs are located in Marion County.

8.1.1.3 The effect of the traffic control. The traffic
control is also an important factor that affects the crash
frequency. In the overall level, RTLs having ‘‘yield/
stop’’ traffic sign and RTLs with no traffic control have
0.785 and 0.647 more crashes on average than RTLs
having traffic signal control.

1. RTLs having signal control have fewer crashes and RTLs
having yield/stop sign control have more crashes than
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RTLs with no traffic control for RTLs on local roads and

US roads. The effects of traffic control are different for

RTLs on local and US roads.

2. RTLs with signal control have fewer crashes, and yield/

stop signs have more crashes than RTLs with no traffic

control for roads in Marion County, Madison County,

Tippecanoe County, Clark County, Harrison County,

Vanderburgh County, Allen County, and La Porte

County. However, the effect of traffic control is insignif-

icant for roads in Hamilton County and Hancock County.

The recommendations for reducing number of crashes
from the RTL geometry design type and design speed
aspects are as follows. It is more appropriate to have
an exclusive RTL rather than a shared RTL when the
intersection traffic volume is high. Besides, it is better
to install exclusive RTLs no matter the design speed
is below or above 35 mph. However, the benefit-cost
estimates should depend on the life cycle utilization in
the particular area. In addition, the exclusive RTLs
provide space for turning movement and reduce the
crash risk due to the speed-difference. To improve the
RTL safety, the appropriate design of the exclusive
RTLs should consider many aspects. The counter-
measure for exclusive RTLs should combine the RTL
turn radius, the deceleration or acceleration lane, and
the design speed in the adjacent lanes. The inappropri-
ate design of RTL types leads to rear-end collisions.
For the design speed setting, although the high design
speed increases crashes, it is also beneficial to the
intersection capacity. For the traffic control variables,
the RTLs at city/local roadway and US road are
recommended to have traffic signal control but not
traffic sign control. Because the traffic signal control
reduces number of crashes. However, the traffic sign
control is worse than no traffic control by increasing
crashes. Therefore, the trade-off between intersection
capacity and safety (crashes) should be considered for a
specific intersection.

8.1.2 The Recommendation for Crash Severity

Based on the statistical analysis and modeling for
the crash severity, we find the environmental factors
(visibility condition, temporal factors, and road surface
condition) has the most significant effects on the crash
cost among all factors (geometric design factors, inter-
section factors, temporal and spatial factors). Based on
the modeling, good visibility condition has more crash
cost comparing to the poor visibility and the dry surface
condition is worse than the wet surface condition by
introducing more crash cost. Besides, RTLs at daytime
is worse than RTLs at nigh time by introducing more
crash cost.

For the intersection characteristics and geometric
design factors, the most significant factors affecting
crash cost are the presence of the bicycle lane, RTL type,
RTL turn radius, and traffic control. Other factors like
the intersection junction, RTL width, and channelized
type also impact crash cost.

8.1.2.1 The effect of the presence of bicycle lane. The
presence of bicycle lane has significant effects on the
crash cost. In the overall level, the presence of bicycle
lane is worse than no bicycle lane by introducing 0.57%
($10,445) of crash cost and a 1% increase in RTL turn
radius leads to 0.14% increase of crash cost.

1. The presence of a bicycle lane is worse than no bicycle
lane by introducing more crash cost. The effects of the
presence of the bicycle lane are different among the
roadway class and county class, which ranges from 0.23%

to 1% of crash cost. In particular, the presence of bicycle
lane in the local/city road have 0.61% more crash cost.
This is because the conflict between bicycle and right-turn
vehicle increases.

2. The presence of bicycle lane has the highest effect on crash
cost when the RTLs are located in Madison County,
Tippecanoe County, Clark County, Harrison County,
Vanderburgh County, Allen County, and La Porte County,
where the presence of bicycle lane is worse than no bicycle
lane by introducing $64,247 crash cost on average.

8.1.2.2 The effect of the RTL turn radius. Increasing
RTL turn radius is worse to have more crash cost. In
the overall, a 1% increase in RTLs turn radius has a
0.56% increase of crash frequency and a 0.21% increase
of crash cost.

1. A 1% increase in RTL turn radius increases 1.78% of
crash cost in the interstate road and 0.19% of crash cost in
the local/city road.

2. A 1% increase in RTL turn radius leads to 0.17%

reduction of crash cost on Madison County, Tippecanoe
County, Clark County, Harrison County, Vanderburgh
County, Allen County, and La Porte County, a 1%

increase in RTL turn radius 0.59%–0.28% increase in
crash frequency for all counties.

