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ABSTRACT 

Shamseldin, Tamer Ph.D., Purdue University, August 2018. System Architecture, 
Calibration, and Control for LiDAR systems Onboard Unmanned Vehicles. Major 
Professor: Ayman Habib. 

The development of Unmanned Aerial Vehicles (UAVs) as a mobile platform for 

deploying portable systems has benefited several applications in the civilian and mil-

itary fields in the past few decades. Also, the parallel advances in peripheral technol-

ogy such as the enhancement of GNSS/INS modules have resulted in a remarkable 

development of both UAVs as well as UAVs applications. Such development leads 

to the establishment of a system architecture for UAV design that will be the basis 

of all discussion in this dissertation. Centrally, this dissertation introduces a generic 

framework for UAVs equipped with a GNSS/INS positioning and orientation module 

as well as low-cost LiDAR sensors for targeted mapping and monitoring applications. 

An essential aspect of this research proposes a LiDAR system calibration procedure 

for a mobile airborne platform. Such a calibration procedure can directly estimate the 

mounting parameters relating the laser scanners to the onboard GNSS/INS unit, i.e., 

the lever-arm and boresight angles for a LiDAR unit through an outdoor calibration 

procedure. This approach is based on the use of conjugate planar/linear features in 

overlapping point clouds derived from different flight lines. Furthermore, an optimal 

configuration of target primitives and flight lines is determined by analyzing the po-

tential impact of bias in mounting parameters of a LiDAR unit. To add a degree of 

autonomy to this integrated framework, a Coverage Path Planning (CPP) approach 

is proposed. Such approach is performed to achieve complete coverage of the area 

of interest in a minimum time with the aid of real-time Simultaneous Localization 

and Mapping (SLAM) technique. The successful implementation of SLAM with this 



xx 

integrated framework furthermore offers insight into extending the system in condi-

tions where one of the subsystems may not function properly. For example, in GNSS-

denied environments, the GNSS/INS modules fail to work correctly due to the absence 

of consistent GNSS signals. This dissertation introduces a Pseudo-GNSS/INS inte-

grated framework that is implemented using probabilistic SLAM techniques. Such a 

framework allows for the extension of the operation of such systems for GNSS-denied 

environments and hence is a significant contribution towards increasing robustness 

and autonomy in terrestrial/aerial mapping systems. 
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1. INTRODUCTION 

1.1 Background 

Over the last decade, the mapping community has witnessed several developments 

that had a significant impact on facilitating comprehensive 3D mapping of our envi-

ronment with better accuracy, and at lower cost such as: (a) Significant improvement 

in the direct geo-referencing technology and the ensuing ability of substantial reduc-

tion of control requirements, (b) emergence of low-cost digital cameras as a viable 

mapping tool in airborne and close range Photogrammetry, (c) widespread acceptance 

and adoption of Light Detection and Ranging (LiDAR) systems on-board terrestrial 

and airborne platforms for direct acquisition of surface information, and d) integration 

of image and LiDAR data for 3D modeling and visualization applications. Coupled 

with these technical advances, there has been an expansion in the user sector of 

mapping products from provincial, state, and Federal organizations who are mainly 

interested in large-area mapping (e.g., National mapping, forest inventory, Glaciology, 

and 3D city modeling), to new users. Such new users are interested in more-detailed 

large-scale mapping (e.g., Archaeological documentation, pipeline inspection, land-

slide hazard analysis, 3D modeling of individual buildings and objects, infrastructure 

inventory and monitoring, indoor mapping for building information management, and 

open pit mining). It has become evident that non-traditional mapping platforms are 

needed to address the requirements of this broad user base. In response to these 

needs, Mobile Mapping Systems (MMS) have emerged as a viable tool, and they have 

changed the paradigm of the mapping process. 

The MMS is a multi-task system that usually comprises: (i) a platform and power 

supply; (ii) a control module; (iii) an imaging module; (iv) a positioning and orienta-

tion module; and (v) a data processing module. The kinematic platform can be a land 
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vehicle, a backpack carried by a human operator, an air vehicle, or a marine vehicle, 

either manned or unmanned, that provides sufficient power supply for mission opera-

tion. The control module is responsible for data acquisition based on time or distance 

interval. The imaging module could include video cameras, digital cameras, and/or 

laser scanners. The positioning and orientation module is the most expensive compo-

nent and most crucial for the determination of the geographic location of the ground 

objects. It encompasses a Global Navigation Satellite System (GNSS) receiver, an 

inertial measurement unit (IMU), and/or a distance measurement instrument (DMI). 

One should note that there is a significant impact of MMS on manned terrestrial 

and airborne platforms regarding the quality of the mapping product in the absence 

of traditional ground control points. However, the initial investment, mobilization 

cost, and the demand for the end users to have a high level of technical expertise are 

preventing the widespread adoption of this technology by potential individuals who 

might benefit from such technology. Coupled with such issues, the need for an accu-

rate 3D reconstruction of our environment has become essential for non-traditional 

mapping applications and cannot be satisfied by traditional mapping that is based on 

dedicated data acquisition systems which are designed for mapping purposes. Recent 

advances in hardware and software development have made it possible to conduct ac-

curate 3D mapping without using costly and high-end data acquisition systems. For 

example, low-cost laser scanners and navigation systems can provide accurate map-

ping if they are adequately integrated at the hardware and software levels. Moreover, 

the impressive developments in the mobile mapping technology (i.e., mapping us-

ing acquired data from sensors onboard a mobile platform) have made accurate 3D 

mapping more feasible whenever and wherever needed. In this regard, UAV-based 

mapping systems proved to be capable of providing high-quality mapping products 

while bridging a significant gap, regarding the extent of the area to be mapped as 

well as accessibility constraints between traditional terrestrial and airborne applica-

tions [1]. More specifically, UAV-based mapping can be used for a wide variety of 

applications while combining the advantages of both traditional airborne and terres-
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trial mapping systems. Therefore, this dissertation will focus on the development of 

system architecture for a LiDAR-based UAV mapping system and deriving accurate 

geospatial information from LiDAR data by finding out an accurate and practical 

LiDAR system calibration technique as well as performing a 3D reconstruction of a 

GNSS-denied environment based on real-time Simultaneous Localization and Map-

ping (SLAM) technique using the onboard 3D-LiDAR sensor. 

1.2 Motivation 

In the past few decades, it was evident that traditional mapping activities could 

not meet the demand of emerging mapping applications due to limited financial and 

technical resources. The development of terrestrial and airborne MMS has been 

mainly motivated by the needs of traditional and new applications. However, MMS 

are quite expensive and cannot be rapidly and efficiently deployed. Fortunately, 

UAVs are evolving as a promising geospatial data acquisition system that could sat-

isfy the needs of the same mapping applications and overcome MMS limitations [2,3]. 

This promise is mainly attributed to advances in low-cost direct geo-referencing sys-

tems as well as imaging sensors operating at different portions of the electromagnetic 

spectrum. Despite their military origins, UAVs are now seeing expanded use in com-

mercial and civil applications, including precision agriculture, air quality monitoring, 

pipeline inspection, utility management, mapping, surveillance, and hazard assess-

ment. Compared to human-operated systems, the main advantages of UAVs include 

the following facts: (a) they can be cost-effectively stored and deployed, which make 

them optimal for rapid response applications; (b) they can fly at lower elevation and 

slower speed than manned aircrafts, thus providing high-quality spatial data; (c) they 

can perform missions and acquire data autonomously so that human interaction is 

minimized, thus reducing pilot’s exposure to risk; (d) they are highly maneuverable, 

which is ideal for low altitude flying and complex environments; and (e) they can 

operate in dangerous environments. These characteristics make UAVs an optimal 



4 

platform for affordable rapid-response mapping applications [4, 5]. The realization 

of these benefits is the main reason behind the current and future growth in UAV 

production and applications. 

UAVs, which are intended for mapping purposes, are equipped with passive sensors 

(i.e., medium-format digital cameras) and/or active sensors such as LiDAR units. One 

should note that a great deal of research has been geared towards the development of 

camera-based UAV mapping systems. However, LiDAR-based UAV mapping is still 

a new area of research. LiDAR sensors onboard airborne and terrestrial platforms 

have been established as a proven technology for the derivation of dense point clouds 

with high positional accuracy. The main factors behind the widespread use of LiDAR 

systems include the ever-continuous improvement in GNSS/INS direct geo-referencing 

technology as well as enhanced performance and reduced size and cost of LiDAR 

units. The ability to derive accurate geospatial information from UAVs is contingent 

on having a precise position and orientation of the platform, which is usually based 

on an integrated GNSS/INS unit. It is worth noting that UAV payload restrictions 

might enforce the use of consumer-grade sensors, which in turn will negatively affect 

the quality of the final product. Therefore, research efforts are needed to address the 

challenges arising from the use of lower-quality mapping sensors while maintaining 

the quality of the mapping outcome. The balance between the UAV-payload capacity 

and the required accuracy for the final product is considered one of the key challenges 

for the UAV-based mapping system. 

A single/multi-unit LiDAR system calibration technique is needed to perform in 

order to derive point clouds with high positional accuracy. Such calibration proce-

dures can be used to directly estimate the mounting parameters relating a LiDAR 

sensor to the onboard GNSS/INS unit. To be more specific, a LiDAR system cali-

bration entails the estimation of the intrinsic parameters of the individual scanners 

as well as the mounting parameters that define the spatial relationship between such 

sensors (e.g., the mounting parameters relating the laser scanners to each other as 

well as the mounting parameters relating these sensors to the onboard navigation 
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unit). Therefore, a LiDAR system calibration is considered an essential and critical 

task to ensure the attainment of the prospective accuracy. 

LiDAR system calibration process is usually carried out in several steps: (i) labo-

ratory calibration, (ii) platform calibration, and (iii) in-situ calibration. Laboratory 

calibration is performed by the system manufacturer during which all the individual 

system components are calibrated (e.g., range offset, mirror angle scale, or relative 

alignment of multi-laser systems) [6]. Then, the platform calibration which is con-

ducted by the data provider determines the mounting parameters between the LiDAR 

reference point and the GNSS antenna. Since the parameters determined in the lab-

oratory and platform calibration steps might be biased and/or not stable over time, 

an in-situ calibration should be carried out to refine such parameters. 

As far as deriving accurate geospatial information from the LiDAR data is con-

cerned, reliable LiDAR system calibration procedures need to distinguish the suitable 

primitives. More specifically, calibration primitives are considered the features that 

will be used for identifying the discrepancies between overlapping LiDAR strips and 

the control surface. Due to the irregular nature of the LiDAR points, the identi-

fication of distinct points is quite difficult and not reliable [7]. Therefore, a new 

calibration procedure based on the use of different types of geometric features (e.g., 

linear and planar) should be used. In this regard, the focus of the LiDAR system cal-

ibration is to simultaneously estimate the mounting parameters relating the different 

system components by minimizing the discrepancy between conjugate linear and/or 

planar features in overlapping point clouds derived from different flight lines. Such 

methodology is considered one of the objectives of this dissertation. 

As an extension to the research area, for some mapping applications, there is a 

significant need to survey a particular area of interest [8, 9]. Then, the complete 

area coverage should be obtained in a minimum time due to UAV’s constraints (i.e., 

payload restriction, endurance limit, robustness, and weather circumstances). There-

fore, designing an intelligent path planning by performing CPP techniques can help 

to figure out the optimal coverage path. Such a path will attain the maximum area 
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coverage in a minimum time since there are many applications which hold this con-

straint in higher regard [10, 11]. Using such techniques for indoor/outdoor mapping 

are massively sensitive to odometry errors. So, the heading angle deviation error 

is unavoidable and can lead to an accumulating drift in navigation measurements. 

Therefore, utilizing one of the probabilistic techniques such as SLAM can achieve 

significant improvement in the system operation. It is worth noting that such tech-

nique is considered an efficient choice for some applications where the availability of 

a GNSS signal is scarce or non-existent. 

It is quite challenging to extend the MMS to GNSS-denied areas, such as indoor 

environments. The deployment of these systems is restricted to applications and envi-

ronments where a consistent availability of GNSS signals is assured. One should note 

that the positioning and orientation module is considered to be a crucial component 

of the MMS skeleton. Therefore, MMS usage for applications within GNSS-denied 

areas necessitates the development of an alternative module [12]. Such a module can 

act as a viable substitute to the GNSS/INS unit for system operation without having 

to resort to an exhaustive modification of the current MMS to operate in GNSS-

denied locations. The implementation of such a framework is another objective of 

this dissertation. 

1.3 Problem Statement and Research Challenges 

To date, a great deal of research has been conducted on 3D mapping systems that 

have been traditionally established using passive imaging systems onboard UAVs. 

The utilization of active sensors such as laser scanners for UAVs-based mapping is 

considered a new research area. However, to satisfy the needs of various mapping 

applications, some challenges have to be addressed. The main challenges that are 

faced by the research community in this regard and hence are a topic of substantial 

interest include: 
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i) Optimization of sensor selection and placement: limitations on the UAV payload 

enforce constraints on the selection of both the GNSS/INS positioning and orientation 

system as well as the LiDAR unit. 

ii) LiDAR system calibration and bias impact analysis: calibrating a directly geo-

referenced laser scanning unit to ensure the accuracy of the generated point cloud is 

a major concern for the UAV-based LiDAR system. 

iii) Robust system control: development of a reliable control technique for the 

platform is desirable for applications that require continuous monitoring of specific 

objects (i.e., system control to maintain the desired object within the field of view of 

the LiDAR unit). 

iv) 3D-map reconstruction in GNSS-denied environment: development of a Pseudo-

GNSS/INS framework is needed to act as a viable substitute to GNSS/INS units for 

MMS operation without having to resort to a comprehensive modification of the cur-

rent system integration in order to work in GNSS-denied areas. 

1.4 Research Objectives 

As discussed above, the primary objective of this dissertation is to develop a 

generic framework for unmanned vehicles that are equipped with a GNSS/INS posi-

tioning and orientation module as well as low-cost laser scanners for targeted map-

ping and monitoring applications. Furthermore, in this research work, a Pseudo 

GNSS/INS integrated framework onboard Unmanned Ground Vehicle (UGV) will be 

developed to allow for operation within GNSS-denied environments. The following 

sub-objectives are proposed to accomplish the overall objective and establish the new 

framework: 

• Propose the development of a system architecture for a LiDAR-based UAV 

mapping system as follows: 

– selects the appropriate platforms as well as the sensors for the mapping 

purpose, and 
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– performs the time synchronization process between the proposed sensors, 

since such process plays a prominent role in creating accurate geo-referencing 

information. 

• Propose a LiDAR system calibration and bias impact analysis, which: 

– analyzes the potential impact of bias in mounting parameters of a LiDAR 

unit on the resultant point cloud for different orientations of target prim-

itives and different flight lines configurations to increase the accuracy of 

the estimated mounting parameters, and 

– develops an accurate system calibration, which entails the estimation of the 

intrinsic parameters/characteristics of the scanner as well as the mounting 

parameters that relate the scanner to the GNSS/INS unit. 

• Propose a coverage path planning method, which: 

– establishes a degree of autonomy in the system to allow for autonomous 

path generation and navigation for a given area to be mapped, and 

– performs a probabilistic SLAM framework to allow for dynamic update of 

the map as well as the platform position and heading during the mission 

operation. 

• Propose an implementation of a SLAM-based Pseudo-GNSS/INS localization 

system for indoor LiDAR MMS framework, which: 

– generates real-time robot pose estimates based on online SLAM technique, 

and 

– performs the entire operation of the MMS by using a single 3D LiDAR sen-

sor. Such operation incorporates the positioning module and the mapping 

sensor. 
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1.5 Dissertation Outline 

The remainder of this dissertation explains the proposed strategies in more detail: 

• Existing pertinent literature for both 3D reconstruction using active sensors in 

GNSS-affluent/-denied environment and LiDAR system calibration is reviewed 

in Chapter 2. 

• The proposed strategy for the development of the system architecture for a 

LiDAR-based UAV mapping system is introduced in Chapter 3. 

• The proposed strategy for LiDAR system calibration and bias impact analysis 

is explained in Chapter 4. 

• The proposed strategy for performing the maximum area coverage using CPP 

techniques as well as the implementation of SLAM-based Pseudo-GNSS/INS 

integrated framework to operate in GNSS-denied environments is discussed in 

Chapter 5. 

• Finally, the key contributions of the dissertation are summarized, and recom-

mendations for future work are provided in Chapter 6. 
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2. RELATED WORK 

2.1 Overview 

As it has been introduced in Chapter 1, the primary objective of this research is 

to develop a generic framework for unmanned vehicles-based MMS. Such MMS are 

equipped with either single or multiple LiDAR sensors integrated with a GNSS/INS 

positioning and orientation module to derive an accurate 3D reconstruction of the 

area of interest. Furthermore, in this research work, a pseudo GNSS/INS integrated 

framework will be developed to extend the MMS framework for operation within 

GNSS-denied environments. Therefore, existing pertinent literature for laser scanning 

principles and the existing approaches for both 3D reconstruction using active sensors 

and LiDAR system calibration are discussed in this chapter. Specifically, a review of 

the existing mapping systems for LiDAR-based 3D reconstruction using single/multi-

LiDAR systems are presented in Section 2.2. Then, several research activities related 

to LiDAR system calibration for airborne/terrestrial mapping systems are introduced 

in Section 2.3. Also, the coverage path planning techniques for unmanned vehicles 

and SLAM-based mapping for GNSS-denied environments are explained in Section 

2.4 and Section 2.5, respectively. 

2.2 System Integration of MMS Framework 

The hardware system implementation of the MMS framework which concerns the 

platforms and sensors selection as well as the synchronization process between the 

mapping sensors is considered one of the necessary steps to build a reliable MMS. 

Therefore, this part of the dissertation will discuss the literature review of the plat-

forms, onboard mapping sensors, and the development of MMS. 
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2.2.1 Unmanned Aerial Vehicles (UAVs) 

To date, with the numerous technological developments in MMS, several platforms 

such as mobile sensor systems onboard tractors, tethered balloons, and manned air-

craft have become attractive options [13]. However, some financial and technical 

constraints (e.g., the initial investment, mobilization cost, and the required technical 

expertise of end users) prevent the widespread adoption of such human-operated sys-

tems. In response to that, UAVs have recently emerged as a promising platform for 

mapping and remote-sensing data acquisition to fulfill the needs of diverse applica-

tions [14–16]. 

UAVs are motorized aircraft that can be autonomously flown or remotely con-

trolled from the ground and are designed to fly without a human pilot onboard. UAVs 

were initially motivated by military goals and applications such as surveillance, re-

connaissance, and unmanned inspection [17–19]. One should note that UAVs can 

operate in inaccessible areas which are affected by natural disasters, such as volcanic 

eruptions and earthquakes in addition to dangerous areas like mountainous locations, 

floodplains, and desert areas. UAVs classification depends on their range, endurance, 

and payload capacities. Based on such critical factors, one can generally classify UAVs 

into two main types, fixed-wing aircraft and rotorcraft as illustrated in Fig. 2.1(a) 

and Fig. 2.1(b) [20, 21]. Each type is adequate for particular missions and applica-

tions [22, 23]. Fixed-wing systems allow for more speed, which gives it a significant 

advantage to be the first choice for large area or long-distance missions as well as pro-

viding the user with a longer operation time due to the better battery economy. Also 

worth considering is the fact that such systems are able to carry considerable pay-

loads for longer distances. On the other hand, fixed-wing systems cannot effectively 

work in remote areas where little or no infrastructure is present. For example, such 

platforms need more space for take-off and landing. In the same manner, fixed-wing 

systems need more space for turns, thereby increasing the path length and decreasing 

efficiency. Furthermore, by using fixed-wing platforms, the data density from LiDAR 
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sensing perspective is reduced, and such platforms need high-performance sensors to 

reach a specific point density due to the higher speed of fixed-wing platforms. It is 

important to note that such platforms require air moving over their wings to generate 

lift, thereby it needs to stay in a constant forward motion. Therefore, fixed-wing 

systems are not the best choice for stationary applications such as inspection work 

since such systems cannot stay stationary. 

(a) 

(b) 

Fig. 2.1.: Examples of different UAVs platforms: (a) eBee SenseFly SA (an example 

of fixed-wing aircraft), and (b) DJI Inspire 2 (an example of rotorcraft) 

In response to such restrictions, rotorcraft platforms come into play and become 

more favorable for small-area surveys with complex terrain than fixed-wing platforms. 

Regarding rotorcraft platforms, there is no need for an airstrip for take-off and land-

ing. Also, such platforms offer excellent maneuverability within the flight mission. 
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Compared to the fixed-wing platform, the rotorcraft platform delivers more stability 

in the flight mission (less affected by wind). In fact, rotorcraft platforms deliver sev-

eral advantages which make the UAV-based LiDAR system accessible to a broader 

user community [24]. However, rotorcraft platforms need a sophisticated maintenance 

process since such platforms involve complex mechanical and electronic components. 

As a result, such a process might decrease the operational time of the platform. 

2.2.2 Onboard Mapping Sensors (Laser Scanners) 

Light Detection and Ranging (LiDAR) systems onboard static and mobile plat-

forms have emerged as a prominent tool for the direct derivation of accurate point 

clouds along object surfaces with high density. The widespread adoption of LiDAR 

systems is motivated by recent advances in laser ranging and scanning technologies 

as well as direct geo-referencing systems which can provide accurate position and 

orientation of the platform at high frequency. The central concept of laser ranging is 

facilitating the estimation of the distance between the laser beam firing point and its 

footprint. Range measurements can be achieved by utilizing Continuous Wave (CW) 

laser systems or pulsed laser systems. The range (ρ) is determined by measuring the 

phase difference between the transmitted and the received signal in CW laser sys-

tems, which are commonly applied in terrestrial LiDAR systems [25]. In pulsed laser 

systems, the range measurement is based on the Time of Flight (TOF) of the laser 

pulse (i.e., the time delay between the emitted and received laser pulses). One should 

note that the pulsed laser systems are usually used in most available airborne LiDAR 

systems [26, 27]. Equation 2.1 illustrates the range measurement which is based on 

the TOF of the laser pulse. In this equation, ρ refers to the range of laser scanner, C 

denotes the speed of light, and t represents the measured time interval. 

Ct 
ρ = (2.1)

2 

Regarding scanning systems, the laser beam is steered by a mirror that either 

rotates in a single direction (i.e., linear laser scanners) or in two directions (e.g., 
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elliptical laser scanners). The steering mirror when either coupled with an internal 

rotation of the scanning unit or motion of the carrying platform would allow for the 

generation of dense point cloud along surrounding objects. The former mechanism is 

used for static scanning while the latter is used for mobile systems. Multi-beam laser 

scanners such as Velodyne products, have several laser beams that are pointing at 

different directions. A rotational mechanism allows for 360◦ coverage across the axis 

of rotation. The field of view along the rotational axis is controlled by the set-up of 

the laser beams. Modern laser systems are capable of providing up to a million pulses 

per second. This capability allows for the derivation of highly dense point clouds. 

For the derivation of the mathematical relationship between the sensor measure-

ments and the object coordinates of the point cloud, one should start by establishing 

the different coordinate systems associated with a LiDAR unit. The vector and matrix 

notations used in this dissertation are as follows: 

• rab denotes the coordinates of point ‘a’ relative to point ‘b’ in the coordinate 

system associated with point ‘b’. 

• Ra
b denotes the rotation matrix that transforms a vector defined relative to the 

coordinate system ‘a’ into a vector defined relative to the coordinate system ‘b’. 

For coordinate systems associated with a single LiDAR unit, the rotation matrix 

relating the different components will be denoted as the boresight matrix while the 

spatial offset relating them will be denoted as the lever arm. One should note that for 

a GNSS/INS assisted mobile LiDAR unit, the coordinates of a given point I relative 

to the mapping reference frame can be derived through a vector summation process 

as can be seen in Equation 2.2 [6, 28–31]. In this equation, rI
m is defined the ground 

coordinates of the laser beam footprint relative to the mapping frame, rb
m(t)&Rm

b (t) 

are defined the interpolated position and orientation of the Inertial Measurement Unit 

(IMU) body frame relative to the mapping frame. Also, rlu 
b &Rlu 

b are defined the laser 

unit location and boresight matrix relative to the body frame, Rlb 
lu(t) is defined the 
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rotation matrix related the laser beam to the laser unit, and rI
lb(t) is represented the 

position of a point I with respect to the laser beam. 

m m b Rlu lb rI = rb (t) + Rb
m(t)rlu + Rb

m(t)Rlu 
b 

lb (t)rI (t) (2.2) 

One should note that scanning units can be classified according to the laser range 

into close range and long-range scanning systems based on their intended applica-

tions. For example, close-range laser scanning systems (i.e., ranges between 0 and 

200 meters) are used in Terrestrial Laser Scanners (TLS), Terrestrial Mobile Laser 

Scanners (TMLS), and Airborne Laser Scanner (ALS). Otherwise, the long-range laser 

scanning systems have the range between several hundred meters up to several kilo-

meters. Such systems are used in many mapping applications related to ALS. Most 

of the UAV-mapping applications depend on close-range scanning systems because of 

their light weight and low cost compared with long-range scanning units. 

It is worth noting that, there are various industrial LiDAR units which have been 

developed with affordable sensors suitable for a LiDAR-based UAV mapping system. 