8.1.2.3 The effect of the RTL type. RTL type is an
important factor affecting crash cost.

1. In the overall level, the exclusive RTLs are better than
shared RTLs by saving 0.07% of crash cost ($4,229).

2. The exclusive RTLs have more crash cost (2.69%) in the
interstate road. But the exclusive RTLs are better than the
shared RTLs in the US road by saving 0.74% of crash cost.

3. The effect of the RTL type is different among county class
and roadway class. Exclusive RTLs are worse than the
shared RTLs on Marion County by introducing 0.48% of
crash cost, but exclusive RTLs are better than shared
RTLs on Madison County, Tippecanoe County, Clark
County, Harrison County, Vanderburgh County, Allen
County, and La Porte County by saving 0.12% of crash
cost, and the exclusive RTLs are better than the shared
RTLs on Hamilton County and Hancock County by
saving 0.36% of crash cost.

8.1.2.4 The effect of the traffic control. Traffic control
is a crucial factor affecting crash cost. In the overall
level, RTLs having traffic sign is worse than RTLs with
no traffic control by introducing 0.19% of crash cost.
This might because few traffic flows in the no traffic
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control intersections. Besides, there is no significantly
different effects between RTLs with traffic signal con-
trol and RTLs with no traffic control system.

1. RTLs with traffic sign are better than RTLs with no
traffic control system by saving 0.38%,1.64% of crash
cost for RTLs in different roadways. RTLs with traffic
signal are better than RTLs with no traffic control system
by saving 0.82%,0.51% of crash cost in different road-
ways. RTLs having traffic signal are worse than RTLs
with no traffic control by introducing 0.36% of crash cost
and RTLs having traffic sign are worse than RTLs with
no traffic control by introducing 0.20% of crash cost.

2. The effects of RTLs with traffic control are positively
related to crash cost compared with the effects of RTLs
with no traffic control in Madison County, Tippecanoe
County, Clark County, Harrison County, Vanderburgh
County, Allen County, and La Porte County.

The recommendations for reducing crash cost from
the RTL geometry design type and design speed aspects
are as follows. To mitigate the negative effects of the
implementation of bicycle lane, other countermeasures
should also be considered. For example, the traffic
control system, the turn radius of RTLs, and the design
speed. The RTL turn radius should be carefully
designed. The larger RTL turn radius increases capacity
and smoothens the turning movements at intersec-
tions. On the other hand, the larger RTL turn radius
also increase turning speed due to the fluent turning
movement. In addition, the turn radius of RTLs is
supposed to increase when RTLs are located at the
local/city road and state road. However, the turn radius
of RTL is recommended to be reduced when RTLs are
located at the US and interstate road. Besides, the
installment of RTL types should associate the design of
acceleration/deceleration lane, turn radius, and design
speed. In general, the implementation of exclusive RTL
helps to reduce crash cost. For example, the RTLs in
the US road are recommended to install the exclusive
RTLs. Whereas the installment of exclusive RTL in the
interstate road may increase crash cost otherwise.
The application of the traffic control system in RTLs
should consider the intersection traffic flow. In high
traffic flow intersections (e.g., intersection in the inter-
state road and state road), it is recommended the RTL
to be equipped with traffic signal control system or
traffic sign control. However, RTLs in the local/city
road are recommended to keep no traffic control
management.

8.2 Concluding Remarks

Right-turn lane (RTL) crashes are one of the most
important contributors to intersection crashes in the
US. This study investigates the traffic safety perfor-
mance of the RTL crashes in Indiana based on multiple
data sources, including official crash reports, AERIS
data, Google Maps data and, official database, and
field study. To understand the influencing factors for
the RTL crashes, we introduce a random effect negative
binomial model to specify the spatial-correlated effects

among crashes and log-linear model to estimate the
effects of the influencing factors on crash severity. We
then adopt the robustness test to verify the reliability of
estimations. In addition to the environmental factors,
spatial and temporal factors, intersection factors, and
RTL geometric factors, we propose the compound
factors between the RTL geometrics and intersection
characteristics to address the endogeneity issues, which
is barely discussed in the literature. The empirical anal-
yses indicate that the random effect negative binomial
model outperforms the fixed effect ones and the log-
linear model fits the data better than the linear model.
In addition to the environmental, spatial, and temporal
factors, the results suggest that RTL crash frequency is
mainly influenced by RTL type, turn radius, traffic
control, and compound factors: RTL types and design
speed, channelized type and AADT, acceleration lane
and AADT. The crash severity is mainly affected by
the presence of bicycle lane, RTL turn radius, the RTL
type, and the traffic control. More importantly, we
evaluate the effects of geometric design factor and pro-
pose the recommendations to reduce the crash fre-
quency and crash severity based on the analysis (see
Table 8.1).

This study quantifies the effects of the influencing
factors on the RTL crash frequency and crash severity.
The following are several improvements in the study:

1. Data preparation is the first improvement in this research.
In the previous studies, the analysis is mainly based on
one or two-dimensional aspects for RTLs safety studies,
either the geometric characteristics or human factors (and
others) due to the RTL-related geometric characteristics
to be seldom obtained from existed data sources. To
achieve a comprehensive understanding of the influencing
factors on the RTLs crash frequency, we first proposed a
data collection framework based on the population of
different types of RTLs. A string similarity fusion method
for the multi-source datasets was then employed to merge
diverse data sources, which facilitates the efficiency of
data processing and avoid the selection bias for the
sampled RTLs. Furthermore, a clustering method was
applied to capture the homogeneity of counties from the
aspects of population, yearly household income, and the
percentage of the educated population. The created spatial
variable (county clusters) helps to obtain a more inter-
pretable format for the underlying effects of each county.

2. The modeling methodology is also advanced to system-
atically understand the RTL crash frequency and severity.
In addition to investigating the hazardous factors of RTL
geometric design, environmental factors, spatial-temporal
factors, we develop compound effects between RTL
geometric design and intersection characteristics, which
is among the first step to deal with the downward
estimation for the ‘‘selectivity bias/endogeneity’’ issue in
the model estimation. On the other hand, the model
comparison suggests that the RENB model outperforms
the fixed one because of capturing the spatial-correlated
effects. The robustness test confirms the reliability of our
estimations. The key insights in this study are as follows:

a. A 1% increase in the RTL turn radius leads to
0.22% increase in the crash frequency.

68 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/26



T
A

B
L

E
8
.1

C
o
u

n
te

rm
ea

su
re

s
a
n

d
re

co
m

m
en

d
a
ti

o
n

s

B
en

ef
it

s
a

n
d

G
eo

m
et

ri
c

D
es

ig
n

C
a

te
g
o

ry
R

T
L

L
o
ca

ti
o
n

L
ev

el
o

f
S

ig
n

if
ic

a
n

ce
C

o
u
n

te
rm

ea
su

re
s

D
et

a
il

ed
C

o
u
n

te
rm

ea
su

re
A

d
d
it

io
n

a
l

C
o

n
si

d
er

a
ti

o
n
s

In
te

rs
e
c
ti

o
n

R
o

a
d

w
a
y

ju
n

ct
io

n
In

te
rs

ec
ti

o
n

/
C

o
u

n
ty

ro
a
d

/c
it

y
o

r
B

T
h

e
in

te
rc

h
a
n

g
e

o
r

ra
m

p
If

th
e

R
T

L
s

a
re

in
th

e
T

h
e

in
st

a
ll

m
en

t
o

f
in

te
rc

h
a
n

g
e

o
r

ro
u

n
d

a
b

o
u

t
o

r
lo

ca
l

ro
a
d

/s
ta

te
a
n

d
ro

u
n

d
a
b

o
u

t
a
re

co
u

n
ty

ro
a
d

,
a
n

d
ci

ty
/

ra
m

p
a
n

d
ro

u
n

d
a
b

o
u

t
is

b
et

te
r

tr
a

ff
ic

ci
rc

le
/

ro
a
d

/U
S

ro
a
d

/
re

co
m

m
en

d
ed

in
m

o
st

lo
ca

l
ro

a
d

,
th

en
th

e
th

a
n

th
e

in
te

rs
ec

ti
o

n
b

y
sa

v
in

g
in

te
rc

h
a
n

g
e

o
r

in
te

rs
ta

te
ro

a
d

o
f

th
e

ro
a
d

w
a
y

ro
u

n
d

a
b

o
u

t/
tr

a
ff

ic
ci

rc
le

0
.3

5
6
%

o
f

cr
a
sh

co
st

o
n

a
v
er

a
g
e.

ra
m

p
ju

n
ct

io
n

s.
is

re
co

m
m

en
d

ed
to

b
e

T
h

e
in

st
a
ll

m
en

t
o

f
th

e
ro

u
n

d
a
b

o
u

t/
in

st
a

ll
ed

.
tr

a
ff

ic
ci

rc
le

is
b

et
te

r
th

a
n

If
th

e
R

T
L

s
a
re

in
th

e
st

a
te

in
te

rs
ec

ti
o

n
ju

n
ct

io
n

b
y

re
d

u
ci

n
g

ro
a
d

,
th

e
in

te
rc

h
a
n

g
e/

0
.0

8
%

cr
a
sh

es
w

h
en

R
T

L
s

a
re

in
ra

m
p

a
re

re
co

m
m

en
d

ed
th

e
ci

ty
/l

o
ca

l
ro

a
d

.
to

b
e

im
p

le
m

en
te

d
.