Most of such sensors are mainly designed for industrial applications and robotics such 

as Hokuyo UTM-30LX-EW and Sick LMS-291 LiDAR sensors. The main advantages 

of such industrial sensors are their compact size, durability, and low cost. However, 

the performance of these sensors might have limitations on the maximum range and 

ranging accuracy. Due to such limitations, these types of sensors are not always the 

suitable choice for some mapping applications which require a considerable range with 

significant accuracy. However, such sensors are sufficient for many other research 

applications. In recent years, with the rapid improvement of LiDAR sensors, the 

automotive industry has delivered multi-beam laser scanner sensors such as Velodyne 

VLP-16 Puck and Quanergy M8-1 as shown in Fig. 2.2. Such sensors have several 

laser beams that are pointing at different directions as mentioned before [24]. Multi-

beam laser scanner sensors introduce high data rate scanning options at a reasonable 

price. 
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Fig. 2.2.: Examples of multi-beam laser scanner sensors, (a) Velodyne VLP-16 

Puck, and (b) Quanergy M8-1 LiDAR 

In addition to that, there are particular sensors which are mainly designed for 

airborne operations, and their specifications make them more suitable for advanced 

use. However, the development of such sensor designs has a significant effect on the 

cost of these sensors as well as a negative impact on exploiting their capabilities in 

the mapping community. Riegl VQ-480-U and VUX-1 variants are examples of such 

sensors, which allow for operations at high altitude, especially for a manned aircraft. 

On the other hand, Hokuyo UXM-30LXH-EWA and Velodyne series (e.g., HDL-32E, 

VLP-16, and VLP-16 High Resolution) are considered types of sensors which are 

suitable for low-altitude missions, especially for an unmanned aircraft. Such sensors 

can operate at flight altitudes of up to 100 meters, but in practice, typical operation 

altitudes are 40-70 meters [32]. 

It is important to note that the LiDAR-based mapping and remote sensing re-

search area is exposed to continuous advancement on various fronts due to several 

research innovations and technological developments that have been exerted towards 

such area of research. As a result, VLP-32C is a long-range LiDAR sensor that is 

recently delivered by Velodyne [33]. Such a sensor has the advantage of using 32 

laser beams which are aligned over the range of +15 degrees to −25 degrees using 

the same design of VLP-16. One should mention that VLP-32C will be a popular 

choice due to its compact size and light weight (0.925 Kg). Furthermore, it can scan 
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up to 1,200,000 points per second with a range of 200 meters and typical accuracy 

of ± 3 cm. In addition to that, flash LiDAR technology (e.g., ASC TigerCub) is 

considered to be a promising progression for the UAV-based LiDAR system since the 

three-dimensional flash LiDAR operates like a 2D camera [24]. The 3D focal plane 

array of such a camera has rows and columns, similar to 2D cameras, but with extra 

capability of having 3D ”depth” and intensity as shown in Fig. 2.3. 

Fig. 2.3.: ASC’s Tiger-Eye 3D Flash LiDAR Camera [24] 

More specifically, the time that the camera’s laser flash pulse needs to reach the 

object and bounce back to the camera’s focal plane is recorded by each pixel. One 

should note that each pixel has independent triggers and counters to record the time-

of-flight of the laser light pulse to the object. The physical range of the objects in 

front of the camera is calculated, and a 3D point cloud frame is generated at video 

rates. It is important to note that 3D flash LiDAR technology has been adopted in a 

variety of applications such as collision avoidance, object identification, restricted area 

event alerts, terrain mapping, and hazardous material detection. Due to the military 

origin of such technology, only limited knowledge is available in the civil domain. 

Furthermore, flash LiDAR sensors are currently very expensive. It is expected that 

when fully developed and operational, these types of sensors will alter the paradigm of 

the UAV-based LiDAR research field and have an apparent significant improvement 

in the upcoming years. 

As mentioned previously, LiDAR units use laser beams to measure ranges and 

generate precise 3D information about the scanned area. Such units can be set up 
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onboard airborne platforms (such as UAVs) which are known as ALS, or terrestrial 

platforms (such as cars or trucks) that are cognized as TMLS. Fig. 2.4(a) and Fig. 

2.4(b) show some examples of the laser scanning systems that are commonly used by 

the mapping community [34,35]. These systems have constituted a prominent tool for 

the direct acquisition of accurate point clouds along object surfaces with high density. 

The ideal platform for conducting a survey depends on the desired application. For 

instance, an airborne LiDAR system is more suitable for precision agriculture, DBM 

generation, or accident-scene reconstruction. However, a mobile terrestrial LiDAR 

system would be convenient for other applications such as infrastructure monitoring, 

and geometric documentation of transportation corridor. 

(a) 

(b) 

Fig. 2.4.: Examples of different laser scanning systems: (a) Psomas Mobile Mapper 

system (an example of terrestrial mobile laser system), and (b) RIEGL 

VQ-1560-DW (an example of airborne laser system) [34, 35] 
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2.2.3 UAV-based LiDAR systems 

The emergence of MMS has set a marked paradigm in the photogrammetric and 

mapping community, motivated by the technical advancements in consumer-grade 

navigation sensor (GNSS/INS) technology. Furthermore, the development of MMS 

is affected by the emergence of low-cost digital cameras, and widespread adoption of 

LiDAR sensors onboard airborne/terrestrial platforms for direct acquisition of surface 

information. The integration between UAVs and a LiDAR unit is a relatively new area 

of research and applications. Also, such integration is considered as one of the most 

impressive developments in the surveying market in the sense of providing a mapping 

platform that is equipped with LiDAR systems. Regarding this new area of research, 

a remotely controlled helicopter equipped with navigation sensors and a laser range 

finder (altimeter) was one of the first starting points in 2006. Such a platform could 

work for topographic surveys. The extensive use of UAVs-based LiDAR systems have 

been studied for almost a decade now. Therefore, there is an opportunity to have 

many discussions about the feasibility and possibilities of utilizing such systems in 

the mapping industry. 

As mentioned before, UAVs, which are intended for mapping purposes, are equipped 

with passive and/or active sensors together with a direct geo-referencing unit (GNSS/INS) 

to determine the platform’s position and orientation. It is important to note that the 

incorporation of GNSS and INS is considered a fundamental trend for positioning and 

navigation projects to overcome the shortages of the individual use of GNSS and INS. 

In other words, GNSS can provide only position information of the platform. How-

ever, INS, although it provides the position and orientation changes of the platform, 

suffers from drift errors over time of standalone usage. Such GNSS/INS integration 

can ensure precise position, velocity, and attitude estimation of the mapping platform. 

Furthermore, GNSS/INS integration can overcome some of the problems related to 

tricky areas such as forests and urban canyons, where GNSS cannot accurately per-

form the duty alone due to the absence of GNSS signal. Therefore, the GNSS/INS 
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module is considered to be a crucial component of MMS since the integration of such 

module with the mapping sensors can provide high-quality maps. 

To date, motivated by the availability of consumer-grade navigation systems, sev-

eral research efforts have been exerted towards UAV-based 3D reconstruction. Such 

research takes advantage of the integration between the direct geo-referencing unit 

and LiDAR unit(s) onboard UAV platforms [1, 36, 37]. Nagai et al. [38] integrated 

an inexpensive SICK LMS-291 LiDAR unit with direct geo-referencing module on-

board a helicopter model RPH2. Also, Yi Lin et al. [39] developed a mini-UAV-based 

LiDAR system. Such system comprises a Ibeo Lux laser scanner, Sick LiDAR unit, 

and NovAtel GNSS/INS module (SPAN-CPT) onboard a helicopter model Align T-

Rex 600E. Guo et al. [40] developed a UAV-based LiDAR system for ecosystem-wide 

biodiversity studies. Such a system consists of a Velodyne LiDAR unit (VLP-16 

Puck Lite), NovAtel GNSS/INS module (SPAN-IGM-S1), and a micro-computer. It 

is important to note that utilizing lower-grade GNSS/INS cannot provide sufficient 

accurate geo-referencing data. For large UAV platforms, higher-grade GNSS/INS 

modules are used; however, such modules increase the system weight and cost [41]. 

The utilization of Micro-Electro-Mechanical Systems (MEMS) technology allows for 

significant reduction of weight, cost, and power requirements. Recent development 

of MEMS technology produces MEMS GNSS/INS modules. Such MEMS GNSS/INS 

units are suitable for small UAV platform [42,43]. Therefore, a GNSS/INS module is 

considered a promising technology for LiDAR-based UAV MMS. 

The implementation of LiDAR systems onboard UAVs, supported by GNSS/INS 

units, has prospered not only for military applications but also for commercial use. 

The development of some innovative techniques in UAVs-based LiDAR systems will 

be explained ahead. Scanfly is a new product which is set up by 3D Target in 2016 and 

is developed mainly for UAV platforms as shown in Fig. 2.5. The system consists of a 

Velodyne LiDAR unit (VLP-16 Puck Lite), accurate survey-grade GNSS/INS module 

with dual antenna GNSS receiver, and an integrated board which manages the data 

capture and synchronization process. The utilized navigation system provides an 
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accuracy of ± 2 cm in position and ± 0.05 degree in attitude. Furthermore, this 

system is flexible to install an additional image sensor, such as a panoramic camera 

to enable photographic documentation of the surroundings. It is worth noting that the 

Scanfly system is developed to use SLAM techniques which supplement the integrated 

GNSS/INS unit to achieve the best accuracy in case of GNSS satellite outage [44]. 

NEXUS 800 UAV is considered another example for a new airborne mapping sys-

tem which is developed through the cooperation between four companies (Hypack, 

Infinite Jib, Velodyne, and SBG) in the UAV market as depicted in Fig. 2.6. Such sys-

tem consists of a Velodyne LiDAR unit (VLP-16 Puck Lite) and an SBG GNSS/INS 

module which provides an accuracy of ± 2 cm in position and ± 0.1-0.2 degrees in 

attitude. In addition to that, the platform has onboard windows Personal Computer 

(PC) that provides a real-time view of the quality of the acquired data [45]. 

Fig. 2.5.: Scanfly Airborne mapping system 

In recent years, RIEGL has several research efforts which have been exerted to-

wards mobile mapping community. As a result, RIEGL proposed its latest production 

called entry-level miniVUX-1UAV LiDAR system as depicted in Fig. 2.7. The system 

comprises a RIEGL miniVUX-1 LiDAR sensor, an integrated GNSS/INS unit, and 

an optional RGB camera. The advantages of using such a system include its compact 

size, lightweight, and robustness. In addition, such sensors can be mounted on several 

categories of UAVs platforms such as a fixed wing, rotorcraft, and multi-rotor UAVs. 

Furthermore, online waveform processing for data acquisition is also provided [46]. 
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Fig. 2.6.: NEXUS 800 UAV mapping system 

Fig. 2.7.: MiniVUX-1UAV mapping system 

The UAV LidarPod system is another integrated mobile mapping product which 

is developed by Routescene in collaboration with Hanseatic Aviation Solutions and 

Mapix Technologies [47]. The system provides a rotorcraft as a platform equipped 

with a Velodyne LiDAR unit (HDL-32E), and an integrated RTK GNSS/INS unit 

as illustrated below in Fig. 2.8. Furthermore, this system entails a ground station 

which ensures the transmission of RTK GNSS corrections to the Lidarpod system. 

Moreover, Siteco company has launched its new mobile mapping product that 

is called Sky-Scanner system for LiDAR/image data collection onboard rotorcraft 

UAVs [48]. Sky-Scanner system is considered a high-performance airborne mapping 

system with low-cost sensors onboard both DJI-S1000+ and DJI Matrice-600 Pro 
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UAVs platforms as depicted in Fig. 2.9. This system is comprised of a Velodyne 

LiDAR unit (VLP-16 Puck Lite), a GNSS/INS module, and an RGB camera. The 

utilized navigation system is Trimble AP15 which provides an accuracy of ± 2-5 cm 

in position and ± 0.025-0.08 degrees in attitude. 

Fig. 2.8.: Routescene airborne mapping System 

Fig. 2.9.: Sky-Scanner LiDAR/image data collection system 

Furthermore, YellowScan already established a new LiDAR onboard UAV survey-

ing solution with the highest accuracy and dense georeferenced point cloud data in 

February 2016 called YellowScan Surveyor as depicted in Fig. 2.10. This system con-

sists of a Velodyne LiDAR unit (VLP-16 Puck Lite) and a GNSS/INS module. The 

utilized navigation system is Trimble APX-15 UAV which provides an accuracy of 

±2-5 cm in position and ±0.025-0.08 degrees in attitude. Due to the robust design of 

https://0.025-0.08
https://0.025-0.08
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the system, YellowScan Surveyor can meet the needs of several mapping applications 

and such a system can be easily adapted to any UAV platform [49]. 

Although there have been many developments regarding UAV-based LiDAR sys-

tems, there is still a significant need to have a purpose-built system in contrast to using 

a commercially-available mapping system for two main reasons: system flexibility and 

interchangeability, and cost. One should note that most of the commercial-mapping 

systems provide platforms which are equipped with the required set of the mapping 

sensors for the intended application. More specifically, offering a fixed set of the 

mapping sensors which are difficult to manipulate, will lead to an obvious limitation 

in the applications of MMS. Moreover, it is important to note that establishing a 

purpose-built system is less expensive than purchasing a commercial one. In other 

words, the implementation of system integration of the individual mapping sensors 

is performed instead of using the commercial-mapping system which is more general 

and costly. Therefore, this dissertation aims to provide a turn-key solution for imple-

menting a low-cost UAV-based LiDAR system which is flexible enough to deal with 

several mapping applications. 

Fig. 2.10.: YellowScan mobile mapping System 
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2.3 LiDAR System Calibration 

LiDAR system calibration is considered the foremost and critical task to ensure 

deriving accurate geospatial information. LiDAR system calibration entails the es-

timation of the intrinsic parameters (i.e., laser ranging and scanning unit) of the 

LiDAR unit as well as the mounting parameters (i.e., lever arm offset and boresight 

angles) that relate the LiDAR unit to the GNSS/INS module. The lever arm is of-

ten measured using classical surveying methods. However approximate values for the 

boresight angles are estimated from the sensor’s alignment, and these initial mounting 

parameters are not accurate. 

LiDAR system calibration process is usually carried through several steps: (i) lab-

oratory calibration, (ii) platform calibration, and (iii) in-situ calibration [50]. Lab-

oratory calibration is conducted by the system manufacturer during which all the 

individual system components are calibrated (e.g., range offset, mirror angle scale, 

or relative alignment of multi-beam laser system). For a GNSS/INS-assisted mobile 

systems, the lever arm offset and boresight angles between the laser unit and the IMU 

coordinate systems, as well as the lever arm offset between the IMU and the sensor 

reference point are determined. In the platform calibration, the lever arm offset be-

tween the sensor reference point and the GNSS antenna is determined. An in-situ 

calibration is often required to refine the parameters that are determined at both 

the laboratory and the platform calibrations since such parameters might be biased 

and/or not stable over time. Due to the non-transparent and sometimes empirical 

calibration procedures, many systematic discrepancies between conjugate surface el-

ements in overlapping point clouds have been observed in the collected LiDAR data. 

In recent years, there is extensive research that has been exerted towards developing 

methods to eliminate or reduce the impact of systematic errors in system parameters 

on the derived point cloud. 
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2.3.1 Different Calibration Techniques for Eliminating the Impact of the 

Systematic Error in the LiDAR System Parameters 

The existing approaches for mitigating the impact of system parameters on the 

derived point cloud can be classified into two main categories: system-driven (calibra-

tion) and data-driven (strip adjustment) procedures. This categorization is mainly 

based on the nature of the utilized data and mathematical model. System-driven 

calibration procedures are based on the physical sensor model relating system mea-

surements/parameters to ground coordinates of LiDAR points. These procedures in-

corporate the system’s raw measurements or at least the trajectory and time-tagged 

point cloud for estimating biases in the system parameters with the help of the Li-

DAR point positioning equation. However, data-driven methods only utilize the XYZ 

coordinates of the LiDAR point cloud. One should note that system-driven methods 

are considered the accurate way to mitigate the impact of systematic errors in the 

LiDAR system parameters on the derived point cloud. Since access to the system’s 

raw measurements might be restricted to LiDAR system manufacturers, several re-

search efforts are exerted towards the development of data-driven methods [6,51–54]. 

Since data-driven approaches aim at improving the compatibility between overlap-

ping strips by estimating local transformation parameters between the laser strips 

coordinate system and the reference one, such methods are also known as strip ad-

justment procedures. Kilian et al. [51] introduced an adjustment procedure like the 

photogrammetric strip adjustment for detecting discrepancies and refining the com-

patibility between overlapping strips. The dependence on distinct points to relate 

control surfaces and overlapping LiDAR strips is considered the main drawback of 

such an approach. The identification of distinct points is quite challenging because 

of the irregular nature of the LiDAR points. Kager [55] suggested a suitable prim-

itives, where planar features are used in the strip adjustment procedure. Maas [53] 

proposed a least-square adjustment method to derive the correspondence between 

discrete points in one LiDAR strip and TIN patches in the other one. Such method 
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depends on detecting the discrepancies between conjugate surface elements instead of 

improving the compatibility between neighboring strips or analyzing the detected dis-

crepancies. The major drawback of data-driven methods is the mathematical model 

employed to relate the LiDAR point cloud and the reference frame. The effects of 

systematic errors in the system parameters are usually modeled by an arbitrary trans-

formation function between the LiDAR point cloud and reference frame coordinate 

systems. Depending on the nature of the inherent biases in the LiDAR system pa-

rameters, the utilized transformation function might not be appropriate. Habib et 

al. [56] developed a data-driven method by simplifying the LiDAR point positioning 

equation. Due to the absence of the system’s raw measurements, an estimate of biases 

in the system parameters is derived by imposing constraints on the data acquisition 

configuration. 

System-driven techniques can be classified to rigorous or quasi-rigorous approaches. 

The rigorous approach incorporates the system’s measurements [57–60]. However, the 

quasi-rigorous approach incorporates at least the trajectory and time-tagged point 

cloud for estimating biases in the system parameters with the help of the LiDAR 

point positioning equation [6, 61]. Filin [58] proposed a method to determine the 

system calibration parameters by using control surfaces. To be more specific, such 

parameters are estimated by constraining the LiDAR points to the control surfaces 

they belong to. The main drawback of this method is that it can only work if the 

control surfaces are available in the environment. The control surfaces are considered 

one of the suitable primitives that can deal with the irregular nature of the LiDAR 

point cloud. In Skaloud and Lichti [57] the calibration parameters are estimated by 

enforcing a group of points to lie on a common plane. The utilized planes are selected 

manually and its parameters are determined along with the calibration parameters. 

However, such an approach depends on the availability of large planar patches with 

varying topography (i.e., surfaces with varying slope and aspect values) which can be 

available over urban areas. Furthermore, the number of unknowns changes with the 

number of planes used in the calibration procedure. Morin [62] proposed a method to 
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establish the correspondence between overlapping strips by utilizing point primitives. 

As mentioned before, the identification of distinct points is quite challenging due to 

the non-selective nature of the LiDAR points. Also, this method depends on the 

assumption that the average of the coordinates of tie points in overlapping strips cor-

responds approximately to the ground truth. Burman [61] and Toth [63] proposed a 

calibration procedure that considers only biases in the boresight angles. Moreover, in 

Burman [61], the amount of unknown parameters changes with the extent of the area 

or the number of primitives being used in the calibration method since the surface 

model is also considered as an unknown. Toth [63] estimated the boresight angles by 

utilizing identified discrepancies between conjugate surface elements in overlapping 

LiDAR strips. Such discrepancies are obtained via a matching procedure that works 

on interpolated regions. However, the determined planimetric offsets have low accu-

racy because of the weak reliability of the matching outcome. Habib et al. [6] and 

Bang [64] proposed the quasi-rigorous method to overcome such limitations. Such a 

method deals with a linear scanner with an assumption that the laser unit is nearly 

vertical (i.e., small pitch and roll angles). Such an assumption leads to a more relaxed 

data requirement. In other words, only the trajectory position and time-tagged point 

cloud coordinates are required. However, such an approach is not optimal for datasets 

captured by unsteady platforms (e.g., helicopters). More specifically, such datasets 

have significant pitch and roll angles that might negatively affect the quality of the 

estimated parameters. Kersting et al. [65] proposed a rigorous calibration method 

which is considered a more flexible calibration procedure since such a method can 

be performed without strict requirements (e.g., flight, terrain coverage, control, and 

pre-processing requirements). The overlapping strip pairs and the regions between 

the overlapping strip pairs are manually selected in this method and then are used 

in a LiDAR system calibration procedure. However, some problems could arise when 

using these manually-selected pairs/regions such as non-uniform balance of the dis-

tribution of the slope and aspect values within the selected regions, redundant slope 

and aspect values, and dependence on the experience of the operator. Therefore, the 
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implementation of a LiDAR calibration procedure based on the rigorous approach to 

deal with multi-beam laser scanner sensors is one of the objectives of this research 

work. 

Over the past few years, a great deal of research has been devoted to modeling 

the inherent systematic errors in Velodyne laser scanners as well as the calibration 

of LiDAR systems [66–68]. The cost-effective Velodyne laser scanner, which is a 

multi-beam laser scanner unit and can rapidly capture a high volume of data, has 

been used in many mobile mapping systems and robotics applications [69–71]. Un-

derwood et al. [72] calibrated the extrinsic parameters relating a SICK LMS-291 to 

a Novatel Synchronized Position Attitude Navigation (SPAN) system by minimizing 

the discrepancy between sensed data and a known structure (i.e., a vertical pole and 

relatively flat ground). Muhammad and Lacroix [73] performed calibration of a rotat-

ing multi-beam LiDAR with the objective to align the scan data as close as possible 

to a ground truth environment. He et al. [74] used pairwise multi-type 3D geomet-

ric features (i.e., point, line, plane) to derive the mounting parameters between 2D 

LiDAR and GPS/IMU. First, the points are segmented into different features, and 

their quality is evaluated to compute weights to be used in the minimization of nor-

mal distance between conjugate features. However, when the initial parameters are 

considerably inaccurate, the segments and derived weights may not be reliable. 

Chan and Lichti [75] introduced an intrinsic parameters calibration for Velodyne 

HDL-32E based on static stations and also analyzed the temporal stability of range 

measurements which indicated an approximate warm-up time of 2000 sec for most 

laser beams. Glennie et al. [68] performed a geometric calibration with stationary 

VLP-16 to marginally improve the accuracy of the point clouds by approximately 

20%. Moreover, they also investigated the range accuracy of VLP-16, which is quoted 

to have an RMSE value between 22 to 27 mm in the factory supplied calibration 

certificate. However, it was observed that some of the laser beams have worse range 

accuracy than the others. Although many LiDAR system calibration procedures have 

been developed in the past, outdoor calibration of integrated GNSS/INS and multi-
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unit 3D laser scanners is still an active area of research. Due to the irregular nature 

of the LiDAR point cloud which needs suitable primitives and mechanism for using 

them, ALS, and TMLS calibration is considered a more challenging task compared 

to the photogrammetric system calibration. 

It is important to mention that a reliable LiDAR system calibration procedure 

needs to settle the primitives that will be used for figuring the discrepancies between 

overlapping LiDAR strips and control surface. Distinct points have been used as a 

primitive in photogrammetric data for a long time. However, due to the non-selective 

nature of the LiDAR scanning process (i.e., inability to force the laser beam to scan 

a specific point), points cannot be directly used as the calibration primitives. In 

other words, it is not possible to reliably identify common points in overlapping point 

clouds and control surfaces [7]. Higher level features (e.g., linear and planar features) 

can be used as calibration primitives since such features can be reliably derived from 

overlapping point clouds and established as tie and control features. However, those 

features are not explicitly available in a LiDAR point cloud. Thus, extraction of 

such features has to be preceded by a data processing stage (e.g., segmentation of 

planar and pole-like features) [57,76]. Furthermore, there is no guarantee that linear 

and planar features will always be available within the LiDAR point cloud (i.e., such 

features will be mainly available in urban and semi-urban environments) which is 

another real challenge that needs to be addressed. 

Due to the extensive adoption of LiDAR systems and several efforts in evolving 

standards for the delivery of the LiDAR data, the access to the system raw mea-

surements is expected to be not the only requirement to have a rigorous calibration 

procedure. Furthermore, a precise analysis to design an optimal flight and target 

configuration for calibration is the first and foremost step in order to ensure the most 

accurate estimates of mounting parameters. One should note that few research efforts 

have investigated the necessary flight and control configuration for LiDAR system cal-

ibration. Therefore, existing pertinent literature for such configurations are discussed 

in the upcoming section. 
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2.3.2 The Necessary Flight and Target Configuration Requirements for 

LiDAR System Calibration 

Few research efforts have explored the required flight and control configuration 

to perform a rigorous LiDAR system calibration procedure as mentioned before. An 

analytical analysis of the recoverability of the elevation and intensity values at the in-

terpolated grid cells, datum shifts, and the boresight angles using different configura-

tions was introduced by Burman [61]. The following configurations were investigated: 

one LiDAR strip, two LiDAR strips flown in opposite directions, and three LiDAR 

strips (i.e., two strips in opposite directions and one strip perpendicular to them). 

Such analysis is executed with and without elevation and intensity gradients and with 

control information. For each configuration, the possibility of the estimation of each 

of the investigated parameters is analyzed. Burman [61] recommended a flight con-

figuration which comprises four strips flown in opposite and in cross direction along 

with control information as depicted in Fig. 2.11. It is important to note that the 

recommended flight configuration can provide sufficient redundancy. 

Burman [61] suggested to utilize a calibration site with sloped terrain as well as to 

select the regions close to the edges of the strips for the calibration procedure. Due 

to the nature of the suggested calibration procedure (the primitives are considered 

unknowns), a considerable correlation between the parameters was still observed (e.g., 

the vertical datum shift and the elevation values at the grid cells). The recoverability 

of the lever arm offset and systematic errors in the measured range and scan angle is 

not investigated. 

Morin [62] recommended a flight configuration which was designed to recover the 

boresight angles and the scale factor of mirror scanning angle while considering a 

flat calibration site. Such configuration assumes that control points can be identified 

in overlapping strips. Fig. 2.12 illustrates the recommended flight configuration by 

Morin [62]. In order to recover the boresight pitch angle, different flying heights 

were recommended. At different flying heights, a bias in the boresight pitch angle 
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Fig. 2.11.: The recommended flight configuration for LiDAR system calibration by 

Burman [61] 

(Δδω) causes a vertical discrepancy (Δh) between overlapping strips as illustrated 

in Equation 2.3. It is worth noting that for small values of boresight pitch angle, 

the vertical discrepancy will be very small, which might influence the accuracy of the 

estimated parameter. 
1 

Δh = (H1 − H2)( − 1) (2.3)
cos Δδω 

The optimal flight and target configuration for accurate estimation of the system 

parameters (i.e., the planimetric lever arm offset components, the boresight angles, 

the range bias, and the mirror angle scale) that was proposed by Kersting et al. [65], 

comprises three side lap cases and one vertical control point. The optimal flight 

configuration entails four LiDAR strips which are captured from two different flying 

heights in opposite directions with 100% side lap, and two LiDAR strips, which are 

flown in the same direction with the least side lap possible (while having sufficient 

conjugate surface elements between the strips) as depicted in Fig. 2.13. However, 

utilizing manually-selected pairs/regions in such a method will cause some problems 
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as mentioned before. Therefore, such problems might influence the accuracy of the 

estimated parameters during the calibration procedure. 

Fig. 2.12.: The recommended flight configuration for LiDAR system calibration by 

Morin [62] 

Fig. 2.13.: The optimal flight and target configuration for airborne LiDAR system 

calibration by Kersting et al. [65] 
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2.4 SLAM-Assisted Coverage Path Planning and Implementation of Pseudo 

GNSS/INS Localization System for GNSS-denied Environment 

Over the past decades, there is an extensive necessity for autonomous unmanned 

vehicles to perform special missions such as rescue and routine operation, exploration 

in hazardous environments, and to reach inaccessible areas such as nuclear power 

plants. To reduce human casualties, various efforts have been exerted towards up-

grading the unmanned vehicles to be more intelligent and compact. Coverage Path 

Planning (CPP) problem is considered one of the main challenges for intelligent un-

manned systems. This problem plays a pivotal role to improve the viability and 

mission ability of unmanned systems. One should note that CPP problems have been 

investigated in the robotics community. To be more specific, CPP is the problem of 

performing a path that can go through all the points of the environment of interest 

while avoiding either static or dynamic obstacles [77]. 

Choset [78] discussed that the CPP algorithms are classified as offline and online 

algorithms. For offline CPP algorithms, the environment is known in advance. One 

should note that there are different techniques to address the CPP problem such 

as cellular decomposition, genetic algorithms, neural networks, spiral filling paths, 

spanning trees, and ant colony method [79]. However, it might be unrealistic to 

have a prior knowledge of the area of interest for some cases. Therefore, the online 

algorithms use real-time sensor observations to sweep the entire area of interest. Such 

algorithms are also called sensor-based coverage algorithms. For a CPP problem, the 

coverage of area of interest is performed through two standard basic motions: (i) the 

boustrophedon (back-and-forth) motion, and (ii) the square spiral motion as shown in 

Fig. 2.14 and Fig. 2.15, respectively. The idea behind using such motions is the ability 

to cover the region of any shape as well as the possibility of movements especially 

in an environment full of obstacles. One should note that a CPP is considered a 

robust algorithm if the unmanned platform completely executes the coverage task 

with non-overlapping areas in finite time [80]. 
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Fig. 2.14.: The boustrophedon motion 

Fig. 2.15.: The square spiral motion [80] 

For area coverage applications, CPP strategies form a class of motion planning 

methods that is disparate from generic motion planning techniques. This is mainly 

because the use of CPP strategies addresses area complete coverage problems. Such 

problems encompass applications which are ranging from aerial surveying and robotic 

demining [81, 82] to autonomous lawn mowing and vacuum cleaning [83, 84]. This 

distinction of CPP can be highlighted by definition provided by Galceran and Carreras 
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[10]. Therefore, while a general motion planning problem is concerned with generating 

an optimal trajectory between a source and destination, a CPP problem focuses on 

generating a path that maximizes area coverage. Since a CPP technique forms a 

basic framework for many path planning problems, this technique is addressed in 

literature for many robotic applications such as vacuum cleaning robots, autonomous 

harvesting, and underwater/aerial surveying [85–87]. 

Among the many approaches to solving the CPP problem, this dissertation fo-

cuses on exact cellular decomposition techniques which ensure complete coverage of 

the target area with energy/time-optimality. The trapezoidal decomposition and the 

boustrophedon decomposition are considered two of the most popular offline (envi-

ronment assumed to be known a priori) cellular decomposition approaches that were 

discussed by Latombe [77]. The trapezoidal decomposition is considered a simple 

offline technique that can only handle planar and polygon areas [88]. Such technique 

divides the free space of the target area into trapezoidal cells as depicted in Fig. 2.16. 

Then, each cell that has two parallel sides, can be covered by simple back and forth 

motions parallel to either side. Therefore, complete coverage is ensured by visiting 

each cell in the adjacency graph. The major shortcoming of such a method is that 

it generates numerous trapezoidal cells that require too many redundant back and 

forth motions to guarantee complete coverage. To overcome such limitation, the bous-

trophedon decomposition technique was proposed by Choset and Pignon [89]. Such 

method compensates for the redundant movements by merging the cells that do not 

contribute to change in connectivity of the nodes in the adjacency graph as shown in 

Fig. 2.17. This merging technique reduces the number of cells in the decomposition. 

Thereby, the overall number of back and forth motions is reduced. However, while 

boustrophedon patterns used in this technique allow for complete area coverage, such 

a method does not guarantee distance/energy optimality for the entire path traced 

by the robot. One should mention that all such cellular decomposition methods rely 

on maximizing the area coverage without considering the time and energy spent. The 

Minimum-Sum-of-Altitudes (MSA) method described by Huang [90] provided a cost 



37 

function that can be used to optimize such constraint. This criterion has been imple-

mented in UAV-path planning problems to show that minimizing the number of turns 

can allow for path optimality [82]. The main target function of a CPP approach in 

many applications is to ensure complete coverage for the area of interest. One should 

note that the performance of CPP algorithms is significantly affected by odometry 

errors because the amount of coverage within the target area depends on the direction 

of the boustrophedon pattern [91]. 

Fig. 2.16.: The trapezoidal cellular decomposition of the target environment [10] 

Fig. 2.17.: The boustrophedon cellular decomposition of the target environment [10] 
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Recent advances in SLAM techniques have greatly improved robot pose (position 

and orientation) estimation. The advent of SLAM techniques necessitated further 

modifications to the CPP problem. The accurate pose and map estimation provided 

by SLAM can be utilized conveniently for a navigation problem. However, for a CPP 

technique, the map/position update from SLAM needs to influence the unmanned 

platform controls to maximize area coverage [92, 93]. It is worth noting that the 

problem of improving the pose of the platform while performing area coverage has 

been addressed in only few research efforts. SLAM implementations for coverage 

applications have addressed such issues as dynamic coverage planning and optimal 

path tracing [94, 95]. In this dissertation, a new hybrid strategy is developed to use 

an area coverage function allowing dynamic changes to the coverage path from any 

map/pose updates provided by real-time SLAM method. It is important to note that 

the inception of the concept of SLAM techniques is considered the primary motivation 

behind the development of MMS frameworks and their operation in GNSS-denied 

areas [96]. 

Just as for the case of GNSS/INS-based MMS for GNSS-affluent areas, there has 

been comprehensive research and development for MMS frameworks in GNSS-denied 

areas. The concept of SLAM primarily establishes a probabilistic Bayesian framework 

that simultaneously estimates the pose of an MMS as well as landmarks/key points 

that form the environment map. Both feature-based, as well as volumetric, SLAM 

techniques have been implemented for terrestrial/airborne MMS frameworks [97, 98] 

and even underwater MMS [99]. Offline reconstruction techniques have been de-

veloped for MMS-based LiDAR systems such as LiDAR Odometry and Mapping 

(LOAM) [100]. Such techniques can provide high-quality maps from 3D-LiDAR sen-

sors (i.e., Hokuyo UTM-30LX laser scanner). Considerable progress has also been 

made in Visual SLAM methods using monocular [101,102] and RGB-D cameras [103] 

for MMS frameworks. 

Implementation of such SLAM-based MMS frameworks has exhibited positive re-

sults for many applications. Corso and Zakhor [104] developed an indoor human 
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operated MMS framework using SLAM techniques for localization. This framework 

is equipped with five Laser Range Finders (LRF), two fish-eye cameras, and an IMU. 

Similarly, a feature-based SLAM system has been implemented in [105] for an MMS-

based LiDAR. Zhao et al. [106] implemented SLAM frameworks for outdoor environ-

ments using incorporation between two laser scanner sensors and an IMU unit. More 

comprehensive integration has been carried out through incorporation of multi-sensor 

onboard platforms by [107,108] allowing the use of both cameras and LiDAR sensors 

onboard the MMS. The indoor MMS implementation described in [109–111] demon-

strates how high-quality indoor maps using multiple sensors can be built successfully 

on a SLAM-based framework in GNSS-denied environments. Nuchter et al. [112] 

illustrates an inexpensive mobile mapping solution that can be mounted on a back-

pack equipped with 2D & 3D laser scanner since such a system is implemented for 

IMU-free MMS by performing SLAM. 

One should mention that most of these frameworks propose the implementation 

of an MMS based on SLAM for GNSS-denied environments without considering its 

flexibility to be converted into a GNSS/INS framework for operation in a GNSS-

affluent area. The SLAM-based MMS framework has a different structure compared 

to a GNSS/INS-based MMS for two main reasons: (i) the position data generated 

by SLAM is dependent on the mapping sensor measurements, and (ii) the sensor 

data logged onboard the MMS is not tagged with any geo-referencing signals. Due to 

such distinctions, it is difficult to incorporate a SLAM-based MMS framework into a 

GNSS/INS- based MMS framework directly, without extensive modifications to the 

system. In this dissertation, a new framework is proposed to mitigate this problem 

by implementing the SLAM-based pseudo-GNSS/INS to operate like a GNSS/INS 

module. This pseudo-GNSS/INS framework introduces a novel approach for imple-

menting the MMS framework for flexible operation in GNSS-denied/GNSS-affluent 

areas. Furthermore, such a framework has the advantages of implementing the en-

tire operation, which incorporates the positioning module and the mapping sensor, 

utilizing single 3D-mapping sensor. 
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3. DEVELOPMENT OF SYSTEM ARCHITECTURE FOR 

A LIDAR-BASED AIRBORNE MOBILE MAPPING 

SYSTEM 

3.1 Introduction 

MMS have emerged as a viable tool in many mapping applications and have been 

implemented on a range of airborne/terrestrial platforms. However, the general skele-

ton that describes the operating framework of the MMS remains somewhat common 

across all platforms and applications. This structure is shown in Fig. 3.1 for the case 

of a GNSS/INS-based MMS framework and is also explained ahead for each of its 

operational blocks. 

Fig. 3.1.: A functional block diagram of a GNSS/INS-based MMS framework with 

N sensors 
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While this block diagram describes the MMS, which use a GNSS/INS module for 

positioning, the block structure still highlights the essential features of a generic MMS. 

Fig. 3.1 allows for a visualization of the definition of the MMS in several blocks, for the 

mobile platform which describes a kinematic platform that can be a backpack carried 

by a human operator, airborne/terrestrial vehicle, either manned or unmanned, on 

top of which the mapping sensors are mounted and houses sufficient power supply 

for the mission operation. The MMS are mostly human-operated although several 

attempts at autonomous navigation of such MMS have also been successful. For the 

positioning and orientation (GNSS/INS) module, it is the most expensive component 

for the MMS and the most crucial for the appropriate determination of the geographic 

location of the map objects. Regarding the sensors module, it includes the network 

of mapping sensors that can range from monocular/stereo cameras, hyperspectral 

cameras, and/or 2D/3D LiDAR units. These sensors provide the data stream for 

map construction and need to be calibrated thoroughly for proper reconstruction. 

The data logging module is responsible for storing the sensor data in an appropriate 

format for precise offline reconstruction; however, the control module is responsible for 

managing the data acquisition based on time or a distance interval as a system block. 

Finally, the data processing module is responsible for gathering data to reconstruct 

the map of the surrounding environment. Owing to the high volume of data, this is 

mainly done off-line. Operation of the MMS yields two outputs for map reconstruction 

- the position data, which contains the trajectory traced by MMS during navigation 

and the raw sensor data which entails points used for reconstructing the maps. 

This phase of research aims at developing a system architecture for a low-cost UAV 

mapping system using directly geo-referenced active optical ranging systems, while 

considering the challenges posed by using consumer-grade sensors, platform payload 

restrictions, endurance capabilities, and the diversity of potential users/applications. 

In this regard, a comprehensive investigation for ensuring the selection of the suitable 

platforms as well as the sensors for the mapping purpose is proposed. Also, a system 

integration is developed by performing the synchronization process between a direct 
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geo-referencing unit and an active optical ranging sensor onboard the proposed UAV 

platform. The appropriate data storage unit is investigated to meet the requirements 

of UAV-payload demands. Furthermore, the impact of system interference on the 

performance of a UAV platform as well as the GNSS/INS trajectory is investigated. 

In addition to that, the development of a system architecture for a LiDAR-based 

wheel mapping system is considered as another objective of this portion of research. 

One should note that the system integration of a LiDAR-based wheel mapping system 

is performed in a way that is similar to a LiDAR-based UAV system integration. 

3.2 UAV Mobile Mapping System Framework 

In spite of the proven potential of UAV-based mapping using passive and active 

optical imaging systems, more in-depth analysis is still needed for these mapping 

systems. For example, a well-designed system architecture that considers payload 

restrictions and the specifications of the utilized direct geo-referencing component as 

well as the imaging and ranging systems in light of the required mapping accuracy and 

intended application is still lacking. In response to that, considerable research efforts 

are exerted to move from a mapping system that exhibits potential to a mapping 

platform that is recognized by the mapping industry, regulatory organizations, and 

end-user community. In order to address the above limitations, this dissertation 

develops a system architecture as well as a framework for the effective integration 

of a low-cost direct geo-referencing unit together with active optical ranging systems 

(e.g., laser scanners) for accurate 3D mapping environments. 

To ensure that the UAV platform will be capable of satisfying the needs of the 

desired mapping and monitoring activity, this phase of the dissertation will investigate 

the specifications of the necessary components that are commensurate with payload 

restrictions, the extent of the area to be mapped, and required accuracy. This system 

which is mainly for outdoor applications includes a direct geo-referencing unit based 

on an integrated GNSS and INS receiver board, and a minimum of one active ranging 
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unit. All these components are rigidly fixed within the UAV platform and will be 

introduced in the next sections. 

3.2.1 Mapping System Platform 

Considering the implementation at hand, the DJI S1000+ and DJI Matrice M600 

Pro can meet the mapping applications needs because of payload capabilities, en-

durance, and robustness. The DJI S1000+ platform is designed for professional aerial 

mapping applications, and provides some advantages such as safety, stability, and ease 

of use as shown in Fig. 3.2. This platform is a vertical take-off and landing UAV that 

weighs approximately 4.4 kg without the batteries. With a maximum takeoff weight 

of about 11 Kg, such a platform can easily fly with the installed sensors and batter-

ies for up to 15 minutes, which means that time increases as the weight decreases. 

The DJI S1000+ platform allows around 4 to 5 Kg payload of sensors/equipment 

(including batteries) to be efficiently installed onboard. The specifications of the DJI 

S1000+ are presented in Table 3.1 [113]. 

Fig. 3.2.: The DJI S1000+ platform for mapping applications 

Regarding the DJI Matrice 600 Pro (M600 Pro), it is a six-rotor flying platform 

that is designed for mapping and industrial applications as shown in Fig. 3.3. The 

DJI M600 Pro uses two sets of six intelligent flight batteries (TB47S and TB48S 
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batteries) with different capacity depending on the planned flight mission time. A 

new battery management system is utilized to provide safety, more endurance, and 

power system reliability. With a maximum takeoff weight of 15.5 kg, such a drone 

can be able to meet the particular needs of several applications such as precision 

agriculture and crash scene reconstruction. The detailed specifications of the DJI 

M600 Pro are introduced in Table 3.2 [114]. 

Table 3.1.: The DJI S1000+ UAV Specifications 

Feature DJI S1000+ 

Total Weight 4.4 kg without batteries 

Takeoff Weight 13.2 lb /6 kg to 24.2 lb /11 kg 

Max Flight Speed 13-20 m/s 

Motor Stator Size 41x14mm 

Motor Max Power 500W 

Motor Weight (with Cooling Fan) 158g 

Foldable Propeller Material High strength plastics 

Foldable Propeller Size 15x5.2inch 

Foldable Propeller Weight 13g 

Power Battery LiPo (6S,10000mAh 20000mAh) 

Max Power Consumption 1500W (@9.5Kg Takeoff Weight) 

Hover Time 15min (9.5Kg Takeoff Weight) 

Working Environment Temperature -10 ◦ C to +40 ◦ C 

Fig. 3.3.: The DJI Matrice 600 Pro (M600) platform for mapping applications 
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Table 3.2.: The DJI Matrice Pro (M600) UAV Specifications 

Feature DJI M600 Pro 

Total Weight (with six TB47S batteries) 9.5 kg 

Total Weight (with six TB48S batteries) 10 kg 

Max Takeoff Weight Recommended 15.5 kg 

Standard Battery (Model: TB47S) Capacity: 4500 mAh 

Optional Battery (Model: TB48S) Capacity: 5700 mAh 

Hovering Time (with six TB47S batteries) 6 kg payload: 16 min 

Hovering Time (with six TB48S batteries) 5.5 kg payload: 18 min 

Working Environment Temperature -10 ◦ C to +40 ◦ C 

3.2.2 Direct Geo- referencing Module 

The derivation of the ranging data requires the geo-referencing of the mapping 

platform, which entails the determination of the position and the orientation of the 

individual sensors relative to a user-defined coordinate system. To be more specific, 

the platform’s position and orientation can be directly established using an integrated 

GNSS/INS module, which is known as a direct geo-referencing unit as shown in 

Fig. 3.4. The main advantage of such a unit is the reduction or even elimination 

of the ground control requirement, which is quite useful in mapping remote and 

inaccessible areas, as well as reducing the cost of the overall mapping process. One 

should note that establishing ground control is the most expensive mapping task next 

to the deployment of the data acquisition platform. Therefore, the incorporation of a 

GNSS/INS position and orientation module has become the default for the majority 

of UAV-based mapping activities. In this dissertation, comparative performance of 

the Novatel SPAN-IGM-S1 and the Trimble APX-15 UAV (V2) GNSS/INS units will 

be investigated ahead. 

For this investigation, the Trimble APX-15 UAV (V2) is considered due to its low 

weight, compact size, and robust positioning and orientation information as shown in 
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Fig. 3.5. The POSPac MMS 8.1 Differential GNSS Inertial post-processing software 

from Applanix is used for post-processing of the raw GNSS/INS data. The accuracy 

attained after post-processing is ± 0.025◦ for pitch/roll and ± 0.08◦ for heading (yaw), 

and the position accuracy is ± 0.02-0.05 m. The specifications of the Trimble APX-15 

UAV (V2) are illustrated in Table 3.3 [115]. 

Fig. 3.4.: Direct Geo-referencing of LiDAR data using a GNSS/INS module 

Fig. 3.5.: Trimble APX-15 UAV (V2) GNSS/INS unit 

https://0.02-0.05
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Table 3.3.: Trimble APX-15 UAV (V2) Specifications 

Feature Trimble APX-15 UAV (V2) 

Weight (without cables) 60 grams 

Size 67 L x 60 W x 15 H mm (nominal) 

Voltage Input 9-30 V DC 

Power Consumption 3.5 watt at room temperature 

Position Accuracy (post processing) ± 0.02 - 0.05 (m) 

Velocity Accuracy (post processing) 0.015 (m/sec) 

Roll & Pitch Accuracy (post processing) ± 0.025 (deg) 

True Heading Accuracy (post processing) ± 0.080 (deg) 

IMU data rate 200 Hz 

GNSS data rate 5 Hz 

Working Environment Temperature -40 ◦ C to +75 ◦ C 

Also, the Novatel SPAN-IGM-S1 navigation system is considered in this phase 

of research for UAV-based mapping activities and is shown in Fig. 3.6. For such a 

system, the GNSS position collection rate is 20 Hz, and IMU measurement rate is 125 

Hz. The Inertial Explorer Differential GNSS Inertial post-processing software from 

Novatel is used for post-processing of the raw GNSS/INS data. The accuracy attained 

after post-processing is ± 0.015◦ for pitch/roll and ± 0.08◦ for heading (yaw), and 

the position accuracy is ± 0.02 m. The detailed specifications of the Novatel SPAN-

IGM-S1 are illustrated in Table 3.4 [116]. 

According to the previous investigations, the Trimble APX-15 UAV (V2) module 

will be used in the system architecture instead of the Novatel SPAN-IGM-S1 unit due 

to its low weight, compact size, power consumption, and cost. These specifications 

are commensurate with the requirements of the UAV-payload restrictions and the 

endurance. One should note that although the position accuracy of the Novatel 
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SPAN-IGM-S1 module is a bit better than the Trimble APX-15 UAV (V2) unit, the 

position accuracy of this unit can still satisfy the needs of the intended mapping 

applications. 

Fig. 3.6.: Novatel SPAN-IGM-S1 GNSS/INS unit 

Table 3.4.: Novatel SPAN-IGM-S1 Specifications 

Feature SPAN-IGM-S1 

Position Accuracy (post processing) ± 0.02 

Roll & Pitch Accuracy (post processing) ± 0.015 ◦ 

True Heading Accuracy (post processing) ± 0.08 ◦ 

Voltage Input +10 to +30 VDC 

Power Consumption 6 watt 

Weight 0.54 Kg 

Dimensions 152 L x 142 W x 51 H mm (nominal) 

Data Logging media USB or Serial connections 

Number of GNSS Receivers 1 

Distance Measurement Indicator (DMI) No Support for optional DMI input 

Working Environment Temperature -40 ◦ C to +65 ◦ C 
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3.2.3 Active Sensor (Laser Scanner) 

In the past few years, different types of LiDAR sensors are introduced with differ-

ent scanning mechanisms, number of laser beams, and geometric configurations. The 

Velodyne LiDAR sensors are gaining attention in UAV-based mapping applications, 

specifically the Velodyne HDL-32E as shown in Fig. 3.7 and Velodyne VLP-16 Puck 

& Puck Hi-Res. Regarding Velodyne HDL-32E, its compact size and light weight 

(1.3 Kg including cables) make it the suitable choice for its specifications. Such a 

sensor has the advantage of using 32 laser beams which are aligned over the range 

of +10.67 degrees to −30.67 degrees that provide the vertical Field of View (FOV), 

and its patent-pending rotating head design delivers a 360-degree horizontal FOV 

(α). Furthermore, it can scan up to 700,000 points per second with a range of 100 

meters and typical accuracy of ± 2 cm. The output from HDL-32E is a high def-

inition 3D-point cloud that provides mobile mapping applications with more useful 

environmental data than conventional LiDAR sensors. The detailed specifications of 

the Velodyne HDL-32E are introduced in Table 3.5 [117]. 

Fig. 3.7.: The Velodyne HDL-32E sensor 
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The Velodyne VLP-16 Puck is smaller than the Velodyne HDL-32E since it only 

has 16 channels which are aligned over the range of +15.00 degrees to -15.00 degrees. 

Such channels deliver a 360-degree horizontal FOV (α). The VLP-16 Puck does not 

have visible rotating parts when compared with Velodyne HDL-32E as represented in 

Fig. 3.8. Also, it can scan up to 300,000 points per second with a range of 100 meters 

and typical accuracy of ± 3 cm. The VLP-16 Puck Hi-Res is considered a higher 

resolution version of VLP-16 Puck and is mainly used for several activities which 

necessitate a high-resolution point cloud. It is worth mentioning that although both 

sensors have identical technical specifications, there is only one significant difference 

between such sensors. The vertical FOV of VLP-16 Puck Hi-Res is 20 degrees (+10.00 

degrees to −10.00 degrees) instead of 30 degrees for the Puck unit as mentioned 

previously. The specifications of both sensors are illustrated in Table 3.6 [32]. 

Table 3.5.: The Specifications of the Velodyne HDL-32E 

Feature Velodyne HDL-32E 

Number of channels 32 channels 

Range 70-100 m 

Scan rate 5-20 Hz 

Number of pulses/second Up to 700,000 points/second 

Motor RPM 300-1200 rpm (user selectable) 

Horizontal Field of View (FOV) 360◦ 

Vertical Field of View (FOV) 40◦ 

Angular Resolution (Vertical) 1.33◦ 

Voltage Input 9-32 VDC (31.4 watt) 

Dimensions 149.86mm height x 85.3mm diameter 

Weight (including cables) 1.3 kg 

Working Environment Temperature -10 ◦ C to +60 ◦ C 
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Fig. 3.8.: The Velodyne VLP-16 Puck/ Puck Hi-Res sensor 

Table 3.6.: The Specifications of the Velodyne VLP-16 Puck/ Puck Hi-Res 

Feature Velodyne VLP-16 Puck/ Puck Hi-Res 

Number of channels 16 channels 

Range Up to 100 m 

Scan rate 5-20 Hz 

Number of pulses/second Up to 300,000 points/second 

Motor RPM 300-1200 rpm (user selectable) 

Horizontal Field of View (FOV) 360◦ 

Vertical Field of View (FOV) 30◦ for Puck & 20◦ for Puck Hi-Res 

Angular Resolution (Vertical) 1.33◦ 

Voltage Input 9-18 VDC (8 watt) 

Dimensions 103 mm Diameter x 72 mm Height 

Weight (without cables) 0.83 kg 

Working Environment Temperature -10 ◦ C to +60 ◦ C 

According to the previous investigations, the Velodyne VLP-16 Puck Hi-Res unit 

will be used in the system architecture instead of the Velodyne HDL-32E sensor due 

to its low weight, compact size, power consumption, and cost. These specifications are 

commensurate with the requirements of the UAV-payload restrictions and endurance. 

Furthermore, the Velodyne VLP-16 Puck Hi-Res is utilized instead of the Velodyne 

VLP-16 Puck due to its vertical FOV which allows it to provide a highly-dense point 

cloud as mentioned previously. 