T
h

e
in

st
a
ll

m
en

t
o

f
th

e
in

te
rc

h
a
n

g
e/

ra
m

p
is

b
et

te
r

th
a

n
in

te
rs

ec
ti

o
n

b
y

re
d

u
ci

n
g

1
.4

4
%

a
n

d
3
.6

%
o

f
n

u
m

b
er

o
f

cr
a
sh

es
re

la
ti

v
e

to
in

te
rs

ec
ti

o
n

w
h

en
R

T
L

s
a

re
in

th
e

U
S

ro
a
d

a
n

d
in

te
rs

ta
te

ro
a
d

.

R
ig

h
t-

T
u

rn
L

a
n

e

T
u

rn
ra

d
iu

s
C

o
u

n
ty

ro
a
d

/c
it

y
o

r
A

T
h

e
R

T
L

tu
rn

ra
d

iu
s

is
1

%
in

cr
ea

se
s

in
tu

rn
ra

d
iu

s
le

a
d

s
to

lo
ca

l
ro

a
d

/s
ta

te
re

co
m

m
en

d
ed

to
re

d
u

ce
0
.0

0
2
%

m
o

re
cr

a
sh

co
st

a
n

d
ro

a
d

/U
S

ro
a
d

/
w

h
en

R
T

L
s

a
re

in
th

e
0
.2

2
%

m
o

re
cr

a
sh

es
o

n
a
v
er

a
g
e.

in
te

rs
ta

te
ro

a
d

ci
ty

o
r

lo
ca

l
ro

a
d

a
n

d
1
%

in
cr

ea
se

in
R

T
L

tu
rn

ra
d

iu
s

in
te

rs
ta

te
ro

a
d

.
re

su
lt

s
in

0
.1

9
%

m
o

re
cr

a
sh

co
st

a
n

d
0
.3

6
%

m
o

re
cr

a
sh

es
w

h
en

R
T

L
s

a
re

in
th

e
ci

ty
/l

o
ca

l
ro

a
d

.
1
%

in
cr

ea
se

in
R

T
L

tu
rn

ra
d

iu
s

re
su

lt
s

in
0

.0
0

8
%

m
o

re
cr

a
sh

co
st

a
n

d
1
.0

7
%

m
o

re
cr

a
sh

es
w

h
en

R
T

L
s

a
re

in
th

e
in

te
rs

ta
te

ro
a
d

.

W
id

th
C

o
u

n
ty

ro
a
d

/c
it

y
o

r
B

T
h

e
in

fl
u

en
ce

o
f

R
T

L
1

%
in

cr
ea

se
in

R
T

L
w

id
th

le
a

d
s

to
lo

ca
l

ro
a
d

/s
ta

te
w

id
th

is
in

si
g
n

if
ic

a
n

t
in

0
.3

8
%

le
ss

cr
a
sh

co
st

o
n

a
v

er
a
g

e.
ro

a
d

/U
S

ro
a
d

/
m

o
st

o
f

th
e

ca
se

s.
T

h
e

1
%

in
cr

ea
se

in
R

T
L

w
id

th
re

su
lt

s
in

in
te

rs
ta

te
ro

a
d

ro
a
d

w
id

th
is

0
.6

8
%

le
ss

cr
a
sh

co
st

w
h

en
R

T
L

s
re

co
m

m
en

d
ed

to
a
re

in
th

e
ci

ty
/l

o
ca

l
ro

a
d

.
in

cr
ea

se
w

h
en

th
e

R
T

L
s

1
%

in
cr

ea
se

in
R

T
L

w
id

th
re

su
lt

s
in

a
re

in
th

e
ci

ty
/l

o
ca

l
ro

a
d

0
.1

4
%

m
o

re
cr

a
sh

co
st

w
h

en
a
n

d
U

S
ro

a
d

.
R

T
L

s
a
re

in
th

e
U

S
ro

a
d

.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/26 69



T
A

B
L

E
8
.1

(
C

o
n
ti

n
u
e
d
)

B
en

ef
it

s
a

n
d

G
eo

m
et

ri
c

D
es

ig
n

C
a

te
g
o

ry
R

T
L

L
o
ca

ti
o
n

L
ev

el
o

f
S

ig
n

if
ic

a
n

ce
C

o
u
n

te
rm

ea
su

re
s

D
et

a
il

ed
C

o
u
n

te
rm

ea
su

re
A

d
d
it

io
n

a
l

C
o

n
si

d
er

a
ti

o
n
s

C
h

a
n

n
el

iz
ed

ty
p

e
S

o
li

d
tr

a
ff

ic
is

la
n

d
/

C
o

u
n

ty
ro

a
d

/c
it

y
o

r
A

W
h

et
h

er
th

e
tr

a
ff

ic
is

la
n

d
If

th
e

in
te

rs
ec

ti
o

n
A

A
D

T
is

R
T

L
s

w
it

h
th

e
ch

a
n

n
el

iz
ed

ty
p

e
a
s

m
a

rk
in

g
tr

a
ff

ic
lo

ca
l

ro
a
d

/s
ta

te
sh

o
u

ld
b

e
in

st
a
ll

ed
o

r
a
b

o
v
e

5
2
,8

2
1

v
p

d
,

th
en

tr
a
ff

ic
is

la
n

d
h

a
s

2
1
%

fe
w

er
is

la
n

d
/n

o
tr

a
ff

ic
ro

a
d

/U
S

ro
a
d

/
n

o
t

d
ep

en
d

in
g

o
n

th
e

th
e

tr
a

ff
ic

is
la

n
d

is
cr

a
sh

es
th

a
n

R
T

L
s

w
it

h
is

la
n

d
in

te
rs

ta
te

ro
a
d

in
te

rs
ec

ti
o

n
A

A
D

T
.

re
co

m
m

en
d

ed
to

b
e

ch
a
n

n
el

iz
ed

ty
p

e
to

b
e

n
o

th
in

g
o

r
in

st
a

ll
ed

.
m

a
rk

in
g

w
h

en
A

A
D

T
is

1
0
0
,0

0
0

If
th

e
in

te
rs

ec
ti

o
n

A
A

D
T

is
v
p

d
o

n
a
v
er

a
g
e.

H
o

w
ev

er
,

th
e

a
b

o
v
e

3
5
,6

7
2

v
p

d
in

th
e

p
re

se
n

ce
o

f
tr

a
ff

ic
is

la
n

d
in

cr
ea

se
s

ci
ty

/l
o

ca
l

ro
a
d

,
th

en
th

e
0
.1

5
%

o
f

cr
a
sh

co
st

o
n

a
v
er

a
g
e.

tr
a
ff

ic
is

la
n

d
is

If
th

e
A

A
D

T
is

h
ig

h
er

th
a
n

3
5
,6

7
2

re
co

m
m

en
d

ed
to

b
e

v
p

d
,

th
en

R
T

L
w

it
h

tr
a
ff

ic
is

la
n

d
in

st
a

ll
ed

in
th

e
R

T
L

.
h

a
s

fe
w

er
cr

a
sh

es
th

a
n

th
e

R
T

L
s

If
th

e
in

te
rs

ec
ti

o
n

A
A

D
T

is
w

it
h

ch
a
n

n
el

iz
ed

ty
p

e
o

f
n

o
th

in
g
/

a
b

o
v
e

1
8
,9

1
9

v
p

d
in

th
e

m
a
rk

in
g

w
h

en
R

T
L

s
a
re

lo
ca

te
d

in
te

rs
ta

te
ro

a
d

,
th

en
th

e
in

th
e

ci
ty

/l
o

ca
l

ro
a
d

.
tr

a
ff

ic
is

la
n

d
is

If
th

e
A

A
D

T
is

h
ig

h
er

th
a
n

1
8
,9

1
9

re
co

m
m

en
d

ed
to

b
e

v
p

d
,

R
T

L
s

w
it

h
tr

a
ff

ic
is

la
n

d
h

a
s

in
st

a
ll

ed
in

th
e

R
T

L
.

fe
w

er
cr

a
sh

es
th

a
n

th
e

R
T

L
s

w
it

h
ch

a
n

n
el

iz
ed

ty
p

e
o

f
n

o
th

in
g
/

m
a
rk

in
g

w
h

en
R

T
L

s
a
re

lo
ca

te
d

in
th

e
in

te
rs

ta
te

ro
a
d

.