52 

3.3 System Integration of UAV-based LiDAR system 

The demand for professional UAV-based mapping solutions is growing worldwide. 

In this regard, LiDAR-based system integration is considered one of the fundamental 

factors that have a significant effect on the ability to provide accurate geospatial in-

formation. As it has been mentioned before, the proposed UAV-based LiDAR system 

consists of an industrial-grade autonomously flown UAV, either the DJI S1000+ or 

DJI M600 Pro, equipped with a LiDAR sensor coupled with a GNSS/INS navigation 

unit as well as a management system. The management system is concerned with sev-

eral tasks, including the power system distribution and has a processing unit which is 

responsible for setting the data-acquisition parameters, data storage for the generated 

real-time LiDAR data, data logging, and time synchronization. All these components 

are rigidly fixed within the DJI M600 Pro and DJI S1000+ as shown in Fig. 3.9, Fig. 

3.10(a), and Fig. 3.10(b) respectively. In Fig. 3.10(b), one should mention that the 

DJI S1000+ based LiDAR mapping system using the Velodyne HDL-32E sensor is 

still not operational at this stage. However, it is straightforward to modify the system 

installation to receive this sensor. 

Fig. 3.9.: The DJI M600 Pro based LiDAR mapping system (Velodyne 

VLP-16-Puck Hi-Res) 
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(a) 

(b) 

Fig. 3.10.: The DJI S1000+ based LiDAR mapping systems – (a) The Velodyne 

VLP-16 Puck -(b) The Velodyne HDL-32E 
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3.3.1 Synchronization Process 

The time synchronization process is the most critical and key part of the whole 

system integration architecture for the LiDAR-based mapping system. Such a process 

has a considerable impact on the generated data in the sense of ensuring that the 

captured data will have the necessary characteristics (i.e., accurate geo-referencing 

information for the captured frames). In order to derive direct geo-referencing data, 

the integrated GNSS/INS module supplies sequentially precise time pulses, known 

as Pulse-Per-Second (PPS) signals. Such signals give the ability to generate a time-

tagged point cloud. In this regard, synchronization to GNSS-PPS signals gives the 

ability to determine the exact firing time of each laser pulse which should be received 

by the interface box of the LiDAR sensor. Furthermore, the navigation unit provides 

a navigation message, also known as Recommended minimum specific GPS/Transit 

data (GPRMC message). This navigation message includes information regarding 

the real-time position, rotation, and GPS time. It is worth noting that the reception 

of the GPRMC message must conclude less than 500ms after the rising edge of the 

PPS signal as is clearly depicted in Fig. 3.11. 

Fig. 3.11.: Synchronization process of LiDAR-based mapping system 
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Currently, the GPRMC message is recorded over a dedicated RS-232 serial port 

and received by the LiDAR unit via the interface box in the form of serial data, which 

should be at 9600 baud rate. Fig. 3.12 shows the block diagram of the DJI M600 

Pro UAV-based MMS. Such a block diagram indicates triggering signals, feedback 

signals, and communication wires/ports between sensors and power connections. 

Fig. 3.12.: Integration scheme for the DJI M600 Pro UAV-based system 

It is important to explain that some procedures should be considered before data 

acquisition using a UAV-based LiDAR system such as the effectiveness of the syn-

chronization process. Such a procedure is highlighted to ensure the stability of the 

system integration architecture between different sensors onboard the UAV platform. 

Since the synchronization process between the GNSS/INS unit and LiDAR sensor is 

very crucial as previously mentioned, it is highly recommended to check the process 

via the webpage application of a LiDAR unit. Through this webpage, one should 

note a full demonstration related to the reception of the PPS signal and the GPRMC 

message which includes the real-time navigation solution from the GNSS/INS unit. 

The synchronization process validation is illustrated in Fig. 3.13. 

Furthermore, Wireshark software is another tool to ensure the synchronization 

between the GNSS/INS unit and LiDAR sensor [118]. Such software is mainly used 

for recording the raw data of LiDAR unit. So, one should ensure the reception of 



56 

GPRMC message by checking the position packet of LiDAR’s raw data as shown 

below in Fig. 3.14. 

Fig. 3.13.: The Velodyne webpage application for checking the reception of the PPS 

signal and the GNRMC message 

Fig. 3.14.: The Wireshark software to ensure the reception of GPRMC message 
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3.3.2 Data Storage Unit 

Regarding raw data, the Velodyne HDL-32E and VLP-16 Puck/Puck-Hi-Res have 

about 8 Megabits/Second data rate. Therefore, LiDAR sensors need an appropriate 

media for storing raw data. Minicomputers are investigated for this purpose, but the 

standard weight is about 500 gm, which means almost 10% of the UAV payload is 

used. As a result, a Raspberry Pi 3 (weighing about 50 gm) with 1.2 GHz 64-bit 

quad-core ARMv8 CPU is used [119]. Its small size and light weight make for a 

simple installation on the UAV and it is also cost effective. This choice saved around 

90% of the weight compared with a mini-computer. Fig. 3.15 shows the data storage 

unit onboard UAV-LiDAR system. 

Fig. 3.15.: Data storage unit onboard UAV-LiDAR system 



58 

3.3.3 System Interference 

System interference is considered to be one of the most important challenges that 

is encountered in the UAV community. Such an issue has a significant effect on 

the performance of the aerial platform as well as the generated trajectory from the 

direct geo-referenced unit (GNSS/INS). The GNSS sensor is a pivotal part of the 

UAV platform which is used to guide the UAV and ensure following the pre-defined 

flight path. For autonomously controlled systems, the UAV can be stabilized by 

using inertial sensors in case there is an absence of a GNSS signal, but it still cannot 

navigate to the landing spot without the involvement of a pilot. The majority of aerial 

mapping platforms use dual frequency (L1/L2) Real Time Kinematic (RTK) receivers 

due to the ability to provide a reliable position accuracy. To achieve a high precision 

navigation, the phase based techniques are required. Phase-based techniques need 

good signal quality and signal availability, and it is considered a challenging task 

with UAV platform [120]. 

The system interference phenomena can be classified into internal interference 

and external interference. For the internal interference, the UAV platform itself is 

considered one of the obvious sources of interference due to limited space available 

for the installation of several sensors such as the Velodyne VLP-16 Puck & Puck 

Hi-Res, the Sony Alpha 7R (RGB camera), and the Trimble APX-15 UAV coupled 

with different technical specifications and operations of such sensors. This limited 

space causes the GNSS antenna to be physically close to the onboard sensors and 

different electrical circuits as depicted in Fig. 3.16(a), Fig. 3.16(b), Fig. 3.17(a), 

and Fig. 3.17(b). Therefore, the probability of exposure to the Electro-Magnetic 

Compatibility (EMC) increases and has a negative impact on the GNSS receiver 

performance. 
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(a) 

(b) 

Fig. 3.16.: Physical installation of several sensors onboard DJI S1000+ (a) Side 

view- (b) Top view 
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(a) 

(b) 

Fig. 3.17.: Physical installation of several sensors onboard DJI M600 Pro (a) Side 

view- (b) Top view 

In addition, the rotorcraft brushless DC motor is also one of the main sources in 

the sense of internal interference, which causes an interference effect on the GNSS 
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antenna when the motor is powered up. In terms of external interference, there is a 

suspicion of terrestrial vehicle GPS jammers which are initially designed to disable 

GPS reception and might be an additional source of interference [120]. During the 

UAV flight mission, if a vehicle equipped with a GPS jammer crosses the flight track, 

it could affect the navigation process. In response to that, there are two modifications 

considered to avoid the impact of the EMC on the GNSS receiver. First, there is an 

initial design of the GNSS antenna mast that keeps the antenna close to the onboard 

sensors. Therefore, a new design of that mast is implemented to be much taller than 

the initial design for keeping the GNSS antenna physically away from the sensors 

onboard the UAV platform as shown in Fig. 3.18. Second, the unreasonable wiring 

or incorrect wire connection between the onboard sensors as well as the electronic 

circuits increases the impact of the EMC and has a negative effect on the performance 

of such sensors. Thus, the Trimble APX-15 UAV unit has been fitted in a housing 

box to accommodate a wiring harness as well as the necessary electronic circuits with 

reasonable wiring connections as shown in Fig. 3.19. 

Fig. 3.18.: The GNSS antenna mast design (DJI S1000+) – (a) Initial design -(b) 

New design 
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Fig. 3.19.: DJI M600 Pro based LiDAR mapping system – (a) Old installation -(b) 

New housing box 

3.4 System Integration of Wheel-based LiDAR system 

In this dissertation, two examples of the wheel-based LiDAR systems will be 

discussed. The high clearance tractor (denoted here forth as a PhenoRover-based 

system) which is used for agriculture management and the car mount system which 

is used for transportation corridor monitoring applications. Both systems are used to 

collect LiDAR and photogrammetric data for 3D-point cloud generation. The MMS 

onboard the PhenoRover as well as the car mount system are developed in the same 

way as the UAV-based LiDAR system but with minor differences regarding the choice 

of the sensors that can work effectively for a terrestrial mapping system. Furthermore, 

unlike the UAV-based MMS, both MMS have no payload restrictions, such as sensor 

weight, size or power consumption. Such advantage enables the installation of a more 

accurate GNSS/INS unit, irrespective of its weight or size. Moreover, a computer is 

used instead of Raspberry Pi to store the LiDAR and image data, which in turn allows 

more extended missions. The mapping system onboard the PhenoRover has two 

Velodyne HDL-32E laser scanners, which are directly georeferenced by the Trimble 

POS LV-125 unit as depicted in Fig. 3.20. For the POS LV-125, the post-processing 
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accuracy in position can be ± 2-5 cm, and the achieved accuracy for the roll/pitch and 

heading can be ± 0.025◦ and 0.06◦ , respectively. In case of 60 seconds GNSS outages, 

the post-processing accuracy in position can be ± 0.2-0.8 m, and the achievable 

accuracy for the roll/pitch and heading can be ± 0.05◦ and 0.2◦ , respectively. The 

detailed specifications of the Trimble POS LV-125 are illustrated in Table 3.7 [121]. 

Fig. 3.20.: The Trimble POSLV-125 GNSS/INS Module 

Table 3.7.: The Trimble POSLV-125 Specifications 

Feature POSLV-125 

Position Accuracy (post processing) ± 0.02-0.05 

Roll & Pitch Accuracy (post processing) ± 0.025 ◦ 

True Heading Accuracy (post processing) ± 0.06 ◦ 

Voltage Input +9 to +34 VDC 

Power Consumption 60 watt 

Weight 1.3 Kg 

Dimensions 164 L x 160 W x 66 H mm (nominal) 

Data Logging media Internally, or via Ethernet. 

Number of GNSS Receivers 2 

Distance Measurement Indicator (DMI) Support for optional DMI input 

Working Environment Temperature -40 ◦ C to +60 ◦ C 
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In addition to that, the mapping system onboard the PhenoRover is mainly de-

veloped for the agriculture management applications as mentioned before. It is worth 

noting that agriculture management has gained tremendous interest from researchers 

in plant science as well as other fields due to the global challenge of ensuring crop 

yield for food and fuel generation. In this dissertation, a PhenoRover-based MMS 

is mainly focusing on accelerating energy crop development for the production of re-

newable transportation fuels. An initial boom design is implemented to install the 

mapping sensors onboard for such application. In order to have a better data acqui-

sition geometry, a new boom design is implemented since it can provide more height 

and distance between the mapping sensors and the plants as depicted in Fig. 3.21. 

Fig. 3.21.: PhenoRover-based MMS-(a)Old boom design-(b)New boom design 

The car mount system is considered another terrestrial mapping system that is 

mainly designed for collecting 3D spatial data geo-referenced to a global reference 

frame, and is used for several applications such as transportation corridor monitoring, 

and infrastructure monitoring as mentioned before. In this regard, a compact portable 

system design is implemented. The portable system can be easily installed on any 

vehicle with a smooth roof top and gives the ability not to be restricted for any 

particular vehicle as shown in Fig. 3.22. 
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Fig. 3.22.: The car-mount mapping system (Portable system) 

The portable system has two Velodyne HDL-32E laser scanners and two FLIR 

Flea-2G camera, which are directly georeferenced by the Novatel Span-CPT unit. 

Such unit is depicted in Fig. 3.23. For the Novatel Span-CPT, the post-processing 

accuracy in position can be less than ± 2 cm, and the achieved accuracy for the 

roll/pitch and heading can be ± 0.008◦ and 0.035◦ , respectively. In case of 60 sec-

onds GNSS outages, the post-processing accuracy in position can be ± 0.23 m, and 

the achievable accuracy for the roll/pitch and heading can be ± 0.013◦ and 0.038◦ , 

respectively. The detailed specifications of the Span-CPT are illustrated in Table 

3.8 [122]. 

Fig. 3.23.: The Novatel SPAN-CPT GNSS/INS unit 
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Table 3.8.: The Novatel SPAN-CPT Specifications 

Feature SPAN-CPT 

Position Accuracy (post processing) ± 0.02 

Roll & Pitch Accuracy (post processing) ± 0.008 ◦ 

True Heading Accuracy (post processing) ± 0.035 ◦ 

Voltage Input +9 to +18 VDC 

Power Consumption 16 watt 

Weight 2.28 Kg 

Dimensions 152 L x 168 W x 89 H mm (nominal) 

Data Logging media USB or Serial connections. 

Number of GNSS Receivers 1 

Distance Measurement Indicator (DMI) No Support for optional DMI input 

Working Environment Temperature -40 ◦ C to +65 ◦ C 

As far as durability is concerned, a new rack design of a dedicated platform is 

implemented to install several mapping sensors onboard as well as to provide flexibility 

for adjusting the mounting of such sensors in different manners. To be more specific, 

such mounting flexibility ensures the ability of the dedicated platform-based MMS to 

meet the requirements of different mapping applications with respect to having the 

useful and appropriate data for each activity. Fig. 3.24 shows the Purdue Wheel-

based MMS (PWMMS) which is considered the dedicated platform-based MMS. 

The dedicated platform-based MMS has two Velodyne HDL-32E laser scanners 

and three FLIR Flea-2G camera, which are directly georeferenced by the Trimble 

POS LV-220 unit. Such unit is depicted in Fig. 3.25. For the POS LV-220, the post-

processing accuracy in position can be less than ± 2 cm and the achieved accuracy 

for the roll/pitch and heading can be ± 0.02◦ and 0.025◦ , respectively. In case of 60 

seconds GNSS outages, the post-processing accuracy in position can be ± 0.24 m, 
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and the achievable accuracy for the roll/pitch and heading can be ± 0.06◦ and 0.03◦ , 

respectively. The detailed specifications of the Trimble POS LV-220 are illustrated in 

Table 3.9 [121]. 

Fig. 3.24.: Purdue Wheel-based mobile mapping System (PWMMS) 

Fig. 3.25.: The Trimble POSLV-220 GNSS/INS Module 

One should note that there is a similarity between the system integration devel-

oped for the wheel-based MMS framework and UAV platforms. Such similarity in the 

system integration methodology allows for the implementation of the same technique 

explained above for the wheel-based LiDAR systems. The system integration has 

been developed in a way which demonstrates the flexibility of the proposed work. To 

be more specific, the developed system integration can be used for not only airborne 
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mapping systems but also for other systems such as the wheel-based LiDAR sys-

tems, with similar mapping sensor structure and techniques. Fig. 3.26 illustrates the 

block diagram of the wheel-based LiDAR system (the PhenoRover-based MMS and 

the dedicated platform-based MMS). Such block indicates triggering signals, feedback 

signals, and power connections. 

Table 3.9.: The Trimble POSLV-220 Specifications 

Feature POSLV-220 

Position Accuracy (post processing) ± 0.02 

Roll & Pitch Accuracy (post processing) ± 0.02 ◦ 

True Heading Accuracy (post processing) ± 0.025 ◦ 

Voltage Input +10 to +34 VDC 

Power Consumption 60 watt 

Weight 2.4 Kg 

Dimensions 167 L x 185 W x 68 H mm (nominal) 

Data Logging media Internally, via USB or Ethernet. 

Number of GNSS Receivers 2 

Distance Measurement Indicator (DMI) Support for optional DMI input 

Working Environment Temperature -40 ◦ C to +60 ◦ C 

In this dissertation, a multi-sensor integration system is developed onboard the 

wheel-based LiDAR systems. Since the connection of multi-LiDAR sensors (either 

HDL-32E or VLP-16 Puck/Puck Hi-Res) causes data interference between the con-

necting LiDAR units and the LiDAR data could be lost. Therefore, the connection of 

multi-LiDAR sensors to a single personal computer (PC) is considered quite problem-

atic. The LiDAR sensors usually connect to the PC for recording the data through 

RJ45 port (Ethernet port) with a particular IP address by using User Datagram Pro-
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tocol (UDP). The recorded data can interfere with each other and cannot be extracted 

properly due to network activity from another LiDAR unit. To be more specific, hav-

ing two sensors sending data to a broadcast address will cause data loss. In order 

to use multi-LiDAR sensors on a single PC, multiple Ethernet ports should be used 

(one for each sensor) as depicted below in Fig. 3.27. Furthermore, each Ethernet 

port should be set to a different IP address. One should mention that the Ethernet 

ports should be configured in a way to use the matching IP address of each sensor 

particularly. 

Fig. 3.26.: Integration scheme for the wheel-based LiDAR systems 

Fig. 3.27.: Integration of multi-LiDAR sensors to single PC through multiple 

Ethernet ports 
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It is worth noting that the integration stability between multi-LiDAR sensors and a 

GNSS/INS unit is considered an important part of this research. One should mention 

that the mapping system cannot rely on directly splitting the PPS signal to feed multi-

LiDAR sensors to perform the synchronization process due to the insufficient current 

rating. Therefore, the embedded system modules such as the Raspberry Pi kit or the 

Arduino kit could be used to split the PPS signal in a way that keeps the current 

rating of such signals to successfully synchronize the LiDAR sensors as depicted in 

Fig. 3.28. 

Fig. 3.28.: Integration of multiple-LiDAR sensors with GNSS/INS module through 

embedded system electronic kits 

3.5 Point-Cloud Reconstruction 

As mentioned earlier, the integration between the direct geo-referencing unit and 

the laser scanning sensors is performed for the LiDAR mapping system onboard an 

airborne/terrestrial platform. However, there is a distinct data rate difference between 

the integrated mapping sensors. More specifically, the GNSS/INS module determines 
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the position and orientation of the IMU body frame at 100 Hz to 200 Hz data rate 

while the data rate of the LiDAR sensor is from 300KHz to 1MHz. Due to the higher 

rate of LiDAR data compared to the derived data from GNSS/INS, an interpolation 

process should be performed to derive the position and orientation of the platform 

for each laser pulse as illustrated in Fig. 3.29, where ti denotes the time of LiDAR 

data acquisition epoch. 

Fig. 3.29.: Illustration of the GNSS/INS data interpolation 

For position interpolation, a linear interpolation is performed between every two 

points in the derived trajectory where the LiDAR point of interest lies in between 

as shown in Equation 3.1. The rb
m(t1) and rb

m(t2) denote the position of the IMU 

body frame relative to the mapping reference frame at GPS time t1 and GPS time 

t2 respectively, and rb
m(ti) represents the position of the IMU body frame relative to 

the mapping reference at the desired point timestamp (ti). 

t2 − ti ti − t1m m m r (ti) = ∗ r (t1) + ∗ r (t2) (3.1)b b bt2 − t1 t2 − t1 

For deriving rotation matrices, a spherical linear interpolation method is per-

formed using quaternion representation as depicted in Fig. 3.30. A quaternion is a 

4D-vector that has one real and three imaginary parts as described in Equation 3.2. 

The i, j, and k denote the terms of imaginary parts of a quaternion vector. Equa-

tions 3.3 - 3.6 show the properties of the quaternion vector. One should note that 

the real part for the pure quaternion is zero. Furthermore, the relationship between 

the quaternions and the rotation matrices is illustrated in Equations 3.7 - 3.15 [123]. 

q = q0 + qxi + qyj + qzk (3.2) 
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i2 = j2 = k2 = ijk = −1 (3.3) 

i = jk = −kj (3.4) 

j = ki = −ik (3.5) 

k = ij = −ji (3.6) 

Fig. 3.30.: Spherical Linear Interpolation Method 

2 2 2 2 = q + q − q − q (3.7)r11 x 0 z y 

r12 = 2qxqy − 2q0qz (3.8) 

r13 = 2qxqz + 2q0qy (3.9) 

r21 = 2qxqy + 2q0qz (3.10) 

2 2 2 2 r22 = q − q + q − q (3.11)y z 0 x 

r23 = 2qyqz − 2q0qx (3.12) 

r31 = 2qxqz − 2q0qy (3.13) 

r32 = 2qyqz + 2q0qx (3.14) 

2 2 2 2 r33 = q − q − q + q (3.15)z y x 0 
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In the spherical linear interpolation method, the interpolated quaternion rotation 

qi needs to be evaluated based on the known rotations represented by q1 and q2, whose 

angular deviation is θ. The angular deviations of the interpolated quaternion relative 

to q1 and q2 are θ1 and θ2, respectively. The angular deviation θ can be derived using 

Equation 3.16 and Equation 3.17. The angular deviations θ1 and θ2 should be defined 

based on the corresponding derived GPS times t1 and t2 from GNSS/INS trajectory 

at the required interpolated time (ti) as illustrated in Equation 3.18 and Equation 

3.19 respectively. To compute qi which denotes the interpolated quaternion, C1 and 

C2 as illustrated in Fig. 3.31 and Fig. 3.32 should be derived first through Equation 

3.20 and Equation 3.21, respectively. Then, the interpolated quaternion qi can be 

determined through Equation 3.22 and Equation 3.23, respectively. 

q1.q2 = kq1k ∗ kq2k cos(θ) (3.16) 

q1.q2 = cos(θ) (3.17) 

ti − t1
θ1 = θ 

t2 − t1 
(3.18) 

t2 − ti
θ2 = θ 

t2 − t1 
(3.19) 

Fig. 3.31.: Interpolated quaternion qi computation based on the C1 derivation 
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Fig. 3.32.: Interpolated quaternion qi computation based on the C2 derivation 

sin θ2
C1 = 

sin θ 
(3.20) 

sin θ1
C2 = 

sin θ 
(3.21) 

qi = C1q1 + C2q2 (3.22) 

sin θ2 sin θ1 
qi = q1 + q2

sin θ sin θ 
(3.23) 

One should note that there is no considerable difference between the spherical 

linear interpolation method and the conventional linear interpolation technique in 

case of having a smooth motion of the utilized platform. However, in case that such 

a platform maneuvers while in motion, the conventional linear interpolation method 

cannot feed accurate results compared to the spherical linear interpolation technique. 

3.6 Summary 

In this Chapter, a system architecture for a low-cost UAV mapping system with 

price range less than $15,000 using directly geo-referenced active ranging systems 

is developed, while considering the challenges posed by using consumer-grade sen-

sors with accuracy less than 5 cm, platform payload restrictions, and endurance. 

Therefore, the specifications of the necessary components that are commensurate 

with the challenges previously mentioned are investigated to meet the needs of the 
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non-traditional mapping community. Also, a system integration is developed by per-

forming the synchronization process between a direct geo-referencing unit and an 

active optical ranging sensor onboard the proposed UAV platform. Furthermore, the 

impact of system interference on the performance of a UAV platform as well as the 

GNSS/INS trajectory is investigated. In addition to that, the development of a sys-

tem architecture for a LiDAR-based wheel mapping system is developed in a way 

that is similar to a LiDAR-based UAV system integration. 
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4. BIAS IMPACT ANALYSIS AND LIDAR SYSTEM 
∗CALIBRATION 

4.1 Introduction 

Recent advances in hardware and software development have made it possible 

to conduct accurate 3D-mapping without using costly and high-end data acquisition 

systems. For example, low-cost laser scanners, and navigation systems can provide ac-

curate mapping if they are effectively integrated at the hardware and software levels. 

Moreover, ongoing developments in mobile mapping technology have made accurate 

3D mapping more feasible, specifically UAVs that are emerging as an economical and 

practical mobile mapping platform. To derive point clouds with high positional ac-

curacy, estimation of mounting parameters relating the laser scanners to the onboard 

GNSS/INS unit is the most crucial step. 

This phase of research proposes a LiDAR system calibration approach for a UAV-

based MMS. The purpose of system calibration is to simultaneously estimate the 

mounting parameters (i.e., the lever-arm and boresight angles) relating the different 

system components through an outdoor calibration procedure. Such parameters min-

imize discrepancies between derived surfaces from multiple flight lines while reducing 

ground control requirements as depicted in Fig. 4.1. This approach is based on the 

use of conjugate planar/linear features in overlapping point clouds derived from dif-

ferent flight lines. Designing an optimal/minimal flight and feature configuration for 

∗ THIS CHAPTER IS LARGELY BASED ON THE JOURNAL PAPERS(RAVI, RADHIKA, TAMER SHAM-

SELDIN, MAGDY ELBAHNASAWY, YUN-JOU LIN, AND AYMAN HABIB. ”BIAS IMPACT ANALYSIS AND 

CALIBRATION OF UAV-BASED MOBILE LIDAR SYSTEM WITH SPINNING MULTI-BEAM LASER SCAN-

NER.” APPLIED SCIENCES 8, NO. 2 (2018): 297. AND RAVI, RADHIKA, YUN-JOU LIN, MAGDY ELBAH-

NASAWY, TAMER SHAMSELDIN, AND AYMAN HABIB. ”BIAS IMPACT ANALYSIS AND CALIBRATION OF 

TERRESTRIAL MOBILE LIDAR SYSTEM WITH SEVERAL SPINNING MULTIBEAM LASER SCANNERS.” 

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (2018). 
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calibration is the first and foremost step in order to ensure the most accurate esti-

mates of mounting parameters. In this regard, optimal denotes decoupling (removing 

any significant correlation between) various components of the mounting parameters. 