T
ra

ff
ic

co
n

tr
o

l
T

ra
ff

ic
si

g
n

a
l

C
o

u
n

ty
ro

a
d

/c
it

y
o

r
A

T
h

e
in

st
a
ll

m
en

t
o

f
th

e
If

R
T

L
s

a
re

in
th

e
st

a
te

R
T

L
s

w
it

h
si

g
n

a
l

co
n

tr
o

l
a
re

b
et

te
r

co
n

tr
o

l/
tr

a
ff

ic
lo

ca
l

ro
a
d

/s
ta

te
tr

a
ff

ic
si

g
n

a
l

co
n

tr
o

l
is

ro
a

d
,

th
e

tr
a

ff
ic

si
g

n
a

l
is

th
a
n

R
T

L
s

w
it

h
n

o
tr

a
ff

ic
co

n
tr

o
l

si
g
n

co
n

tr
o

l/
n

o
ro

a
d

/U
S

ro
a
d

/
su

p
er

io
r

in
th

e
st

a
te

re
co

m
m

en
d

ed
to

b
e

b
y

sa
v
in

g
0
.8

2
%

o
f

cr
a
sh

co
st

a
n

d
co

n
tr

o
l

sy
st

em
in

te
rs

ta
te

ro
a
d

ro
a
d

a
n

d
U

S
ro

a
d

.
in

st
a

ll
ed

.
R

T
L

s
w

it
h

tr
a

ff
ic

si
g

n
co

n
tr

o
l

a
re

If
R

T
L

s
a
re

in
th

e
ci

ty
/l

o
ca

l
b

et
te

r
th

a
n

R
T

L
s

w
it

h
n

o
tr

a
ff

ic
ro

a
d

,
th

e
tr

a
ff

ic
si

g
n

a
l

co
n

tr
o

l
b

y
sa

v
in

g
0
.5

4
%

o
f

cr
a
sh

a
n

d
tr

a
ff

ic
si

g
n

co
n

tr
o

l
co

st
.

a
re

re
co

m
m

en
d

ed
to

b
e

If
R

T
L

s
a
re

in
th

e
U

S
ro

a
d

,
th

en
th

e
in

st
a

ll
ed

.
p

re
se

n
ce

o
f

th
e

tr
a
ff

ic
si

g
n

a
l

co
n

tr
o

l
is

b
et

te
r

th
a
n

R
T

L
s

w
it

h
n

o
tr

a
ff

ic
co

n
tr

o
l

b
y

re
d

u
ci

n
g

0
.7

9
%

o
f

cr
a
sh

es
.

If
R

T
L

s
a
re

in
th

e
ci

ty
/l

o
ca

l
ro

a
d

,
th

en
th

e
p

re
se

n
ce

o
f

tr
a
ff

ic
si

g
n

a
l

co
n

tr
o

l
sy

st
em

is
b

et
te

r
th

a
n

n
o

tr
a
ff

ic
co

n
tr

o
l

sy
st

em
b

y
sa

v
in

g
0
.3

8
%

o
f

cr
a
sh

es
.

B
ic

y
cl

e
la

n
e

Y
es

/N
o

C
o

u
n

ty
ro

a
d

/c
it

y
o

r
B

B
ic

y
cl

es
a
re

n
o

t
T

h
e

p
re

se
n

ce
o

f
b

ic
y
cl

e
la

n
e

lo
ca

l
ro

a
d

/s
ta

te
re

co
m

m
en

d
ed

in
th

e
in

cr
ea

se
s

0
.5

7
%

o
f

cr
a
sh

co
st

o
n

ro
a
d

/U
S

ro
a
d

/
ci

ty
/l

o
ca

l
ro

a
d

.
a
v
er

a
g
e.

in
te

rs
ta

te
ro

a
d

T
h

e
p

re
se

n
ce

o
f

th
e

b
ic

y
cl

e
If

th
e

R
T

L
s

a
re

in
th

e
ci

ty
/l

o
ca

l
ro

a
d

,
la

n
e

is
in

si
g

n
if

ic
a

n
t

in
th

en
th

e
p

re
se

n
ce

o
f

b
ic

y
cl

e
la

n
e

is
m

o
st

o
f

th
e

ca
se

s.
w

o
rs

e
th

a
n

n
o

b
ic

y
cl

e
la

n
e

b
y

in
tr

o
d

u
ci

n
g

0
.6

1
%

o
f

cr
a
sh

co
st

.

70 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/26



T
A

B
L

E
8
.1

(
C

o
n
ti

n
u
e
d
)