Such configuration is achieved by conducting an in-depth rigorous theoretical analy-

sis of the potential impact of bias in mounting parameters of a LiDAR unit on the 

resultant 3D point cloud. 

Fig. 4.1.: Conceptual basis of the LiDAR system calibration approach 

In this regard, a detailed bias impact analysis facilitates the design of an optimal 

configuration of target primitives and flight lines for ensuring accurate calibration re-

sults. Habib et al. [124] discussed the bias impact analysis in detail for airborne linear 

scanners while describing the simplified and quasi-rigorous approaches for calibration, 

whereas, in this research, the bias impact analysis is conducted for a spinning multi-

beam laser scanner starting from the 3D- point-positioning equation. The optimal 

target primitive configuration is devised by studying the impact of biases on planes 

oriented in different directions and the optimal flight line configuration is determined 

based on the effect of biases arising from flight lines with different directions and lat-

eral separation on planes with varying orientation. Finally, the proposed analysis and 

calibration strategy are validated by calibrating a UAV-based LiDAR system using 

two different datasets—one acquired with flight lines at a single flying height and the 

other with flight lines at two different flying heights. The calibration performance 

is evaluated by analyzing correlation between the estimated system parameters, the 
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a-posteriori variance factor of the Least Squares Adjustment (LSA) procedure, and 

the quality of fit of the adjusted point cloud to planar/linear features before and after 

the calibration process. 

4.2 Bias Impact Analysis 

4.2.1 Mathematical Model for a UAV-based LiDAR Point Positioning 

For conducting the impact analysis of biases in the mounting parameters on the 

3D mapping frame coordinates, the first and foremost step is to establish the mathe-

matical relation between these entities. Such entities can further be used to derive the 

partial derivatives of 3D coordinates with respect to the mounting parameters, thus 

quantifying the impact of biases in the mounting parameters. A UAV-based LiDAR 

system consisting of a spinning multi-beam laser scanner involves three coordinate 

systems – mapping frame, IMU body frame, and laser unit frame – as shown in Fig. 

4.2. 

The GNSS/INS integration provides the time dependent position, rb
m(t), and ro-

tation, Rb
m(t), relating the mapping frame and IMU body frame coordinate systems, 

according to the optimized solution from the available GNSS and inertial measure-

ments. The laser unit (lu) is related to the IMU body frame by a rigidly defined lever 

arm, rlu 
b , and boresight matrix, Rb A point, I, acquired from the system can be lu. 

reconstructed in the mapping coordinate system using Equation 4.1. For the laser 

unit frame, the origin is defined at the laser beams firing point, and the z-axis is along 

the axis of rotation of the laser unit. For a spinning multi-beam laser unit, each laser 

beam is fired at a fixed vertical angle, βj where j = 1, 2, . . . , 16; the α denotes the 

angle along the axis of rotation; and the range, ρ is defined by the distance between 

firing point and its footprint, as shown in Fig. 4.3. So, the coordinates of a 3D point 

relative to the laser unit coordinate system, rI
lu(t), is defined by Equation 4.2. 

m m b lu r = r (t) + Rm(t)r (t)Rb (t) (4.1)I b b lu + Rb
m 

lurI 
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⎤⎡⎤⎡ 
x ρ(t) cos βj cos α(t) 

=rI
lu(t) = 

⎢⎢⎢⎣y 
⎥⎥⎥⎦ 

⎢⎢⎢⎣ρ(t) cos βj sin α(t) 
⎥⎥⎥⎦ (4.2) 

z ρ(t) sin βj 

Fig. 4.2.: Illustration of point positioning of a Light Detection and Ranging 

(LiDAR) system 

Fig. 4.3.: Illustration of a spinning multi-beam LiDAR unit (VLP-16 Puck Hi-Res) 
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4.2.2 Bias Impact Analysis for a Spinning Multi-Beam Laser Scanner 

The objective of this section is to derive a mathematical formulation that shows 

the impact of biases in the mounting parameters on the coordinates of points along 

planar features with different orientations. This analysis can further aid the develop-

ment of an optimal/minimal flight and target configuration for calibration. Note that 

planar features are used specifically for this analysis as they facilitate the observation 

of positional deformations in one direction at a time, i.e., the effect in the direction 

normal to the plane. For simplifying the bias impact analysis without any loss of gen-

erality, several assumptions are made. Firstly, the IMU is mounted on the UAV with 

its X- and Y-axes aligned along the starboard and flight line directions, respectively. 

The IMU is assumed to be perfectly vertical, i.e., the z-axis of the IMU body frame 

is assumed to be perfectly aligned with the vertical direction of the mapping frame. 

Furthermore, the flight line directions are assumed to be either from South-to-North 

(κ = 0◦) or from North-to-South (κ = 180◦). These assumptions facilitate the deci-

sion as to whether the impact is along/across the flight line and vertical directions. 

As a result, the rotation matrix Rm
b (t) would be given by Equation 4.3, where the top 

and bottom signs are for S-N and N-S flight line directions, respectively. In order to 

generalize the analysis regardless of the orientation of the LiDAR unit relative to the 

IMU body frame, Equation 4.1 is slightly modified by introducing a virtual LiDAR 

unit frame, lu 
0 
, which is almost aligned with the IMU body frame. Moreover, the use 

of a virtual LiDAR unit frame also prevents gimbal lock in the mounting parameter 

estimation. This modification is implemented by expressing the term Rlu 
b in Equa-

0 0 

0 Rlu tion 4.1 as: Rb = Rb 
lu , where R

lu is defined according to the laser scanner unitlu lu lu 

alignment relative to the IMU. The modified LiDAR point positioning is given by 

Equation 4.4. The LiDAR unit coordinate system alignment on the UAV platform 

used in this system and the assumed IMU body frame coordinate system (with the 

X, Y, Z axes along starboard, forward, and up directions, respectively) are shown in 

Fig. 4.4. 
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⎤⎡ 
±1 0 0 

Rm 
b (t) = 

⎢⎢⎢⎣ 0 ±1 0 
⎥⎥⎥⎦ (4.3) 

0 0 1 

0 
m m b 

0 Rlu lu rI = rb (t) + Rb
m(t)rlu + Rb

m(t)Rb
lu lu rI (t) (4.4) 

Fig. 4.4.: Coordinate systems for DJI M600 Pro-based LiDAR system 

Since the virtual LiDAR unit frame is almost aligned with the IMU body frame, it 

results in small values for the differential angular boresight parameters (Δω, Δφ, Δκ) 

relating the two frames. So, the matrix Rb can be written as shown in Equation 4.5, 0lu 

using the small angle approximations. Here, Δω, Δφ, and Δκ denote the rotation 

around the X, Y, Z-axes of the IMU body frame (i.e., across flight, along flight, and 

vertical directions), respectively. Hence, these parameters denote the boresight pitch, 

roll, and heading angles, respectively. The point coordinates relative to the virtual 

LiDAR unit frame according to Fig. 4.4, are given by Equation 4.6 and Equation 4.7 

in terms of the flying height, H ± Δh, and scan angles (α and β). The H denotes the 

flying height above average ground elevation, and Δh denotes the variation in target 

height. The virtual LiDAR unit frame is almost parallel to the IMU body frame. The 

schematic illustration of such symbolic notations is depicted in Fig. 4.5 for a UAV-

based LiDAR system. Substituting Equation 4.5, Equation 4.6, and Equation 4.7 in 
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Equation 4.4, the revised form of the LiDAR point positioning equation is derived, 

as given in Equation 4.8, where ΔX, ΔY , ΔZ are the lever-arm offset parameters 

of the LiDAR unit frame relative to the IMU body frame. Now, the impact of the 

presence of bias in the system mounting parameters can be analyzed by differentiating 

Equation 4.8 with respect to the system mounting parameters and this is given by 

Equation 4.9. 

⎤⎡ 

Rb 
lu 0 = 

⎢⎢⎢⎣ 

1 −Δκ Δφ 

Δκ 1 −Δω 
⎥⎥⎥⎦ (4.5) 

−Δφ Δω 1 ⎤⎡⎤⎡⎤⎡ 
0 ⎥⎥⎥⎦ 
= Rlu 

lu 

0 ⎢⎢⎢⎣ 

ρ cos β sin α 

ρ cos β cos α 
⎥⎥⎥⎦ 
= 

⎢⎢⎢⎣ 

ρ cos β sin α 

ρ sin β 
⎥⎥⎥⎦ 

x⎢⎢⎢⎣ 

0 0 
lu (t) = Rlu lu 
I lu r 0(t) = (4.6)r yI 

z 
0 

ρ sin β −ρ cos β cos α 

Fig. 4.5.: Schematic diagram illustrating the symbolic notations used for a 

UAV-based LiDAR system calibration 

⎤⎡⎤⎡ 
0 ⎥⎥⎥⎦ 
= (H ± Δh) 

⎢⎢⎢⎣ 

tan α 
tan β 

⎥⎥⎥⎦ 
0 

(z = −ρ cos β cos α = −(H ± Δh)) (4.7) 

x⎢⎢⎢⎣ 
0 

y 
cos α 

z 
0 −1 
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⎤⎡⎤⎡⎤⎡ 
0 

ΔX 1 −Δκ Δφ x 
0 r m = r m(t) + Rm 

I b b (t) 
⎢⎢⎢⎣ΔY 

⎥⎥⎥⎦+ Rm 
b (t) 

⎢⎢⎢⎣ Δκ 1 −Δω 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ y 
⎥⎥⎥⎦ (4.8) 

ΔZ −Δφ Δω 1 z 
0 

⎤⎡⎤⎡ 
0 0 

δrI
m(δΔX, δΔY, δΔZ, δΔω, δΔφ, δΔκ) = 

⎢⎢⎢⎣ 

±δΔX 

±δΔY 
⎥⎥⎥⎦+ 

⎢⎢⎢⎣ 

±z δΔφ   y δΔκ 
0 0 

⎥⎥⎥⎦ z δΔω ± x δΔκ (4.9) 

δΔZ y 
0 
δΔω − x 

0 
δΔφ 

The bias impact can be analyzed thoroughly by isolating the terms in Equation 

4.9 corresponding to the impact of bias in each of the mounting parameters for each of 

the mapping frame coordinates Xm, Ym, and Zm, representing the coordinates across 

flying direction, along flying direction, and vertical direction, respectively – as given 

in Table 4.1. 

Table 4.1.: Impact of bias in each of the mounting parameters on 3D point 

coordinates 

δXm δYm δZm 

δΔX ±δΔX 0 0 

δΔY 0 ±δΔY 0 

δΔZ 0 0 δΔZ 

δΔω 0 
0  z δΔω 

0 
y δΔω 

δΔφ 
0 ±z δΔφ 0 

0 −x δΔφ 

δΔκ 
0  y δΔκ 

0 ±x δΔκ 0 

Table 4.1 can now be used to assess the impact of each bias for planar surfaces 

in different orientations – vertical planes parallel to flight direction, vertical planes 

perpendicular to flight direction, and horizontal planes) – thus indicating the impact 

across flight direction, along flight direction, and vertical direction, respectively. 
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Impact of Bias in Lever-arm component across the flying direction (ΔX) 

A bias in this component (δΔX) will introduce a constant shift (±δΔX) across 

the flying direction as depicted in Fig. 4.6. The introduced shift is flying direction 

dependent and does not depend on the location of the point in question relative to 

the virtual laser unit coordinate system. As a result, its impact will be visible in case 

of having vertical planes parallel to the flying direction scanned from two flight lines 

in opposite directions. 

Fig. 4.6.: Impact of bias in lever-arm component across the flying direction (ΔX) 

Impact of Bias in Lever-arm component along the flying direction (ΔY ) 

A bias in this component (δΔY ) will introduce a constant shift (±δΔY ) along 

the flying direction as shown in Fig. 4.7. The introduced shift is flying direction 

dependent and does not depend on the location of the point in question relative to 

the virtual laser unit coordinate system. Therefore, it would impact vertical planes 

perpendicular to the flying direction scanned from two flight lines in opposite direc-

tions. 
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Fig. 4.7.: Impact of bias in lever-arm component along the flying direction (ΔY ) 

Impact of Bias in Lever-arm component in the vertical direction (ΔZ) 

A bias in this component (δΔZ) will introduce a constant shift (δΔZ) in the 

vertical direction as shown in Fig. 4.8. The introduced shift is flying direction in-

dependent and does not depend on the location of the point in question relative to 

the virtual laser unit coordinate system. As a result, the entire point cloud would be 

shifted in the vertical direction by the same amount. So, this bias would not affect 

planes at any orientation for any flight line configuration. 

Fig. 4.8.: Impact of bias in lever-arm component in the vertical direction (ΔZ) 
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Impact of Bias in Boresight Pitch (Δω) 

A bias in this component (δΔω) will cause shifts along the flying direction as well 

as in the vertical direction as depicted in Fig. 4.9. The impact of boresight pitch bias 

along the flying direction ( z 
0 
δΔω = ±(H ± Δh)δΔω) is flying direction dependent 

and its magnitude depends on the height (z 
0 
) of the point in question relative to the 

virtual laser unit coordinate system. This impact would be visible in case of a planar 

feature perpendicular to the flying direction being scanned by flight lines in opposite 

directions. 

Fig. 4.9.: Impact of bias in boresight pitch (Δω) 

The impact of boresight pitch bias in the vertical direction (y 
0 
δΔω) would be 

manifested in horizontal planes. The magnitude of this impact depends on the y 
0 
-

coordinate of the point in question. So, this impact would be visible even in case of a 

single flight line capturing a horizontal planar feature as long as there is a significant 

variation in the y 
0 
-coordinate at a given location within such a plane, i.e., if the same 

portion of the plane is scanned by the laser unit while being at different locations. 

Since the bias in lever arm component along the flying direction (ΔY ) also causes 

shifts along the flying direction, there is a need to decouple the impacts so as to 

estimate both these biases accurately. The boresight pitch bias has an impact in 

the vertical direction in addition to the impact along flying direction; therefore, it 
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would aid in naturally decoupling δΔω and δΔY , provided there is a significant y 
0 
-

coordinate variability. But, the y 
0 
-coordinate variation could be reduced depending 

on the nature of the targets used or the sensor configuration. For the VLP-16 Puck 

Hi-Res, the y 
0 
-coordinate variability is limited by the relatively narrow vertical FOV 

of the LiDAR unit (±10◦), thus making it insufficient to eliminate the correlation. In 

such cases, there is a need to have a significant variation in the value of (H ± Δh) in 

order to decouple the impacts of δΔY and δΔω so as to estimate both these biases 

accurately. This can be achieved by one of the following ways: 

• Two different flying heights: The shift caused along the flight direction by the 

bias δΔω will vary depending on the flying height, whereas the shift due to the 

bias δΔY will be constant for any flying height. Thus, the two biases can be 

derived accurately using flight lines at different flying heights. 

• Variation in target height w.r.t. flying height: In case of flight lines at the same 

flying height, a variation in the height of points along a target primitive would 

result in varying shifts. The amount of variation required depends on the flying 

h 
H

H(1 ± Δ Δ 

flying height, the better the estimation accuracy of ΔY and Δω will be. A high 

hheight, i.e., H ± Δh ). So, the higher the value of for a given = 
H 

variation in h 
H 
Δ can be achieved by having either vertical planes at different 

heights or with a significant variation in the heights along given targets. 

Impact of Bias in Boresight Roll (Δφ) 

A bias in this component (δΔφ) will cause shifts across the flying direction as 

well as in the vertical direction as shown in Fig. 4.10. The impact of this bias across 

the flying direction (±z 
0 
δΔφ =  (H ± Δh)δΔφ) is flying direction dependent and its 

magnitude depends on the height (z 
0 
) of the point in question relative to the virtual 

laser unit coordinate system. This bias would impact vertical planes parallel to the 

flying direction scanned from two flight lines in opposite directions. 
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Fig. 4.10.: Impact of bias in boresight roll (Δφ) 

The impact of this bias in the vertical direction (−x 
0 
δΔφ) is flying direction de-

pendent (since x 
0 
-coordinates will change signs depending on the flying direction, as 

shown in Fig. 4.5) and its magnitude depends on the x 
0 
-coordinate of the point in 

question. The resultant discrepancy in the Z-coordinate on combining two tracks 

in the same and opposite directions are given by Equation 4.10 and Equation 4.11, 

respectively, according to Fig. 4.11. Here, DAB denotes the lateral distance between 

the two tracks and X denotes the distance of the point in question from the line 

bisecting the lateral distance between the two flight lines. Such analysis reveals that 

this bias would cause a discrepancy for horizontal planes scanned from two flight lines 

in the same direction depending on the lateral distance between the tracks. On the 

other hand, for two tracks in opposite directions, the discrepancy would depend on 

the lateral location of the planar patch of interest relative to the bisecting direction 

between the tracks. 

δZmA − δZmB = (−x 
0 

A + x 
0 

B)δΔφ = −DABδΔφ (4.10) 

δZmA − δZmB = (−xA 
0 
+ xB 

0 
)δΔφ = −2XδΔφ (4.11) 
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0 
-coordinates for: (a) two tracks in the same Fig. 4.11.: Relationship between x 

direction, and (b) two tracks in opposite directions. 

Since a bias in lever arm δX also causes shifts across the flying direction, there 

is a need to decouple the impacts of δΔX and δΔφ so as to estimate both these 

biases accurately. Due to the impact of boresight roll bias in the vertical direction 

in addition to the impact in the across flying direction, it would aid in naturally 

decoupling δΔφ and δΔX, provided there are planar patches scanned from flight 

lines in the same direction with sufficient lateral separation. Also, such impact would 

aid some planar patches scanned from flight lines in the opposite direction and located 

at a significantly high lateral distance from the flight lines. However, in case of an 

unavailability of such planar patches located at a high lateral distance, the decoupling 

of the two parameters can be achieved by ensuring a significant variation in the value 

of (H ± Δh). This can be achieved by one of the following ways: 

• Two different flying heights: The shift caused across the flying direction by the 

bias δΔφ will vary depending on the flying height, whereas the shift due to the 

bias δΔX will be constant for any flying height. Thus, the two biases can be 

derived accurately using flight lines at different flying heights. 
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• Variation in target height w.r.t. flying height: In case of flight lines at the same 

flying height, a variation in the height of points along a target primitive would 

result in varying shifts. The amount of variation required depends on the flying 

hH(1 ± Δ Δ 

flying height, the better the estimation accuracy of ΔX and Δφ will be. 

Impact of Bias in Boresight Heading (Δκ) 

A bias in this component (δΔκ) will cause shifts across and along the flying 

direction as depicted in Fig. 4.12 and Fig. 4.13, respectively. The impact of this bias 

across the flying direction ( y 
0 
δΔκ) is dependent on the y 

0 
-coordinate variability. 

H 

So, this would cause a discrepancy for vertical planes parallel to the flying direction 

for a single track. Moreover, the discrepancy on combining two tracks in same or 

opposite directions would depend on the ±y 
0 
variability within the points comprising 

such vertical planes. 

hheight, i.e., H ± Δh ). So, the higher the value of for a given = 
H 

Fig. 4.12.: Impact of bias in boresight roll across the flying direction (Δκ) 

The impact of this bias along the flying direction (±x 
0 
δΔκ) is flying direction 

independent since the sign change of x 
0 
-coordinate on flight direction change is nul-

lified by the presence of dual sign in the term. Also, the magnitude of this impact 

is x 
0 
-coordinate dependent. This bias would induce a discrepancy in case of ver-

tical planes perpendicular to the flying direction scanned from two flight lines in 
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the same/opposite directions depending on the lateral distance between the tracks, 

as given by Equation 4.12 and Equation 4.13. For the UAV system used in this 

study, the impact along flying direction will be more pronounced than the impact 

in the across flying direction since the LiDAR unit is scanning with the laser beams 

rotating 360◦ around the y 
0 
-axis, thus resulting in a high x 

0 
-coordinate variability. 

However, the y 
0 
-coordinate variability is limited by the total vertical FOV of ±10◦ of 

the Velodyne VLP-16 Puck Hi-Res unit. 

Fig. 4.13.: Impact of bias in boresight roll along the flying direction (Δκ) 

δYmA − δYmB A 
0 

B 
0 
)δΔκ = DABδΔκ= (x − x (4.12) 

δYmA − δYmB = (xA 
0 
+ xB 

0 
)δΔκ = DABδΔκ (4.13) 

Throughout the previous discussion, a system where the LiDAR unit coordinate 

system is not aligned with IMU body frame was proposed by using a virtual laser 

unit frame. However, the X, Y, Z-axes of the IMU body frame were assumed to be 

aligned along the starboard, forward and up directions. For other generic situations 

where the IMU body frame is not aligned in such a manner, a virtual IMU body 

frame is introduced. For such cases, the LiDAR equation will be modified to result in 

Equation 4.14. Here, Rb is a fixed rotation depending on the alignment of the actual 0b 

IMU body frame relative to the UAV vehicle frame. Hence, this modification renders 

the current bias impact analysis indifferent to the LiDAR unit and IMU body frame 

alignment within the platform. 
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0 0 0 
m m b 

0 Rlu lu rI = rb (t) + Rb
m(t)R

b
b 
0 rlu + Rb

m(t)Rb
b
0 Rlu 

b 
lu rI (t) (4.14) 

4.2.3 Optimal Flight Line Configuration for Calibration Process 

Based on the above discussion, the minimum/optimal flight and control config-

uration for the estimation of the mounting parameters should be comprised of five 

flight lines as illustrated in Fig. 4.14. To be more specific, the following comments 

can be made regarding an optimal flight configuration for calibration: 

• The lever arm ΔX can be estimated using opposite flight lines while scanning 

vertical planar features parallel to the flight direction. 

• The lever arm ΔY can be estimated using opposite flight lines while scanning 

vertical planar features perpendicular to the flight direction. 

• The lever arm ΔZ for a given spinning multi-beam laser scanner can be esti-

mated only using vertical control, which can be in the form of horizontal planar 

patches. 

• The boresight pitch Δω can be estimated using opposite flight lines along with 

another flight line at a different height while scanning horizontal planar fea-

tures and vertical planar features perpendicular to the flight direction. Another 

alternative for having a flight line at different flying height is to have vertical 

planar features whose extent in the vertical direction is significant w.r.t. the 

flying height or having vertical planar patches at different heights. 

• The boresight roll Δφ can be estimated using opposite flight lines along with 

another flight line at a different height while scanning horizontal planar features 

and vertical planar features parallel to the flight direction. Another alternative 

for having a flight line at different flying height is to have vertical planar fea-

tures with significant height variation w.r.t. the flying height or having vertical 
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planar patches at different heights. Additionally, increasing the lateral distance 

between the tracks and between horizontal patches and the tracks would im-

prove the boresight roll estimation. 

• The boresight heading Δκ can be estimated by scanning vertical planes from two 

flight lines in the same direction with a significant lateral separation between 

them. This configuration would eliminate any discrepancies caused by lever-arm 

as well as boresight pitch and roll components. 

Fig. 4.14.: Optimal/Minimal flight configuration for mounting parameters 

estimation for a UAV-based LiDAR system. 

4.2.4 General Mathematical Model for LiDAR System Calibration 

The mathematical model of LiDAR system calibration that could be adopted for 

estimating the desired system parameters while using overlapping point clouds and 

control surfaces is introduced. In this phase of research, there will be an assumption 

that the conjugate distinct points in the overlapping LiDAR and control surfaces can 

be identified. The mathematical formula for LiDAR point positioning is represented 

in a symbolic form in Equation 4.15, where x represents the unknown system param-

eters, y represents the system measurements, e represents the noise contaminating 
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σ2P −1 

covariance matrix with a-priori variance factor σ0
2 and weight matrix PXY Z of that 

noise vector. The two overlapping strips are referred to as a strip-pair, and the two 

flight lines within a strip-pair are denoted by subscripts A and B. Equation 4.16 

states that conjugate points in overlapping strips should have identical coordinates 

after removing the noise impact (eA and eB) and using the true values for the system 

parameters x [31]. 

the system measurements (e ∼ (0, Σ)), and Σ = 0 XY Z represents the variance-

rI
m = f(y − e, x) (4.15) 

r m − r m = f(yA − eA, x) − f(yB − eB, x) = 0 (4.16)IA IB 

In order to use the Least Square Adjustment (LSA) formula, Equation 4.15 must 

be linearized using Tayler’s series expansion which is shown on the right side of Equa-

tion 4.17. The terms fA and fB represent the predicted point cloud coordinates re-

constructed using the noise-contaminated measurements and the approximate values 

for the system parameters, for flight lines A and B, respectively; the terms JxA and 

JxB represent the Jacobian matrices relative to the system parameters for the A and 

B flight lines, respectively; and the terms JyA and JyB represent the Jacobian matrices 

relative to the system measurements for the A and B flight lines, respectively. 

r m − r m ≈ fA − fB + JxA δx − JyA eA − JxB δx + JyB eB (4.17)IA IB 

The Jacobian matrices are evaluated using the available measurements and the 

approximate system parameter values. The theoretical basis of the proposed LiDAR 

calibration algorithm here is that the derived point clouds from different flight lines 

are compared and use the observed discrepancies to estimate the unknown system 

parameters. Therefore, we take the predicted coordinates, fA and fB , and put them 

on the left side leaving the unknowns on the right side. The final representation of 

the calibration math model is illustrated in Equation 4.18. 
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fA − fB = (JxB − JxA )δx + (JyA eA − JyB eB) (4.18) 

(JyA eA − JyB eB) ∼ (0, JyA ΣAJy
T 
A 
, JyB ΣBJy

T 
B 
) 

The above discussion is concerned with conjugate points that can be identified 

in geometric tie features in overlapping strips. When it comes to conjugate points 

that can be identified in a control surface, and LiDAR point cloud from flight line 

A, similar set of equations could be derived as seen as seen in Equations 4.19 - 4.21. 

The noise-free control point is represented as rI
m 
C 
, and the noise-contaminated control 

point is represented as rm . The noise contaminating the control point is represented IC0 

as eC (eC ∼ (0, ΣC )), and its variance-covariance matrix is represented as ΣC . Equa-

tions 4.16 - 4.21 are simultaneously used in LSA to solve for the unknown system 

parameters [125]. The corrections to the approximate values of unknown parameters 

δx are estimated within the LSA to minimize the sum of squares of weighted residuals 
0 0 

eT PXY Z e, where PXY Z is the modified weight matrix of the noise vector. 

m m m r − r = f(yA − eA, x) − (r (4.19)IA IC IC0 
− eC ) = 0 

m m m rIA 
− rIC 

≈ fA − r + JxA δx − JyA eA + eC (4.20)IC0 

fA − r m = −JxA δx + (JyA eA − eC ) (4.21)IC0 

(JyA eA − eC ) ∼ (0, JyA ΣAJy
T 
A 
+ ΣC ) 

4.3 Feature Extraction 

In this part of research, a calibration strategy is proposed to estimate the mounting 

parameters of the LiDAR unit with respect to the onboard GNSS/INS unit using 

geometric tie features (e.g., planar, and linear/cylindrical features). After collecting 

data from several flight lines, a 3D point cloud relative to a global reference frame 

will be derived using the system measurements (i.e., the GNSS/INS unit position 
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and orientation, laser range, and the mirror scan angles) and initial estimates for the 

mounting parameters. Then, conjugate features are identified and extracted from 

the reconstructed point cloud. Finally, an iterative LiDAR system calibration with 

weight modification is proposed to derive the mounting parameters based on the 

minimization of normal distances between conjugate features [126]. 

Owing to the non-selective nature of the LiDAR scanning process (i.e., inability 

to force the laser beam to scan a specific point), points cannot be directly used 

as the calibration primitives. In other words, it is not possible to reliably identify 

common points in overlapping point clouds and control surfaces. Therefore, higher 

level features (e.g., planar and linear features), such as building façades, ground 

patches, light poles, and lane markers, are used and these can be directly extracted 

from overlapping areas within the flight lines. However, conjugate feature extraction 

from several flight lines could be time-consuming and inefficient, especially when the 

initial estimates for mounting parameters used to reconstruct the 3D point cloud are 

considerably inaccurate. To facilitate automated identification of conjugate features 

in such cases, specifically designed calibration boards covered by highly reflective 

surfaces, and could be easily deployed and set up in outdoor environments, are used 

in this study. More specifically, various traffic signs (75 cm wide Stop signs, 90 cm x 

60 cm Wrong Way signs, and 60 cm x 60 cm checkerboard targets) are used as highly 

reflective boards. As mentioned previously, in order to enable an optimal feature 

configuration, there is a need to have an overlapping area with varying topography 

which means having linear/planar features with slops as well as different aspects as 

depicted in Fig. 4.15. 

The highly reflective boards can be easily identified from intensity data, as shown 

in Fig. 4.16, where the points belonging to these boards exhibit higher intensity values 

compared to other LiDAR points. Firstly, a pre-defined threshold is set to extract 

the high-intensity points. To avoid the extraction of high-intensity points belonging 

to objects other than these boards, an approximate pre-set region is manually set 

as seed points for each board. Then, a distance-based region growing technique is 
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adopted to group the high intensity boards. Finally, a plane-fitting is done for these 

points, and the points lying within a normal distance threshold from the best-fitting 

plane are extracted. Other planar features, such as ground patches or wall patches, 

can be extracted by defining two diagonally opposite corners. A bounding box is 

constructed around the planar feature of interest by adding a buffer value (in X, Y, 

and Z directions) to the coordinates of diagonally opposite corners. Again, a plane-

fitting is done for the points contained inside the box, and the ones lying within 

a normal distance threshold from the best-fitting plane are extracted. One should 

note that there is a challenge when using such high-level features; the link between 

the features and sensor model as represented by the LiDAR equation is lost (i.e., 

the LiDAR equation is a point positioning equation). In other words, a direct link 

between the calibration primitives and the direct system parameters can only achieved 

when using discrete points. One possible approach is to use non-conjugate points 

that belong to corresponding features (e.g., planar features) within the calibration 

procedure. These points will be denoted here forth as pseudo conjugate points. 

Fig. 4.15.: Optimal feature configuration for mounting parameters estimation for a 

UAV-based LiDAR system 
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Fig. 4.16.: Intensity data from a point cloud that includes highly reflective boards 

highlighted by the zoomed-in areas 

4.4 Pseudo-Conjugate Points in Overlapping Strips and Weight Modifi-

cation Procedure 

In the proposed calibration method, conjugate features are extracted from the 

point clouds of LiDAR sensors and several flight lines. The mounting parameters of 

each sensor are derived by minimizing the discrepancies among conjugate features 

(points/lines/planes) in overlapping flight lines. Each pairing between conjugate fea-

tures will result in a misclosure vector, which would be random (~e ) in case of a 

conjugate point pair, as given by Equation 4.22. However, a pairing between non-

conjugate points along corresponding planar or linear/cylindrical features would ad-

~ditionally introduce a non-random component (D ) in the misclosure vector, as given 

by Equation 4.23. Such points will be denoted here forth as pseudo conjugate points. 

~The non-random component D would lie along the planar surface or along the linear 

feature/axis of cylinder, respectively, as illustrated in Fig. 4.17. 

r mI (A) − r mI (B) = ~e (4.22) 

r mI (A) − r mI (B) = ~D + ~e (4.23) 
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Fig. 4.17.: Discrepancy vector between non-conjugate points along corresponding 

(a) planar, and (b) linear features 

Therefore, a modified weight matrix, P 
0 
, is introduced to eliminate the non-

~random component of the misclosure vector, D, from the LSA cost function, as given 

by Equation 4.24 [126]. To derive this matrix, a local coordinate system (UVW) 

is established first. For linear/cylindrical features, the U axis is aligned along the 

line/axis of cylinder and V and W axes are arbitrarily chosen to satisfy the orthog-

onality of the UVW triad. For planar features, W axis is aligned along the normal 

vector of the plane in question, and U and V axes are arbitrarily chosen along the 

planar feature. An illustration of the local coordinate systems for the two types of 

features is shown in Fig. 4.18. Then, a rotation matrix, RUV W 
XY Z , relating the local and 

mapping coordinate systems is derived according to the components of the vectors, U, 

V, and W relative to the mapping frame. The weight matrix, PXY Z , in the mapping 

coordinate system is transformed to a weight matrix, PUV W , in the local coordinate 

system according to the law of error propagation (Equation 4.25). The weight matrix, 

PUV W , is modified by assigning a zero weight to the elements corresponding to the 

~direction of D. More specifically, the non-random component of the misclosure vector 

~(D ) can be eliminated from the LSA minimization target function by setting a zero 

~weight in the corresponding direction. The direction of (D) for a linear/cylindrical 
0 

feature is along the U axis. Therefore, the modified weight matrix, PUV W , has zero 

weight in all the elements pertaining to the U axis (Equation 4.26). Similarly, the 

~direction of (D) for a planar feature is along the U and V axes. So, all the elements 
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pertaining to the U and V axes are assigned a zero weight (Equation 4.27). The 
0 

modified weight matrix, PXY Z , in the mapping coordinate system is derived using 
0 

Equation 4.28. Finally, the obtained modified weight matrix, PXY Z , is applied to the 

condition in Equation 4.23 to account for the use of pseudo conjugate points along 

corresponding features within overlapping flight lines. 

Fig. 4.18.: Illustration of local coordinate systems for (a) planar and (b) linear 

features 

⎤⎡ 
dx 

dy 

dz 

0 0 ~P D = P 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= 0 (4.24) 

⎤⎡ 
PU PUV PUW 

PV U PV PV W 

PW U PW V PW 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= RUV W PXY Z R

UV W T 
PUVW XY Z XY Z (4.25)= 

⎤⎡ 
0 0 0 

0 PV PVW 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
0 

P (4.26)= UV W 

0 PWV PW ⎤⎡ ⎢⎢⎢⎣ 

0 0 0 

0 0 0 
⎥⎥⎥⎦ 

0 
P (4.27)= UV W 

0 0 PW 
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0 0 
= RUV W T 

RUV W P P (4.28)XY Z XY Z UVW XY Z 

Finally, the mounting parameters for the laser unit can be derived by minimizing 

the discrepancies among the conjugate linear and/or planar features obtained from 

different flight lines. However, when the initial estimate of the mounting parameters 

is inaccurate, the estimated modified weight matrix would be imprecise which would 

affect the accuracy of the derived mounting parameters. Hence, this research pro-

poses an iterative calibration procedure. Firstly, the discrepancy among extracted 

features is minimized to derive mounting parameters through the weight modifica-

tion process. Then, the points along the extracted features are re-generated using the 

newly estimated mounting parameters and the discrepancy among conjugate features 

is minimized again using a newly defined modified weight matrix. The above steps 

are repeated until the change in the estimates of the mounting parameters is below a 

predefined threshold. 

4.5 Experimental Results 

A comprehensive analysis of the impact of biases in the different mounting pa-

rameters of a UAV-based LiDAR system has been conducted to devise an optimal 

flight and target configuration and proposed a calibration strategy. Several experi-

ments are conducted to validate the feasibility of the proposed strategy and quality 

of calibration, followed by an evaluation of the devised optimal configuration based 

on the standard deviation and correlation matrix for the estimated mounting param-

eters for two different datasets. One dataset is acquired with flight lines at a single 

flying height and the other with flight lines at two different flying heights. For the 

UAV system consisting of a Velodyne VLP-16 Puck Hi-Res LiDAR unit and an APX-

15 GNSS/INS unit, a LiDAR Error Propagation Calculator developed by Habib et 

al. [127] is used to compute the expected accuracy of point positioning for this system. 

Such calculator enables the user to determine the accuracy of the ground coordinates 
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for a certain point derived from a LiDAR system, given the values of the LiDAR 

input parameters and their accuracies. For the proposed UAV mapping system, the 

calculator suggests an accuracy of 5-6 cm for a flying height of 15-25 m. In this re-

search, the UAV-based LiDAR system is flown with six tracks each at a flying height 

of 15 m and 25 m with a speed of 1.5 m/s over sixteen specially designed highly 

reflective boards (75 cm wide Stop signs, 90 cm x 60 cm Wrong Way signs, and 60 

cm x 60 cm checkerboard targets) and five hut-shaped targets (with two 60 cm x 120 

cm planar boards) with their ridges oriented parallel and perpendicular to the flying 

direction. The average lateral separation between the tracks is 6 m. The two surfaces 

corresponding to each of these huts are used as planar features for calibration, and 

their ridges are used as conjugate linear features. Additional planar features, such 

as ground patches, rooftops, and building facades, are also used for calibration. The 

configuration of the tracks and the target primitives (in pink) are shown in Fig. 4.19. 

For the UAV system used in this study, the X, Y, Z-axes of the IMU body frame are 

not aligned along the starboard, forward, and up directions. Instead, the coordinate 

frames are aligned as shown in Fig. 4.20. So, a virtual IMU body frame defined as per 

Equation 4.12 is used. The virtual LiDAR unit frame is derived using the nominal 

value for Rlu 
lu 

0 
= Rω(−90◦)Rφ(0

◦)Rκ(0
◦) according to the system setup as illustrated 

before in Equation 4.5. Therefore, the mounting parameters relating the virtual IMU 

and virtual laser unit coordinate systems are estimated. 

Fig. 4.19.: Configuration of flight lines and target primitives used for calibration as 

visible in 3D point clouds and RGB orthophoto 
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Fig. 4.20.: Actual alignment of coordinate systems for the UAV LiDAR system used 

in this study 

4.5.1 Single Flying Height 

First, a sub-optimal configuration is used to evaluate the theoretical bias impact 

analysis for the estimation of system parameters. In this case, six flight lines at a sin-

gle flying height of 15 m are used along with the target primitives lying exactly below 

the flight lines (the sixteen boards and five hut-shaped targets) and with no signifi-

cant X 
0 
and Z 

0 
-coordinate variation. The initial approximations of these mounting 

parameters and the final results (along with their standard deviations) from the pro-

posed calibration procedure are listed in Table 4.2. One should note that the lever 

arm ΔZ for the laser unit is fixed during the calibration procedure. The correlation 

matrix for the estimated mounting parameters of the laser unit is listed in Table 4.3, 

which indicates that ΔY is highly correlated with Δω (0.9905). The average accu-

racy after calibration can be quantified by the square root of the a-posteriori variance 

factor ( σ̂0 ), which is 3.12 cm in this case. This is better than the expected accuracy 

of around 5-6 cm according to the accuracies of the hardware involved and an error 

propagation calculation. 



104 

Table 4.2.: Mounting parameters of VLP-16 before and after calibration test 1 

0 0 
bVLP-16 LiDAR Unit Mounting Parameters (r 0 ) (Rb 

0 )lu lu

ΔX(m) ΔY (m) ΔZ(m) Δω (◦) Δφ (◦) Δκ (◦) 

Initial 0 0.02 0 0 0 0 

Final 0.0084 -0.0037 0 0.1676 -0.7666 -0.2825 

Standard Deviation 0.0168 0.0381 Fixed 0.0797 0.0323 0.0542 

Table 4.3.: Correlation matrix of mounting parameter estimates from calibration 

test 1 

ΔX ΔY ΔZ Δω Δφ Δκ 

ΔX 1.0000 0.1258 0.0000 0.1303 0.6647 0.0231 

ΔY 0.1258 1.0000 0.0000 0.9905 0.0922 0.0296 

ΔZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Δω 0.1303 0.9905 0.0000 1.0000 0.0916 0.0263 

Δφ 0.6647 0.0922 0.0000 0.0916 1.0000 0.0351 

Δκ 0.0231 0.0296 0.0000 0.0263 0.0351 1.0000 

The high correlation between the system parameters (ΔY and Δω) renders the 

calibration results unreliable. So, we incorporate planar features located at a signif-

icant lateral separation from the flight lines (ground patches, rooftops, and building 

facade) while still considering flight lines at a single flying height of 15 m. The cor-

responding mounting parameters and correlation matrix are listed in Table 4.4 and 

Table 4.5, respectively. The standard deviation of all the estimated parameters can 

be seen to have reduced as compared to the previous case. Moreover, the correla-
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tion matrix indicates a reduction in the correlation between ΔY and Δω from 0.9905 

to 0.9032 and the correlation between ΔX and Δφ is also reduced from 0.6647 to 

0.1025. These reductions can be attributed to the variation in z 
0 
and x 

0 
-coordinates, 

as derived in the theoretical bias impact analysis. The correlation between all the 

other parameters has also decreased, thus proving the improvement in calibration 

results. The average accuracy after calibration as quantified by the square root of the 

a-posteriori variance factor ( σ̂0 ) is 2.22 cm in this case, which is also less than the 

previous case of 3.12 cm. 

Table 4.4.: Mounting parameters of VLP-16 before and after calibration test 2 

0 0 
bVLP-16 LiDAR Unit Mounting Parameters (r 0 ) (Rb 

0 )lu lu

ΔX(m) ΔY (m) ΔZ(m) Δω (◦) Δφ (◦) Δκ (◦) 

Initial 0 0.02 0 0 0 0 

Final 0.0180 -0.0067 0 0.1598 -0.6942 -0.2538 

Standard Deviation 0.0118 0.0181 Fixed 0.0361 0.0139 0.0438 

Table 4.5.: Correlation matrix of mounting parameter estimates from calibration 

test 2 

ΔX ΔY ΔZ Δω Δφ Δκ 

ΔX 1.0000 0.0240 0.0000 0.0141 0.1025 0.0298 

ΔY 0.0240 1.0000 0.0000 0.9032 0.1390 0.0171 

ΔZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Δω 0.0141 0.9032 0.0000 1.0000 0.1775 0.0221 

Δφ 0.1025 0.1390 0.0000 0.1775 1.0000 0.2456 

Δκ 0.0298 0.0171 0.0000 0.0221 0.2456 1.0000 
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4.5.2 Multiple Flying Heights 

Finally, all the flight lines of this experiment (six at a height of 15 m and six at 

a height of 25 m) are used with all the target primitives described previously. As 

suggested by the theoretical analysis, this is the most optimal configuration for cal-

ibration. The qualitative analysis of some of the target primitives (a checkerboard 

target, a hut-shaped target, a building facade, and a ground patch) is shown in Fig. 

4.21, which indicates a major improvement in the alignment for each of the calibra-

tion targets compared to such targets before calibration. The mounting parameters 

obtained in this case and the corresponding correlation matrix are given in Table 

4.6 and Table 4.7, respectively. The average accuracy after calibration as quantified 

by the square root of the a-posteriori variance factor ( σ̂0 ) is 2.24 cm in this case, 

which is 0.2 mm worse than the second case (where σ̂0 was 2.22 cm). This perceived 

deterioration is a result of the higher error propagation in the case of points captured 

using flight lines at an altitude of 25 m (as compared to 15 m in the second case) as 

illustrated in Table 4.8. 

Table 4.6.: Mounting parameters of VLP-16 before and after calibration test 3 

0 0 
bVLP-16 LiDAR Unit Mounting Parameters (r 0 ) (Rb 

0 )lu lu

ΔX(m) ΔY (m) ΔZ(m) Δω (◦) Δφ (◦) Δκ (◦) 

Initial 0 0.02 0 0 0 0 

Final 0.0189 0.0086 0 0.0427 -0.7051 -0.3381 

Standard Deviation 0.0103 0.0145 Fixed 0.0263 0.0118 0.0377 
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Table 4.7.: Correlation matrix of mounting parameter estimates from calibration 

test 3 

ΔX ΔY ΔZ Δω Δφ Δκ 

ΔX 1.0000 0.0215 0.0000 0.0187 0.0908 0.0778 

ΔY 0.0215 1.0000 0.0000 0.8438 0.0794 0.0022 

ΔZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Δω 0.0187 0.8438 0.0000 1.0000 0.1414 0.0133 

Δφ 0.0908 0.0794 0.0000 0.1414 1.0000 0.2458 

Δκ 0.0778 0.0022 0.0000 0.0133 0.2458 1.0000 

Fig. 4.21.: Qualitative evaluation of calibration targets before and after calibration: 

(a) Checkerboard, (b) hut-shaped target, (c) building facade, and (d) ground patch 

The number of LiDAR points along each feature and the RMSE of normal distance 

of points from best-fitting plane/line for all the extracted features before calibration 

and after each of the three cases of calibration are listed in Tables 4.9 - 4.12, which 

indicates a significant improvement of point clouds after calibration and also that 
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the best results are achieved in the third case, which consists of an optimal target 

primitive and flight line configuration where there are multiple flight lines at different 

flying heights and planar/linear features oriented in different directions with sufficient 

variation in lateral distance from the flight lines. 

Table 4.8.: Calibration of the UAV system: Square root of the a-posteriori variance 

factor 

Before 

Calibration 

After 

Calibration 

Case 1 

After 

Calibration 

Case 2 

After 

Calibration 

Case 3 

H(m) 15 m 15 m 15 m & 25 m 

σ̂0 (m) 0.0312 0.0222 0.0224 

Table 4.9.: RMSE of plane/line fitting for different configurations (Ground Patches, 

Rooftop, Building Facade) 

Feature 

ID 

Before 

Calib. 

RMSE 

(m) 

Case 1 

No. 

of 

points 

Case 1 

RMSE 

(m) 

Case 2 

No. 

of 

points 

Case 2 

RMSE 

(m) 

Case 3 

No. 

of 

points 

Case 3 

RMSE 

(m) 

Ground Patches, Rooftop, Building Facade 

Ground 0 0.1178 0 NA 123011 0.0192 218355 0.0207 

Ground 1 0.0940 0 NA 135840 0.0233 230256 0.0233 

Ground 2 0.1220 0 NA 63474 0.0190 113103 0.0198 

Rooftop 0.1466 0 NA 1173 0.0117 3055 0.0131 

Building Facade 0.3461 0 NA 9035 0.0274 22470 0.0257 



109 

Table 4.10.: RMSE of plane/line fitting for different configurations (Reflective 

Boards) 

Feature 

ID 

Before 

Calib. 

RMSE 

(m) 

Case 1 

No. 

of 

points 

Case 1 

RMSE 

(m) 

Case 2 

No. 

of 

points 

Case 2 

RMSE 

(m) 

Case 3 

No. 

of 

points 

Case 3 

RMSE 

(m) 

Reflective Boards 

Board 0 0.0813 3006 0.0202 3006 0.0232 4568 0.0252 

Board 1 0.0676 2987 0.0215 2987 0.0198 4596 0.0217 

Board 2 0.0928 4683 0.0188 4683 0.0221 7397 0.0244 

Board 3 0.0762 4735 0.0198 4735 0.0189 7462 0.0211 

Board 4 0.0923 4851 0.0169 4851 0.0205 7578 0.0229 

Board 5 0.0791 4456 0.0196 4456 0.0193 7062 0.0205 

Board 6 0.0794 2736 0.0167 2736 0.0199 4320 0.0208 

Board 7 0.0712 2736 0.0196 2736 0.0189 4361 0.0204 

Board 8 0.0842 4566 0.0190 4566 0.0221 7140 0.0231 

Board 9 0.0759 4492 0.0187 4492 0.0183 7045 0.0194 

Board 10 0.0872 4934 0.0186 4934 0.0217 7829 0.0230 

Board 11 0.0740 4976 0.0206 4976 0.0198 8031 0.0210 

Board 12 0.0791 2996 0.0170 2996 0.0193 4628 0.0213 

Board 13 0.0694 3198 0.0199 3198 0.0193 4999 0.0208 

Board 14 0.0823 4420 0.0170 4420 0.0196 6562 0.0228 

Board 15 0.0763 4907 0.0173 4907 0.0175 7304 0.0197 
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Table 4.11.: RMSE of plane/line fitting for different configurations (Hut Surfaces) 

Feature 

ID 

Before 

Calib. 

RMSE 

(m) 

Case 1 

No. 

of 

points 

Case 1 

RMSE 

(m) 

Case 2 

No. 

of 

points 

Case 2 

RMSE 

(m) 

Case 3 

No. 

of 

points 

Case 3 

RMSE 

(m) 

Hut Surfaces 

Surface 0 0.1097 3359 0.0734 3359 0.0736 5292 0.0895 

Surface 1 0.1019 3613 0.0708 3613 0.0720 5610 0.0880 

Surface 2 0.1488 3879 0.0146 3879 0.0173 6181 0.0259 

Surface 3 0.1305 4576 0.0184 4576 0.0176 7586 0.0210 

Surface 4 0.1082 3139 0.0710 3139 0.0713 5179 0.0880 

Surface 5 0.1071 3918 0.0738 3918 0.0749 6461 0.0924 

Surface 6 0.1469 4149 0.0164 4149 0.0186 6543 0.0237 

Surface 7 0.1365 4654 0.0190 4654 0.0181 7689 0.0208 

Surface 8 0.1018 4158 0.0708 4158 0.0722 6567 0.0868 

Surface 9 0.1123 3356 0.0733 3356 0.0736 5457 0.0906 

Table 4.12.: RMSE of plane/line fitting for different configurations (Hut Ridges) 

Feature 

ID 

Before 

Calib. 

RMSE 

(m) 

Case 1 

No. 

of 

points 

Case 1 

RMSE 

(m) 

Case 2 

No. 

of 

points 

Case 2 

RMSE 

(m) 

Case 3 

No. 

of 

points 

Case 3 

RMSE 

(m) 

Hut Ridges 

Ridge 0 0.0568 817 0.0255 817 0.0270 1006 0.0434 

Ridge 1 0.1120 1044 0.0167 1044 0.0176 1723 0.0212 

Ridge 2 0.0523 722 0.0298 722 0.0313 937 0.0417 

Ridge 3 0.1129 1034 0.0179 1034 0.0186 1694 0.0212 

Ridge 4 0.0614 813 0.0262 813 0.0270 1071 0.0461 
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4.6 Summary 

In this phase of research, a LiDAR system calibration strategy for a UAV-based 

MMS is proposed to directly estimate the mounting parameters for spinning multi-

beam laser scanners through an outdoor calibration procedure. This approach is based 

on the use of conjugate planar/linear features in overlapping point clouds derived 

from different flight lines. Designing an optimal configuration for calibration is the 

first and foremost step in order to ensure the most accurate estimates of mounting 

parameters. This is achieved by conducting a rigorous theoretical analysis of the 

potential impact of bias in mounting parameters of a LiDAR unit on the resultant 

point cloud. The dependency of the impact on the orientation of target primitives 

and relative flight line configuration would help in deducing the configuration that 

would maximize as well as decouple the impact of bias in each mounting parameter so 

as to ensure their accurate estimation. Finally, the proposed analysis and calibration 

strategy are validated by calibrating a UAV-based LiDAR system using two different 

datasets – one acquired with flight lines at a single flying height and the other with 

flight lines at two different flying heights. The calibration performance is evaluated 

by analyzing correlation between the estimated system parameters, the a-posteriori 

variance factor of the Least Squares Adjustment (LSA) procedure, and the quality of 

fit of the adjusted point cloud to planar/linear features before and after the calibration 

process. 
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5. SLAM-ASSISTED COVERAGE PATH PLANNING 

AND IMPLEMENTATION OF PSEUDO-GNSS/INS 

LOCALIZATION SYSTEM FOR INDOOR LIDAR MMS∗ 

5.1 Introduction 

In this chapter, the SLAM-assisted coverage path planning (CPP) approach for 

unmanned vehicles and SLAM-based mapping for a GNSS-denied environment are 

explained in Section 5.2 and Section 5.3, respectively. For the SLAM-assisted CPP 

approach, the offline CPP algorithms which include convex decomposition methods 

as well as the suitable way to obtain the optimal boustrophedon pattern are intro-

duced. In addition to that, the utilization of the real-time SLAM technique in a way 

that can assist the CPP algorithms to ensure maximum area coverage is discussed. 

Regarding the SLAM-based mapping for a GNSS-denied environment, the proposed 

pseudo-GNSS/INS framework is introduced. Also, the post-processing trajectory en-

hancement techniques which include the Iterative Closest Projected Point (ICPP) 

algorithm and the implementation of the smoothed trajectory are explained in detail. 