B
en

ef
it

s
a

n
d

G
eo

m
et

ri
c

D
es

ig
n

C
a

te
g
o

ry
R

T
L

L
o
ca

ti
o
n

L
ev

el
o

f
S

ig
n

if
ic

a
n

ce
C

o
u
n

te
rm

ea
su

re
s

D
et

a
il

ed
C

o
u
n

te
rm

ea
su

re
A

d
d
it

io
n

a
l

C
o

n
si

d
er

a
ti

o
n
s

R
T

L
ty

p
es

S
h

a
re

d
R

T
L

/
C

o
u

n
ty

ro
a
d

/c
it

y
o

r
A

It
is

re
co

m
m

en
d

ed
to

If
th

e
d

es
ig

n
sp

ee
d

is
a
b

o
v
e

T
h

e
p

re
se

n
ce

o
f

ex
cl

u
si

v
e

R
T

L
s

is
ex

cl
u

si
v
e

R
T

L
lo

ca
l

ro
a
d

/s
ta

te
in

st
a
ll

th
e

ex
cl

u
si

v
e

3
5

m
p

h
,

th
en

th
e

b
et

te
r

th
a
n

th
e

sh
a
re

d
R

T
L

s
b

y
ro

a
d

/U
S

ro
a
d

/
R

T
L

s.
ex

cl
u

si
v
e

R
T

L
s

a
re

sa
v
in

g
0
.0

7
%

o
f

cr
a
sh

co
st

o
n

in
te

rs
ta

te
ro

a
d

re
co

m
m

en
d

ed
to

b
e

a
v
er

a
g
e.

in
st

a
ll

ed
.

If
th

e
R

T
L

s
a

re
in

th
e

st
a

te
ro

a
d

,
If

th
e

R
T

L
s

a
re

in
th

e
U

S
th

en
th

e
p

re
se

n
ce

o
f

th
e

ex
cl

u
si

v
e

ro
a
d

,
st

a
te

ro
a
d

,
a
n

d
R

T
L

s
is

b
et

te
r

th
a
n

th
e

sh
a
re

d
in

te
rs

ta
te

ro
a

d
,

th
en

th
e

R
T

L
s

b
y

sa
v
in

g
0
.7

4
%

o
f

cr
a
sh

ex
cl

u
si

v
e

R
T

L
s

a
re

co
st

.
re

co
m

m
en

d
ed

to
b

e
If

th
e

R
T

L
s

a
re

in
th

e
in

te
rs

ta
te

in
st

a
ll

ed
.

ro
a
d

,
th

en
th

e
p

re
se

n
ce

o
f

th
e

ex
cl

u
si

v
e

R
T

L
s

is
b

et
te

r
th

a
n

th
e

sh
a
re

d
R

T
L

s
b

y
sa

v
in

g
2
.6

9
%

o
f

cr
a
sh

co
st

.
If

th
e

d
es

ig
n

sp
ee

d
is

a
b

o
v
e

3
5

m
p

h
,

th
en

th
e

ex
cl

u
si

v
e

R
T

L
w

it
h

th
e

h
ig

h
d

es
ig

n
sp

ee
d

h
a
s

1
6
%

fe
w

er
ri

sk
o

f
cr

a
sh

es
th

a
n

th
e

sh
a
re

d
R

T
L

s
w

it
h

h
ig

h
d

es
ig

n
sp

ee
d

.

A
cc

el
er

a
ti

o
n

/d
ec

el
er

a
ti

o
n

Y
es

/N
o

C
o

u
n

ty
ro

a
d

/c
it

y
o

r
B

If
th

e
in

te
rs

ec
ti

o
n

A
A

D
T

is
R

T
L

w
it

h
a
cc

el
er

a
ti

o
n

la
n

e
is

b
et

te
r

la
n

e
lo

ca
l

ro
a
d

/s
ta

te
a
b

o
v
e

3
7
,1

2
0

v
p

d
,

th
en

th
a
n

R
T

L
w

it
h

o
u

t
a
cc

el
er

a
ti

o
n

ro
a
d

/U
S

ro
a
d

/
th

e
a
cc

el
er

a
ti

o
n

la
n

e
is

la
n

e
w

h
en

A
A

D
T

is
a
b

o
v
e

3
7
,1

2
0

in
te

rs
ta

te
ro

a
d

re
co

m
m

en
d

ed
to

b
e

v
p

d
.

in
st

a
ll

ed
.

T
h

e
p

re
se

n
ce

o
f

th
e

a
cc

el
er

a
ti

o
n

la
n

e
is

in
si

g
n

if
ic

a
n

t
in

m
o

st
o

f
th

e
ca

se
s.