Finally, the experimental results are quantitatively and qualitatively illustrated. 

5.2 SLAM-assisted Coverage Path Planning 

5.2.1 Overview 

For some mapping applications, occasionally, there is an essential need to only 

survey a specific area of interest rather than surveying the whole field while ensuring 

∗ THIS CHAPTER IS LARGELY BASED ON A CONFERENCE PAPER(SHAMSELDIN, TAMER, ET AL. ”SLAM-

BASED PSEUDO-GNSS/INS LOCALIZATION SYSTEM FOR INDOOR LIDAR MOBILE MAPPING SYSTEMS.” 

POSITION, LOCATION AND NAVIGATION SYMPOSIUM (PLANS), 2018 IEEE/ION. IEEE, 2018. 
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maximum area coverage. This phase of research proposes the CPP algorithms which 

is considered the task of determining the path for unmanned platforms to pass over 

all the points of an area of interest without any repetition. In this regard, a convex 

cellular decomposition algorithm is performed for the polygonal area of interest. By 

considering odometry errors, a real-time SLAM technique is used to enhance the pre-

planned path rather than relying on the unrealistic assumption of an idealized path 

execution. More specifically, due to the heading angle deviation error, such a stochas-

tic technique is utilized to reshape the nominal path for achieving the maximum area 

coverage. One should note that such a SLAM algorithm runs onboard the unmanned 

platform in real-time while performing the preplanned mission. The path adaptation 

is based on the observation measurements provided by a 2D-LiDAR unit. 

5.2.2 Hybrid Approach Implementation 

In this dissertation, a new hybrid approach that uses an area coverage function 

allowing dynamic changes to the coverage path through the map updates by per-

forming SLAM technique is developed. This hybrid approach is considered the key 

contribution of this part of the research. This section provides a functional description 

of different blocks of the implemented LiDAR mapping system which is illustrated 

in Fig. 5.1. The block diagram demonstrates the system bifurcation into an offline 

CPP that generates the motion path for navigation, and a real-time SLAM system 

that uses control input from this path to update for dynamic changes during path 

traversal. The block diagram is briefly described ahead while the theory behind each 

of the blocks is elaborated on in latter sections: 

Block Diagram Description 

For the offline planning, the input to the mapping system is an initial coverage 

map estimate which can be updated for iterative operations as follows: 
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• Polygonal Approximation: The proposed CPP planner requires a polygonal 

approximation of the area boundary for complete coverage. Hence, the initial 

map is fed as input in the form of counter-clockwise vertex coordinates of the 

polygonal approximation of the area to be covered. The starting point for the 

coverage path is also provided. If the provided map is not in polygonal form, it is 

converted to such form by using Douglas-Peucker Polyline Simplification [128]. 

Fig. 5.1.: Functional block diagram for coverage-based SLAM implementation 

• Convex Decomposition: From the polygonal area provided, the first step is 

to partition the entire area into a disjoint set of convex cells. This is done 

through convex decomposition by polygon triangulation using the Ear-Splitting 

Algorithm [129]. The criterion for convex decomposition involves factors that 

maintain coverage path optimality by performing the Minimum Sum of Altitude 

(MSA) technique within each cell [90]. 

• Optimal Boustrophedon Pattern Generation: A boustrophedon coverage pat-

tern is then generated for each of these convex cells while the optimality of 

coverage in terms of path length is achieved by using the MSA criterion for 

selecting the optimal sweep direction. 

Regarding the real-time SLAM-assisted CPP, the motion path generated by the 

offline planner is fed to the online system, which uses these control inputs for SLAM 

operation as explained ahead. For this implementation, a G-Mapping SLAM strategy 
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is used for real-time operation using 2D-LiDAR as a mapping sensor to perform lo-

calization and mapping [130]. The real-time SLAM-assisted CPP steps are described 

as follows: 

• Prediction Step (SLAM): The prediction step is identical to a generic SLAM 

prediction step. Since the coverage path generated by the optimal boustrophe-

don pattern generation block feeds control inputs to the robot for path traversal. 

As these inputs are incrementally fed to the robot, the robot pose estimate is 

updated accordingly. 

• Correction Step (SLAM): The correction step for SLAM uses the 2D-LiDAR 

point cloud to update the occupancy grid for the environment map. 

• Position/Map Update: The current robot position and the occupancy grid map 

are updated continuously while the robot traces the entire coverage path. This 

operation is carried out upon two main events. First, when the robot trajectory 

is observed to deviate from the preplanned coverage path. Second, if the occu-

pancy grid observes a new dynamic change in the map dimensions requiring a 

new coverage path to be generated from the offline planner for the new area. 

5.2.3 Offline Planning - CPP Strategy 

This section describes in detail the blocks implemented in the offline planner as 

well as how they are modified for efficient operation. More specifically, the convex 

decomposition algorithm which can deal with either a convex or concave polygon 

will be introduced. Furthermore, the best way to achieve an optimal boustrophedon 

pattern with minimum path length as well as a minimum number of turns will be 

discussed. 
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Convex Decomposition Algorithm 

One should note that the system in Fig. 5.1 implements a convex decomposition 

for CPP using the polygon triangulation method. The conceptual basis of such a 

method states that any polygon with n vertices can always be triangulated and always 

have a n−2 triangle. Since the triangle is always convex (the interior angle at vertices 

is smaller than π radians), there is a guarantee that the convex decomposition will 

be achieved [131]. 

The idea of polygon triangulation is based on the Ear-Clipping Algorithm which 

performs the triangulation of the desired polygon [129]. For a generic Ear-clipping 

algorithm, the adjacent vertices of the current chosen point are connected succes-

sively so that the polygon is partitioned into a disjoint set of triangles. For convex 

decomposition, the algorithm can be modified to also recursively merge the triangles 

formed by ear-clipping into the prior cell if such a merged cell is found to be convex. 

In this manner, a convenient convex decomposition of a monotonic polygon can be 

carried out through the Ear-Clipping algorithm. Fig. 5.2 shows a simulated data 

which illustrates how such an algorithm is performed over a desired polygon area. 

Fig. 5.2.: Example of a simulated data: (a) Desired area , (b) Polygon triangulation 

technique, and (c) Optimum Polygon triangulation 
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Optimal Boustrophedon Pattern Generation 

The whole idea of the BCD algorithm is to minimize the number of turns for 

any convex polygon which can be performed by figuring the optimal sweep direction 

and to address this case, the MSA technique is utilized. The generic boustrophedon 

pattern for a convex polygon, shown in Fig. 5.3, best describes its nature. Such 

a pattern consists of parallel zig-zag patterns equally spaced from each other at a 

distance equal to the robot coverage radius with each line extending till the polygon 

boundary. The total length of the boustrophedon path Ltot is a function of the sweep 

lengths, Li,k and the turn lengths Lturn,k as expressed by Equation 5.1. Since the 

coverage radius r is much smaller than the polygon width, minimizing Ltot is possible 

through minimizing the number of turns, n as shown in Equation 5.2, where n denotes 

total number of turns and i represents the sweep direction. 

Fig. 5.3.: Boustrophedon Pattern for Coverage 

nX 
Ltot = Li,k + n.Lturn,k (5.1) 

k=1 

nX 
min | Ltot |= min | Li,k + n.Lturn,k | (5.2) 

k=1 

One should note that the energy of turning is more than that of straight line 

motion. Thus minimizing the number of turns provides a metric of achieving dis-

tance optimality [132]. Therefore, the optimality for a coverage path is more directly 
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achieved through the MSA criterion proposed by Huang [90] via finding the optimal 

sweep direction θMSA that solves the cost function in Equation 5.3. 

θMSA = mini{maxm[D(vm, vj vj+1)]} (5.3) 

j = 1, 2, ..., n m 6= j, j + 1 

Here, D represents the span defined by the edge (vj vj+1 ). In other words, D 

is the length of the longest altitude from the edge (vj vj+1 ) to a vertex vm while 

θMSA is the direction of the optimal edge. The above cost function implies that 

for a convex polygon, the optimal direction giving the minimum number of turns 

is the direction of the edge that has the minimum sum of altitudes and therefore 

the minimum span [84]. Using this function, it is thus possible to find the correct 

direction optimizing the number of turns and the total path length as long as the 

polygon is convex. 

Regarding the Ear-Clipping algorithm, it is important to note that there is a 

parameter that can be added to this algorithm which also calculates the MSA cost 

of the cells formed by splitting the polygon. The algorithm considers all the adjacent 

vertices of the current point and determines the MSA cost as well as the convexity 

of the cells formed by merging the ear-clipped triangles. Then, the convex cell which 

gives the least MSA cost is selected. If this MSA cost is found to be larger than 

the sum of the MSA cost of the unmerged cells, then the algorithm will discard the 

merged polygon and will proceed to the next triangle. Otherwise, the merged cell 

is selected to remain in the set of partitioned cells as the algorithm moves to the 

next point. The decision to merge a cell depending upon the convexity and MSA 

optimality makes sure that every convex cell within the partitioned polygon is MSA 

optimal. 
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5.2.4 Real-time SLAM-assisted CPP 

Applications involving autonomous navigation and planning of mobile agents can 

benefit greatly by employing real-time SLAM techniques. SLAM techniques allow 

for a robust estimation of robot position as well as the interest points in the map 

simultaneously through Bayesian inference. Generic SLAM techniques provide a nav-

igation solution with minimal deviation from the preplanned trajectory of the robot. 

In addition, the objective function of CPP algorithm is to achieve the maximum area 

coverage and this target function cannot be performed without a reasonable naviga-

tion solution. To ensure obtaining an acceptable navigation information, a SLAM 

technique should be implemented for the CPP problem. In this phase of the research, 

a CPP-based SLAM approach is proposed to allow for dynamic modification of the 

CPP path with successive detection of map features as well as achieving a robust 

mapping application. 

SLAM technique 

SLAM in mobile robotics refers to the process of developing a map of an unknown 

environment by a mobile robot while concurrently pinpointing the position of the 

robot within this map [133]. To be more specific, such a technique estimates the 

robot poses and landmarks at the same time and is classified as a classic chicken-or-

egg problem. SLAM is an essential method to a range of indoor, outdoor, air, and 

underwater applications for both manned and unmanned vehicles. In other words, 

SLAM in GNSS-denied environments is considered a new major challenge in the map-

ping community. By utilizing SLAM techniques based on the probabilistic Bayesian 

framework, the unmanned platform moves through an unknown environment and 

performs feature extraction using the onboard mapping sensor at certain time inter-

vals. Both navigation and landmark detection are estimated using platform sensor 

data. The expression for the Bayesian estimate, which contains the pose and land-

mark vectors of robot as given by Equation 5.4, is derived from alternating steps of 
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prediction and correction for each observation of the platform. In this equation, xt 

denotes the current state at time t, z1:t represents the sensor observations till t, bel(xt) 

represents the belief at time t, u1:t represents the control inputs till t, and η denotes 

the normalizing constant. 

bel(xt) = p(xt | z1:t, u1:t) (5.4)Z 
= ηp(zt | xt) p(xt | xt−1, ut)bel(xt−1)dxt−1 

The primary belief equation for SLAM, bel(xt), describing the current state of the 

platform can be broken down into the prediction and correction steps as illustrated 

in Equations 5.5 and 5.6, respectively [134]. 

Z 
bel(xt) = p(xt | xt−1, ut)bel(xt−1)dxt−1 (5.5) 

bel(xt) = ηp(zt | xt)bel(xt) (5.6) 

5.2.5 System Implementation 

At this phase of research, the proposed SLAM-assisted CPP approach is imple-

mented for a UGV platform for indoor MMS. Roomba Create2 is utilized as the 

unmanned platform which is equipped with a 2D-LiDAR unit (RPLiDAR-A2) as 

shown in Fig. 5.4. Roomba Create2 is a programmable robot that is easy to program 

and control through the use of several programmable kits (i.e., Raspberry pi and Ar-

duino kit). Due to the compact design of the programmable robot, it is necessary to 

make some design modifications by constructing extra plates which hold more sensors. 

The RPLiDAR-A2 is a low cost a 360-degree 2D-LiDAR which can generate 4,000 

pulses per second with high rotation speed as well as performing 360-degree scan at 

a 6-meter range. This system is implemented in a Robot Operating System (ROS) 

framework using G-Mapping SLAM. It is important to note that the implementation 
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of SLAM algorithm is based on Rao-Blackwellized particle filters which have been 

introduced as effective numerical methods to solve the SLAM problem. Specifically, 

the particle filter is mainly used for estimation problem of non-linear motion model 

and non-linear Gaussian state space models. This approach uses a particle filter in 

which each particle carries an individual map of the environment. Each particle rep-

resents a possible robot trajectory and a map. The framework of particle filter has 

been extended for solving the SLAM problem with a landmarks map [134]. 

Fig. 5.4.: System Implementation using Roomba Create 2 

5.2.6 Experimental Results 

In order to test the developed CPP algorithm, a test benchmark is proposed that 

generates randomized polygons with an increasing number of sides. When testing the 

entire system comprising of the offline CPP algorithm as well as the real-time SLAM 

assisted CPP , a standard L-shaped area benchmark is used [77]. Such benchmark 

provides a 2D-area that can check the cellular decomposition-based path planning 

algorithm. To be more specific, the concavity of the L-shaped polygon checks for its 

ability to perform cellular decomposition using the Ear-Clipping algorithm. 
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The above system implementation has been used for executing the SLAM-assisted 

CPP frameworks for performance and analysis, the results of which are described in 

this section. Fig. 5.5 (a-c) shows the step-by-step operation of the combined approach 

between the offline CPP and real-time SLAM technique on a target area with the 

implemented system. Fig. 5.5 (a) and Fig. 5.5 (b), respectively, show the original 

area of interest that needs to be covered and the generated total coverage path. Fig. 

5.5 (c) shows the actual trajectory of the robot during online navigation. 

Fig. 5.5.: Results for SLAM-assisted CPP framework: (a) Original Area, (b) Total 

Coverage Path Generated, and (c) Robot Path during Navigation 

To evaluate the results, a qualitative analysis has been done to check the loop 

closure error which is defined as the difference between the first and last point with 
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respect to total distance covered. Therefore, nineteen experiments are performed 

using several number of particles to see if there is any improvement of the loop 

closure error. One can observe that the loop closure error (%) when using a real-

time SLAM algorithm (the mean value=2.15) is much less than the loop closure error 

(%) when only using the odometer of the UGV without SLAM algorithm (the mean 

value=14.01) as shown in Fig. 5.6 and Fig. 5.7 respectively. In addition, it is noticed 

that the loop closure error (%) is independent of the number of particles. 

Fig. 5.6.: Loop Closure Error with SLAM implementation 

Fig. 5.7.: Loop Closure Error without SLAM implementation (Odometer) 

https://value=14.01
https://value=2.15
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5.3 Implementation of Pseudo-GNSS/INS Localization System for In-

door LiDAR MMS 

As an extension to this research work, extending the MMS to GNSS-denied areas 

is quite challenging and necessitates the development of a feasible substitute to the 

GNSS/INS module for system operation within GNSS-denied areas. It is important 

to note that such an alternative module should be implemented while keeping the 

main skeleton of the MMS. This research has been motivated by attempts at robust 

integration of different components onboard MMS. Such MMS achieve the purpose 

of high precision and accurate mapping previously mentioned in Chapter 3. The 

integration of GNSS/INS module and mapping sensors amplifies both the advantages 

and drawbacks of a GNSS/INS unit. Since the generated geo-referenced map is 

only confined to regions where there is a consistent availability of GNSS signals, 

this stands out as an obvious limitation of the GNSS/INS module. Therefore, MMS 

are unsuitable for several applications in GNSS-denied environments such as indoor 

surveying and underground navigation. For such applications where the availability 

of GNSS signal is scarce or non-existent, the MMS framework requires a positioning 

system other than a GNSS/INS module. In such a case, use of probabilistic techniques 

such as the SLAM method have allowed for the development of a MMS capable 

of operating in GNSS-denied areas. While the performance of such systems does 

closely match that of a GNSS/INS-based MMS in general, the two implemented 

frameworks are completely different in structure from each other. As a result, it is 

difficult to combine the two systems without making comprehensive changes within 

the framework implementation. 

To solve this problem, this phase of research proposes the development of a 

Pseudo-GNSS/INS module that serves as a convenient substitute to a GNSS/INS-

based MMS framework for the purpose of operation within GNSS-denied environ-

ments. While this Pseudo-GNSS/INS module uses probabilistic SLAM techniques 

for estimating the MMS pose, such a module is implemented to behave identically 
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to a GNSS/INS unit. Therefore, the MMS framework can simply switch between 

the real GNSS/INS unit and the Pseudo-GNSS/INS module for seamless operation. 

The major notions that bring about this implementation include: (i) utilizing frame 

transformation to extract 2D scan from the entire 3D-point cloud for efficiently car-

rying out real-time SLAM, (ii) generating of the position data from these real-time 

SLAM pose estimates, (iii) providing the necessary geo-referencing signals identical 

to a GNSS/INS module and such signals are utilized in the MMS operation, and (iv) 

incorporating these SLAM pose estimates with LiDAR data to reconstruct a complete 

geo-referenced laser point cloud in the post-processing mode. 

5.3.1 SLAM-based MMS for GNSS-denied Environments 

The main limitation of a GNSS/INS positioning module is its dependency on 

the availability of a GNSS signal. Hence, for operation in GNSS-denied areas, the 

position and orientation data for the MMS needs to be generated using alternative 

methods. The concept of SLAM allows this position and orientation data to be 

generated from the sensor data itself. Therefore, it is possible to estimate the robot 

trajectory simultaneously with the map using a Bayesian framework described by 

SLAM. Such an MMS framework is thus capable of operating without the need of 

a GNNS/INS module. Generally, a SLAM-based MMS framework stands out from 

the GNSS/INS-based MMS framework previously mentioned in Chapter 3, because 

of the following distinction: 

• The position data generated by SLAM is not independent from the sensor data 

but is simultaneously generated with the observation of landmarks for map 

reconstruction. 

• The sensor data logged onboard the MMS is not tagged with any geo-referencing 

signals. 
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• Pose estimation of the MMS from data association of landmarks in successive 

data streams is computationally very expensive. Hence, it is very difficult to 

implement real-time SLAM for pose estimation without the aid of costly parallel 

processors onboard the MMS. 

Due to such distinctions, it is difficult to incorporate a SLAM-based MMS frame-

work into a GNSS/INS- based MMS framework directly, without extensive modi-

fications to the system. The proposed framework in this research introduces the 

implementation of a SLAM-based Pseudo-GNSS/INS system that virtually mimics a 

GNSS/INS unit. Therefore, the proposed framework can be operated with or without 

a GNSS/INS module in GNSS-affluent as well as GNSS-denied environments without 

requiring any modification in structure. This proposed framework will be explained 

in detail in the next section. 

5.3.2 Proposed Methodology of a Pseudo-GNSS/INS Module 

The proposed pseudo-GNSS/INS framework which utilizes the SLAM techniques 

to allow operation of an MMS in GNSS-denied areas is illustrated in Fig. 5.8. Such 

framework is done in a way that a physical GNSS/INS module can be added to the 

system without making any changes to the MMS framework. One should note that 

a pseudo-GNSS/INS module onboard MMS behaves like a GNSS/INS unit, however, 

such module is based on SLAM for pose estimation. The block description in Fig. 

5.8 also shows other novel features of the pseudo-GNSS/INS module such as it gen-

erates the necessary geo-referencing signals for the mapping sensors. Such a module 

generates position data based on the sensor data in real-time and performs the entire 

operation using a single 3D-mapping sensor (i.e., LiDAR unit). 

The main concepts that allow the implementation of such system are enumerated 

as follows: 

• 2D Scan Extraction: The idea behind carrying out a computationally efficient 

real-time SLAM for the pseudo-GNSS/INS module is that if the focus of SLAM 
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is to derive a pose estimation for the MMS then the SLAM operation can be 

carried out using only a fraction of the sensor data. One should note that a 

simplified 2D-planar motion is considered an assumption in this part of research. 

This is because a highly dense sensor data maybe required for robust map 

reconstruction but may not be mandatory for the localization of the MMS 

as is done by the Pseudo-GNSS/INS framework. Such extraction is formally 

explained in the next sections for the case of an indoor 3D-LiDAR MMS. 

Fig. 5.8.: Functional block diagram of the proposed Pseudo-GNSS/INS framework 

for an Indoor MMS 

• Single Sensor Localization Operation: Because of the 2D-scan generation, the 

powerful advantage of the pseudo GNSS/INS framework is that the positioning 

module and the sensor network in the MMS get incorporated into a single 

unit comprised of one 3D-mapping sensor. This is considered a very important 

feature of the pseudo-GNSS/INS based MMS and not only simplifies the system 

integration but also reduces the payload of the MMS. 
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• Independent Logging of Position/Body-Orientation Data: Another important 

consequence of the real-time SLAM operation is that the position/body-orientation 

data can now be logged from SLAM pose estimation separately from the sensor, 

however, such data is generated dependently on the sensor information. This 

provides a substitute data to the MMS in place of the GNSS/INS data making 

it possible to operate in GNSS-denied environments. 

• Pseudo-GNSS/INS Signal Generation: Since the SLAM-based pseudo-GNSS/INS 

framework illustrated in Fig. 5.8 can generate pose estimates in real-time. Such 

framework can also provide geo-referencing signals for the sensors in real-time. 

Therefore, the sensor data has the advantage of being time-tagged for map 

reconstruction as it would be for a real GNSS/INS module. 

It is important to note that the above points will be elaborated on in the upcoming 

sections for a pseudo-GNSS/INS based MMS framework for the case of an indoor 

mapping system using a single 3D-LiDAR unit. 

Real-Time SLAM for MMS Positioning 

The significant point of the implementation of the pseudo-GNSS/INS framework 

is the fact that only a 2D-scan of the entire point cloud in the sensor data stream 

is required for the purpose of robust pose estimation. Therefore, if robust pose es-

timation is the primary aim for SLAM operation, then a good estimate can still be 

obtained by confining the landmarks to the plane of motion of the robot after mak-

ing an assumption of 2D-motion. This gives a provision to extract a 2D-point cloud 

from the 3D-sensor data for the purpose of localization of the robot that include the 

position and orientation of the platform. Such strategy is used in this research for 

generating real-time pseudo-GNSS/INS data. Fig. 5.9 depicts the extraction of a 

2D-scan from the entire 3D-LiDAR point cloud for an indoor MMS. 



129 

Fig. 5.9.: Real-time SLAM for MMS positioning, extraction of a 2D-scan from the 

full 3D-LiDAR point cloud 

Fig. 5.9 shows that the body-coordinate systems and the mapping sensor-coordinate 

systems are almost aligned. Since the motion of the robot is constrained to only 

2D-planar motion and rotation around a vertical axis, the SLAM operation can be 

efficiently carried out by extracting a 2D-point cloud corresponding to the plane par-

allel to the horizontal plane of motion of the robot. However, if the body-coordinate 

systems and the mapping sensor-coordinate systems are not aligned, an arbitrary 

orientation is considered between both coordinate systems. Therefore, a 2D-scan can 

be generated by performing a spatial filtering operation of the 3D-point cloud as il-

lustrated in Equation 5.7 and Equation 5.8, respectively. PR denotes the reduced 

2D-point cloud, PD is the original 3D-point cloud, h(PD, β, Δθ) is a windowing filter, 

β denotes the angle formed by the point w.r.t sensor frame, Δθ is the angle difference 

between the body and sensor frames, and δθ is the user-defined threshold for the 

filter. This operation can be easily visualized for a 3D-point cloud as depicted in Fig. 

5.10. 
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Fig. 5.10.: Visualization of the windowing operation for extracting the 2D-point 

cloud 

PR = h(PD, β, Δθ).PD (5.7) 

h(PD, β, Δθ) = 1 for | β +Δθ |≤ δθ (5.8) 

= 0 Otherwise 

Pseudo-GNSS/INS Signal Generation 

Another important step towards the implementation of the framework in Fig. 5.8 

is the generation of the time tags signals to extract the corresponding position and 

orientation information of the platform. For example, in order to derive direct geo-

referencing data, a GNSS/INS unit supplies sequentially precise time pulses, known 

as a PPS signal, which gives the ability to generate a time-tagged point cloud. For 

the pseudo-GNSS/INS framework, the same step is carried out by generating sequen-

tial time pulses using an embedded system kit (i.e., Raspberry pi). Furthermore, 
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the pseudo-GNSS/INS framework provides the navigation message (GPRMC mes-

sage) in the same format (NMEA-format). Such a navigation message includes the 

information about position, rotation, and GPS time. For the system implementation 

described in this phase of research, such a message is recorded over a dedicated RS-

232 serial port and received by the LiDAR unit (i.e., Velodyne VLP-16 Puck) via the 

interface box in the form of serial data. Such system implementation which describes 

the geo-referencing signals generation is shown in Fig. 5.11. 

Fig. 5.11.: Pseudo-GNSS/INS framework geo-referencing signals generation 

5.3.3 Hardware System Implementation 

The proposed pseudo-GNSS/INS framework has been implemented onboard UGV 

for an indoor mapping application. It is important to note that the structure and 

blocks for such a framework are the same as those for a GNSS/INS-based MMS. The 

same system can be used with a real GNSS/INS module without any modifications 

required. The UGV platform utilized is the programmable robot, Roomba iCreate2 
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as mentioned before. Such platform comprises 3D-LiDAR sensor, a mini-computer, 

power supply unit and a Raspberry Pi 3 as shown in Fig. 5.12. 

Fig. 5.12.: Implemented Indoor MMS with Pseudo-GNSS/INS framework 

The mapping sensor used for such MMS implementation is the Velodyne VLP-16 

Puck which is already discussed in Chapter 3. The overall operation of the system is 

controlled by a mini-computer which contains the data logging module, the control 

module, the user interface module, and most importantly, the pseudo-GNSS/INS 

framework. All the system blocks in this mini-computer are implemented in a ROS 

environment. The UGV is human operated via a Bluetooth controller that interfaces 

with a computer. A hardware implementation is utilized to generate synchronization 

pulses from the Pseudo-GNSS/INS framework to be connected to the sensor. A 

Raspberry Pi 3 is used in the system configuration since such a unit is responsible for 

sequentially generating the PPS signal in order to derive direct geo-referencing data. 