D
es

ig
n

sp
ee

d
A

b
o

v
e

3
5

m
p

h
,

C
o

u
n

ty
ro

a
d

/c
it

y
o

r
A

R
T

L
s

a
re

re
co

m
m

en
d

ed
to

If
R

T
L

s
a
re

o
n

th
e

ci
ty

/
R

T
L

s
w

it
h

a
d

es
ig

n
sp

ee
d

b
el

o
w

b
el

o
w

(e
q

u
a
l

to
)

lo
ca

l
ro

a
d

/s
ta

te
se

t
th

e
d

es
ig

n
sp

ee
d

lo
ca

l
ro

a
d

a
n

d
in

te
rs

ta
te

(e
q

u
a
l

to
)

3
5

m
p

h
a
re

b
et

te
r

th
a
n

3
5

m
p

h
ro

a
d

/U
S

ro
a
d

/
b

el
o

w
3

5
m

p
h

in
m

o
st

o
f

ro
a
d

,
th

en
th

e
R

T
L

R
T

L
s

w
it

h
a

d
es

ig
n

sp
ee

d
a
b

o
v
e

in
te

rs
ta

te
ro

a
d

ca
se

s.
d

es
ig

n
sp

ee
d

is
3
5

m
p

h
b

y
sa

v
in

g
0
.0

4
%

o
f

cr
a
sh

re
co

m
m

en
d

ed
to

b
el

o
w

co
st

a
n

d
0
.4

3
%

o
f

cr
a
sh

es
o

n
3
5

m
p

h
.

a
v
er

a
g
e.

If
R

T
L

a
re

in
th

e
ci

ty
/l

o
ca

l
ro

a
d

,
th

en
R

T
L

s
w

it
h

a
d

es
ig

n
sp

ee
d

b
el

o
w

(e
q

u
a
l

to
)

3
5

m
p

h
a
re

b
et

te
r

th
a
n

R
T

L
s

w
it

h
a

d
es

ig
n

sp
ee

d
a
b

o
v
e

3
5

m
p

h
b

y
sa

v
in

g
0
.1

5
%

o
f

cr
a
sh

co
st

a
n

d
0
.4

4
%

o
f

cr
a
sh

es
.

If
R

T
L

s
a
re

in
th

e
st

a
te

ro
a
d

,
U

S
ro

a
d

,
a
n

d
in

te
rs

ta
te

ro
a
d

,
th

en
R

T
L

s
w

it
h

a
d

es
ig

n
sp

ee
d

b
el

o
w

(e
q

u
a
l

to
)

3
5

m
p

h
a
re

b
et

te
r

th
a
n

R
T

L
s

w
it

h
a

d
es

ig
n

sp
ee

d
a
b

o
v
e

3
5

m
p

h
b

y
re

d
u

ci
n

g
0
.8

1
%

,
0
.3

8
%

a
n

d
0
.3

4
%

o
f

cr
a
sh

es
.

N
o

te
:

T
h

e
p

ri
o

ri
ty

in
le

v
el

o
f

si
g

n
if

ic
a
n

ce
is

:
A

.
B

.
F

o
r

ex
a

m
p

le
,

th
e

ef
fe

ct
o

f
R

T
L

tu
rn

ra
d

iu
s

is
co

n
si

d
er

ed
m

o
re

si
g

n
if

ic
a
n

t
th

a
n

th
e

ef
fe

ct
o

f
ro

a
d

w
a

y
ju

n
ct

io
n

.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/26 71



b. RTLs having ‘‘yield/stop sign’’ and RTLs with no
traffic control have 0.785 and 0.647 more crashes
on average than RTLs having traffic signal control.

c. The installment of the exclusive RTL is beneficial to
reduce number of crashes compared to the shared
RTL. However, the high design speed has more
crashes than low design speed. The compound
factor of these two variables significantly contribute
to right-turn related crashes: the exclusive RTL with
design speed over 35 mph have 16% fewer crashes
than the shared RTL with design speed over 35 mph;
for the design speed is below or equal to 35 mph, the
exclusive RTL with design speed below or equal to 35
mph has 45% fewer crashes than the shared RTL
with design speed below or equal to 35 mph.

d. The installment of acceleration lane and traffic
island in RTLs can either increase or decrease
crashes depending on the intersection AADT.

e. RTLs in the urban area have 0.549 more crashes on
average relative to RTLs in the rural area, and
counties with a high population have more crashes.

f. RTLs at daytime has 1.321 more crashes on average
than RTLs at nighttime.

Due to data limitations, one potential drawback of
this study is the ‘‘risk compensation’’ issue. The
estimation of environmental-related factors could be
biased because drivers may compensate for the adverse
environmental conditions by changing their behavior to
an acceptable level of risk. The lack of accurate data to
describe the trade-off between their expectations and
the actual choice may result in biased estimation. In this
study, RTLs in poor visibility have fewer crashes than
RTLs in good visibility might because drivers avoid
driving in the poor visibility condition. The future
direction for the RTL safety study should focus on (1)
dealing with the ‘‘risk compensation’’ issue based on
additional survey or other data sources and (2) the
advanced methods are also encouraged for gaining
more precise parameter estimation. In the future, these
explorations will help to reach a better understanding
of RTL safety problems and provide more precise
geometric design countermeasure suggestions.
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