5.3.4 Operational Strategy 

Since the 3D-LiDAR sensor onboard the MMS is crucial for both positioning and 

map construction for the MMS, the presence of any sensor noise has an obvious 



133 

effect on the sensor measurements. One should note that the sensor noise distinctly 

increases through the motion. Therefore, such noise negatively affects the generated 

trajectory that is basically based on real-time SLAM technique. Such a situation 

creates another challenge for the proposed system that needs to be addressed. This 

can be resolved by developing a data collection strategy that has multi-stationary 

scans through the whole dataset thus ensuring an overlap between successive stations. 

The idea behind such a strategy is to avoid any accumulated error which is generated 

through motion. In terms of off-line operation, all the points are reconstructed by 

incorporating the generated trajectory based on real-time SLAM with the LiDAR 

data in order to produce geo-referenced 3D reconstruction. To achieve an improved 

accuracy and better inference of the 3D-indoor environment, the ICPP algorithm is 

utilized to register the generated time-tagged point cloud from the stationary scans. 

It is important to note that those stationary scans will become trusted locations after 

applying ICPP technique to allow for a trajectory enhancement between every two 

successive locations. 

5.3.5 Post-Processing Enhancement 

ICPP Registration Technique 

The proposed framework generates the SLAM-based position and orientation data 

from only a 2D-scan point cloud. However, as far as the final map reconstruction is 

concerned, the result can still be further improved by utilizing the entire 3D point 

cloud in a post-processing mode for pose correction. This is considered one motiva-

tion for carrying out post-processing 3D-registration for the stationary scans since the 

proposed method for generating a trajectory of the mapping platform is completely 

based on only a small fraction of 3D-LiDAR unit measurements. Therefore, a reg-

istration approach is performed by applying the ICPP algorithm on the stationary 

scans of the entire trajectory for the simultaneous registration of multiple overlapping 

point clouds. Such a technique can allow proper enhancement of the reconstructed 
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map since the registration procedure gives the opportunity for the determination of 

inconsistencies between the generated surfaces from the stationary scans. 

The conceptual basis of the ICPP method is briefly summarized below [135]: 

• First a point to triangular patch which includes the closest three points match is 

established by examining if the point locates within the triangular di-pyramid, 

which has the three triangular patch points as a base and a user-chosen normal 

distance as the height to set the two peaks as depicted in Fig. 5.13. 

Fig. 5.13.: The demonstration of ICPP registration technique [135] 

• Then, the point is projected onto the patch surface, and its projection is then 

used as a match for the original point. 

• This process is carried out for all valid three points combinations within the 

point cloud. 
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Trajectory Improvement using Stationary Scans 

As mentioned before, there is a significant need to enhance the real-time SLAM-

based trajectory to improve the generated 3D-reconstruction of the mapping environ-

ment of interest. Therefore, a smoothing approach is proposed based on the registered 

stationary scans. It is worth noting that the registered stationary scans are derived 

after applying ICPP method for such locations along the entire trajectory. There-

fore, the ICPP-based stationary scans are considered as trusted locations. In this 

phase of research, a smoothing technique is implemented through averaging between 

the forward and backward trajectories. The forward trajectory is generated based 

on real-time SLAM technique at 1Hz data rate. However, the backward trajectory 

is derived based on the ICPP-based stations while considering the translation and 

orientation parameters of the epochs (which refers to the instance where the position 

and orientation of the platform is obtained from the forward trajectory) along the 

forward trajectory. 

The entire forward trajectory is divided into several segments, each segment is 

established between each two ICPP-based stationary scan locations. Then, the rela-

tive translation (r i
i 

i
i+1 +1 

(1Hz data rate) are computed through the segment in the forward trajectory as illus-

trated in Equation 5.9 and Equation 5.10, respectively. It is important to note that 

such a computation process is based on successive starting and ending stationary scan 

(F)) and the rotation matrix (R (F)) between each two epochs 

locations as shown in Fig. 5.14. In this figure, rmi (F) denotes the position of epoch 

i with respect to the mapping frame in the forward trajectory, Rm
i (F) denotes the 

orientation of epoch i with respect to the mapping frame in the forward trajectory, 

and i, i + 1, .., N represents the number of epochs. 

i
ir +1 

m
i(F )[r +1(F ) − r mi (F )] (5.9) 

iR (F ) R= +1 m 

i(F ) R= m 

i
i 

m
i(F )R +1(F ) (5.10) 
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Fig. 5.14.: The relative translation and orientation parameters between each two 

epochs through the segment 

Then, the ICPP procedure is applied for the stationary scan locations to derive the 

trusted locations at the beginning and ending of each segment. For the 1st segment, 

the updated position and orientation of the stationary location relative to the mapping 
m(t1) & Rm(t1) m(t2)frame (r ) given the initial forward trajectory (r (F) & Rm(t2) (F))b(t2) b(t2) b(t2) b(t2) 

and the outcome from the ICPP registration between the 1st stationary station and 

the 2nd stationary station through the 1st segment is illustrated in Equation 5.11 

and Equation 5.12. The drift in the 1st segment will be modeled as incremental 

translation and orientation parameters between mapping frames at different times 
m(t1) & Rm(t1)(r ). Therefore, the ICPP algorithm focuses on the estimation of such m(t2) m(t2) 

parameters. For the 2nd and 3rd segments, the adjusted position and orientation 

of the stationary scan locations relative to the mapping frame are derived by using 

concatenation of motion estimation as shown Fig. 5.15. Equations 5.13-5.16 illustrate 

the derivation of the updated stationary scan locations for the 2nd segment and 3rd 

m(t2)segment, respectively. r and Rm(t2) denote the outcome from ICPP registrationm(t3) m(t3) 

m(t3)between the 3rd stationary station and the 2nd one through the 2nd segment, and r m(t4) 

and Rm(t3) represent the outcome from ICPP registration between the 4th stationarym(t4) 

station and the 3rd one through the 3rd segment. 

m(t1) m(t1) + Rm(t1) m(t2)r = r r (F ) (5.11)b(t2) m(t2) m(t2) b(t2) 

R
m(t1) = Rm(t1)R

m(t2)(F ) (5.12)b(t2) m(t2) b(t2) 

https://5.13-5.16
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Fig. 5.15.: The derivation of stationary scan locations using concatenation of motion 

estimation 

m(t1) m(t1) + Rm(t1) m(t2) + Rm(t2) m(t3)r = r [r r (F )] (5.13)b(t3) m(t2) m(t2) m(t3) m(t3) b(t3) 

R
m(t1) = Rm(t1)R

m(t2)R
m(t3)(F ) (5.14) b(t3) m(t2) m(t3) b(t3) 

m(t1) m(t1) + Rm(t1) m(t2) + Rm(t2) m(t3) + Rm(t3) m(t4)r = r [r [r r (F )]] (5.15)b(t4) m(t2) m(t2) m(t3) m(t3) m(t4) m(t4) b(t4) 

R
m(t1) = Rm(t1)R

m(t2)R
m(t3)R

m(t4)(F ) (5.16)b(t4) m(t2) m(t3) m(t4) b(t4) 

After computing the relative translation and orientation information between each 

two epochs through the segment and deriving the updated stationary location, the 

backward trajectory is derived as illustrated in Equation 5.17 and Equation 5.18, re-

spectively. Fig. 5.16 shows the derivation of the backward trajectory via the segment. 

ri
m 
+1 (B) and Ri

m 
+1 (B) denote the updated stationary location after applying ICPP 

procedure. 

m m i+1 r (B) = r (B) + Rm (B)r (F ) (5.17)i i+1 i+1 i 

Rm
i (B) = Ri

m 
+1(B)Ri

i+1(F ) (5.18) 
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Fig. 5.16.: The derivation of the backward trajectory 

A smoothed trajectory is derived by combining both forward and backward tra-

jectories. It is important to note that such trajectories will start and end in trusted 

successive scan locations. Therefore, an interpolation method should be performed 

to derive the position and orientation information of the smoothed trajectory. For 

position interpolation, a linear interpolation should be performed between every two 

epochs in both forward and backward trajectories through computing the weight fac-

tors for both trajectories as illustrated in Equation 5.19. In this equation, tF denotes 

the difference between the time of the trusted location in the beginning of the forward 

trajectory (t1) and the time of any epoch (tS ) through such trajectory. However, tB 

denotes the difference between the time of the trusted location in the beginning of 

the backward trajectory (t2) and the time of any epoch (tS ) through such trajectory 

as depicted in Fig. 5.17. Also, WF and WB denote the weight factors of the forward 

and backward trajectories, respectively. 

m m m r (Smoothed) = WF r (F ) + WB r (B) (5.19)i i i 

tF = ts − t1 tB = t2 − tS 

tB tF
WF = WB = 

tF + tB tF + tB 

As mentioned previously, the rotation interpolation can be performed by utilizing 

a spherical linear interpolation since it is considered the best way to do the rotation 
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interpolation by using quaternion representation as depicted in Fig. 5.18. The ro-

tation matrices of both forward and backward trajectories are represented by qRm
i (F ) 

and qRm
i (B)

, respectively, whose angular deviation is θ. The angular deviation θ can 

be derived as illustrated in Equation 5.20. Also, the angular deviations of the inter-

polated quaternion qRm
i (Smoothed) to qRm

i (F ) and qRm
i (B) 

are θF and θB, respectively and 

can be derived as shown in Equation 5.21 and Equation 5.22, respectively. 

Fig. 5.17.: The computation of the time difference between the time of the trusted 

location and the time of any epoch through the trajectory either forward or 

backward trajectory 

θ = cos −1(qRm
i (F ).qRm

i (B)
) (5.20) 

tF
θF = θ (5.21)

tF + tB 

tB
θB = θ (5.22)

tF + tB 

To compute qRm
i (Smoothed) which denotes the interpolated quaternion, CF and CB 

should be derived first through Equation 5.23 and Equation 5.24, respectively. Then, 

the interpolated quaternion qRm
i (Smoothed) can be determined through Equation 5.25. 

Fig. 5.19 shows the derivation of the smoothing trajectory through the segment. 
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Fig. 5.18.: The determination of orientation of the smoothed trajectory by using 

spherical linear interpolation 

Fig. 5.19.: The derivation of the smoothed trajectory 

sin θB
CF = (5.23)

sin θ 

sin θF
CB = (5.24)

sin θ 

qRm
i (Smoothed) = CF qRm

i (F ) + CB qRm
i (B) 

(5.25) 
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5.3.6 Experimental Results 

To test the performance of the proposed pseudo-GNSS/INS-based MMS frame-

work, an indoor mapping application was considered (since an indoor environment is 

essentially denied of GNSS signals). The MMS described above, consisting of a 3D-

LiDAR unit as the mapping sensor as well as the onboard pseudo-GNSS/INS module 

was deployed for two locations. The first location is the Digital Photogrammetry Re-

search Group (DPRG) Lab at Purdue University and is comprised of a single room. 

The second location is the entire First Level of Mann Hall at Discovery Park, Purdue 

University and contains a number of corridors and turns. The datasets generated 

by the pseudo-GNSS/INS-based MMS for both locations show the flexibility of the 

MMS which can operate in a different environments. Details of the data acquisition 

for these locations are enumerated in Table 5.1. 

Table 5.1.: The details for the data acquisition for the two locations 

Area 

Description 

Stationary 

Stations 

Distance 

Covered (m) 

Location I Mann Hall 153 2 16.58 

Location II Mann Hall Corridor 17 166.60 

The results of the operation of the MMS for the two locations are qualitatively 

illustrated in Fig. 5.20, Fig. 5.21 and Fig. 5.22, respectively. For location I, Fig. 

5.20 (a) shows the platform trajectory which is derived from the pseudo-GNSS/INS 

position data. Fig. 5.20 (b) shows the 3D-point cloud reconstruction derived from 

the entire scans through the whole trajectory. Due to the sensor noise and the SLAM 

algorithm drift error, the generated trajectory is not accurate enough to provide a 

reasonable 3D-point cloud reconstruction as depicted in Fig. 5.20 (b). However, 

Fig. 5.20 (c) shows an acceptable 3D-point cloud reconstruction after applying the 
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ICPP registration for the stationary scan locations through the entire trajectory. For 

location II, Fig. 5.21 (a) shows the original map for the 1st floor of Mann Hall and the 

planned MMS platform path. Fig. 5.21 (b) shows the platform real-time trajectory 

which is derived from the pseudo-GNSS/INS position data. 

Fig. 5.20.: The results for MMS Mapping Operation for location I (a) Robot 

trajectory obtained from the Pseudo-GNSS/INS position data, (b) 3D point cloud 

obtained for the entire scans, and (c) Final reconstructed map after applying ICPP 

registration for the stationary scan locations 
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Fig. 5.21.: The results for MMS mapping operation for location II (a) Original map 

for Mann Hall and (b) Robot trajectory obtained from the Pseudo-GNSS/INS 

position data 

Furthermore, another experiment was performed to test the effect of the laser 

range of the mapping sensor on the quality of map construction. For location II, this 

experiment was done by performing the mapping operation on the same targeted area 

(location II) and execute the 3D-point cloud reconstruction for laser ranges of 70 m 

and 5 m. It is obvious that the sensor noise contaminating the sensor measurements 

and the algorithm drift error have an impact on the derived 3D-point cloud recon-

struction as shown in Fig. 5.22 (a) and Fig. 5.22 (b), respectively. However, the 

qualitative results show that reducing the laser range of the LiDAR unit produces a 

reasonable 3D-point cloud reconstruction even without applying ICPP registration. 

Performing ICPP registration for the point cloud has a significant improvement in 

the quality of the map construction as depicted in Fig. 5.22 (c). After applying ICPP 

registration procedure for the stationary scan locations through the generated trajec-

tory, the effect of such procedures is evident from the superimposed map of location 

II on the original map as depicted in Fig. 5.22 (d). 
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Fig. 5.22.: The results for MMS mapping operation for location II (a) 3D-point 

cloud obtained for the entire scans, (Range =70 m) (b) 3D-point cloud obtained for 

the entire scans, (Range = 5 m), (c) Final reconstructed map after applying ICPP 

registration for the stationary scan locations, and (d) Reconstructed map over 

original map 
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For location II, the smoothing approach for trajectory enhancement is investigated 

by conducting this technique on three different segments of the entire trajectory. As 

mentioned before, each segment is established between two successive starting and 

ending stationary scan locations (i.e., ICPP-based stationary scans). The results of 

the smoothing approach for the three different segments are qualitatively illustrated 

from Fig. 5.23 until Fig. 5.49. For the three segments of location II, Fig. 5.23, 

Fig. 5.24, and Fig. 5.25 show the position of the UGV through the three trajectories 

(i.e., forward, backward, and smoothed trajectories). It is obvious that the generated 

smoothed trajectory (green) is very close to the forward trajectory (red) at the begin-

ning of the segments, however, it starts to become closer to the backward trajectory 

(blue) at the ending of such segments. More specifically, the smoothed trajectory 

starts and ends at the trusted locations which are derived after applying the ICPP 

registration technique. Fig. 5.26 - Fig. 5.34 illustrate the heading, pitch, and roll 

angles of the UGV through the three trajectories and such angles of the smoothed 

trajectory has the same behavior as the position of such trajectory. 

Fig. 5.23.: The position of the UGV platform through different trajectories for the 

first segment 
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Fig. 5.24.: The position of the UGV platform through different trajectories for the 

second segment 

Fig. 5.25.: The position of the UGV platform through different trajectories for the 

third segment 
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Fig. 5.26.: The heading of the UGV platform through different trajectories for the 

first segment 

Fig. 5.27.: The pitch of the UGV platform through different trajectories for the first 

segment 
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Fig. 5.28.: The roll of the UGV platform through different trajectories for the first 

segment 

Fig. 5.29.: The heading of the UGV platform through different trajectories for the 

second segment 
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Fig. 5.30.: The pitch of the UGV platform through different trajectories for the 

second segment 

Fig. 5.31.: The roll of the UGV platform through different trajectories for the 

second segment 
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Fig. 5.32.: The heading of the UGV platform through different trajectories for the 

third segment 

Fig. 5.33.: The pitch of the UGV platform through different trajectories for the 

third segment 
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Fig. 5.34.: The roll of the UGV platform through different trajectories for the third 

segment 

For closer investigation, the difference in x-y-directions as well as the pitch, roll, 

and heading angles between the smoothed trajectory and the forward trajectory (red) 

and backward trajectory (blue) for the three different segments of location II are 

depicted from Fig. 5.35 until Fig. 5.49. One should note that the intersection 

point (a) between the two curves denotes the maximum error at the middle time of 

the trajectory and the point (b) represents the zero-smoothed error at the trusted 

station (i.e., the stationary scan location at the beginning of the forward trajectory). 

Furthermore, the point (c) denotes the zero-smoothed error at the trusted station 

(i.e., the stationary scan location at the beginning of the backward trajectory). 
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Fig. 5.35.: The difference in x-direction between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the first 

segment 

Fig. 5.36.: The difference in y-direction between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the first 

segment 
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Fig. 5.37.: The difference in the pitch angle between the smoothed trajectory and 

the forward trajectory (red) as well as the backward trajectory (blue) for the first 

segment 

Fig. 5.38.: The difference in the roll angle between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the first 

segment 
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Fig. 5.39.: The difference in the heading angle between the smoothed trajectory and 

the forward trajectory (red) as well as the backward trajectory (blue) for the first 

segment 

Fig. 5.40.: The difference in x-direction between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the second 

segment 
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Fig. 5.41.: The difference in y-direction between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the second 

segment 

Fig. 5.42.: The difference in the pitch angle between the smoothed trajectory and 

the forward trajectory (red) as well as the backward trajectory (blue) for the second 

segment 
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Fig. 5.43.: The difference in the roll angle between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the second 

segment 

Fig. 5.44.: The difference in the heading angle between the smoothed trajectory and 

the forward trajectory (red) as well as the backward trajectory (blue) for the second 

segment 
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Fig. 5.45.: The difference in x-direction between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the third 

segment 

Fig. 5.46.: The difference in y-direction between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the third 

segment 
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Fig. 5.47.: The difference in the pitch angle between the smoothed trajectory and 

the forward trajectory (red) as well as the backward trajectory (blue) for the third 

segment 

Fig. 5.48.: The difference in the roll angle between the smoothed trajectory and the 

forward trajectory (red) as well as the backward trajectory (blue) for the third 

segment 
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Fig. 5.49.: The difference in the heading angle between the smoothed trajectory and 

the forward trajectory (red) as well as the backward trajectory (blue) for the third 

segment 

In this part of the research, both qualitative and quantitative evaluation are intro-

duced to evaluate the performance of the proposed smoothing process. More specif-

ically, qualitative analysis is performed by deriving a 3D-point cloud using the gen-

erated smoothed trajectory for the three different segments. Then, the results will 

be compared to the original 3D-point cloud generated by using the real-time SLAM-

based trajectory. Based on the visual inspection, there is no significant improvement 

while considering the smoothed trajectory for the 3D-point cloud derivation of the 

three segments as depicted in Fig. 5.50 and Fig. 5.51. One should note that the 

derived map reconstruction while considering the ICPP-based stationary scan loca-

tions has a significant enhancement for the 3D-point cloud reconstruction as shown 

in Fig. 5.52. For quantitative evaluation, a planar surface is extracted from three 

datasets. Such datasets are derived by utilizing three different ways (i.e., real-time 

SLAM trajectory, ICPP-based stationary scans approach, and smoothed trajectory). 

One should note that the 3D-point cloud derived using ICPP-based stationary scans 
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is considered the reference dataset. The RMSE of the normal distance of points 

belonging to a planar feature from its best-fitting plane are listed in Tables 5.2 -

5.5. Furthermore, the normal distance (ND) of the derived planar features using the 

real-time SLAM trajectory as well as the smoothed trajectory with respect to the 

reference dataset is reported in Tables 5.2 - 5.5. One can conclude that a LiDAR 

point cloud gets closer to the ICPP-based surface registration from stationary scan 

locations (accuracy) by using the smoothed trajectory. However, the internal noise 

level gets worse (precision). 

Fig. 5.50.: The 3D-point cloud reconstruction (only three segments of the entire 

trajectory) using the real-time SLAM-based trajectory 
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Fig. 5.51.: The 3D-point cloud reconstruction (only three segments of the entire 

trajectory) using the generated smoothed trajectory 

Fig. 5.52.: The 3D-point cloud reconstruction (only three segments of the entire 

trajectory) using the ICPP-based stationary scan locations 
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Table 5.2.: The quantitative analysis (RMSE and ND) of plane (1) 

Plane 

(1) 

Number 

of points 

RMSE 

(m) 

ND 

(m) 

Dataset(SLAM) 1,329,822 0.031 0.114 

Dataset(ICPP) 17,951 0.006 0 

Dataset(Smoothing) 980,715 0.067 0.056 

Table 5.3.: The quantitative analysis (RMSE and ND) of plane (2) 

Plane 

(2) 

Number 

of points 

RMSE 

(m) 

ND 

(m) 

Dataset(SLAM) 1,820,926 0.019 0.112 

Dataset(ICPP) 24,847 0.008 0 

Dataset(Smoothing) 720,531 0.034 0.021 

Table 5.4.: The quantitative analysis (RMSE and ND) of plane (3) 

Plane 

(3) 

Number 

of points 

RMSE 

(m) 

ND 

(m) 

Dataset(SLAM) 1,012,652 0.033 0.121 

Dataset(ICPP) 9,556 0.006 0 

Dataset(Smoothing) 667,829 0.051 0.056 
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Table 5.5.: The quantitative analysis (RMSE and ND) of plane (4) 

Plane 

(4) 

Number 

of points 

RMSE 

(m) 

ND 

(m) 

Dataset(SLAM) 637,995 0.063 0.112 

Dataset(ICPP) 15,060 0.005 0 

Dataset(Smoothing) 529,096 0.078 0.069 

5.3.7 Summary 

In this phase of research, a new hybrid system is considered for a LiDAR-based 

indoor mapping system which introduces a 2D-coverage path planning approach that 

is implemented along with online SLAM technique. The offline CPP can be altered 

for use with the aid of online SLAM by proposing two procedures: (i) perform a 

convex cellular decomposition of the polygonal coverage area while still tracing the 

shortest coverage path and (ii) apply the SLAM operation to suit the CPP strategy 

and evaluates the navigation errors in terms of an area coverage cost function. The 

implementation results show how the SLAM-assisted CPP strategies allow for an 

improvement in the total area coverage and perform a robust operation. 

Furthermore, the implementation of an indoor MMS using a 3D-laser scanner 

onboard UGV has been considered for the task of generating high density maps 

of GNSS-denied environments. To mitigate the impact the absence of GNSS data 

has on the mapping process, this part of the research proposes a pseudo-GNSS/INS 

integrated framework which utilizes probabilistic SLAM techniques to estimate the 

platform pose and heading from 3D-laser scanner data. This proposed framework has 

been implemented based on three major notions: (i) utilizing frame transformation to 

extract 2D scan from the entire 3D-point cloud for efficiently carrying out real-time 

SLAM, (ii) generating the position data from these real-time SLAM pose estimates, 
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and (iii) performing the entire operation through use of a single 3D-mapping sensor. 

The final geo-referenced point cloud can then be derived through post-processing 

after applying the ICPP registration procedure at the stationary scan locations along 

the entire trajectory. Also, a smoothing approach based on the registered stationary 

locations is proposed to enhance the real-time SLAM-based trajectory to improve 

the generated 3D-reconstruction of the mapping environment of interest. However, 

the generated smoothed trajectory has no significant improvement on the generated 

3D-point cloud reconstruction. The implementation, performance, and results of 

the proposed MMS framework demonstrate the ability of this Pseudo-GNSS/INS 

framework to operate in GNSS-denied areas as well as to simply switch between the 

real GNSS/INS unit and Pseudo-GNSS/INS module for desired operation. 



165 

6. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

6.1 Summary of Contributions 

This research focused on developing a generic framework, including system setup 

and calibration for UAVs equipped with a GNSS/INS positioning and orientation 

module as well as low-cost LiDAR sensors for targeted mapping and monitoring 

applications. Furthermore, a Pseudo GNSS/INS integrated framework onboard a 

UGV is developed to allow for operation within GNSS-denied environments. Several 

strategies are proposed to establish such framework. First, a system architecture for 

a low-cost UAV mapping system using directly geo-referenced active ranging systems 

was developed. 

In addition, a LiDAR system calibration strategy for a UAV-based MMS that 

can directly estimate the mounting parameters was proposed through an outdoor 

calibration procedure. Finally, a Pseudo-GNSS/INS module that serves as a conve-

nient substitute to a GNSS/INS-based MMS framework for the purpose of operation 

within GNSS-denied environments was developed. The contributions of each pro-

posed strategies are summarized as follows: 

System Architecture For UAV-Based Mapping System 

The proposed system architecture for UAV mapping system has several contribu-

tions: 

• A system architecture for low-cost UAV mapping using directly geo-referenced 

active ranging optical systems is developed while considering the challenges 
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posed by using consumer-grade sensors, platform payload restrictions, and en-

durance capabilities. 

• The system integration has been developed in a way which demonstrates the 

flexibility of the proposed work. More specifically, the developed system inte-

gration can be used for not only airborne mapping systems but also for other 

systems such as the wheel-based LiDAR systems, with similar mapping sensor 

structure and techniques. 

LiDAR System Calibration Strategy For A UAV-Based MMS 

The main contributions of the proposed LiDAR system calibration for a UAV-

based MMS can be summarized as follows: 

• A comprehensive bias impact analysis is conducted for a UAV-based LiDAR 

system consisting of a spinning multi-beam laser scanner. 

• Based on this analysis, an optimal target primitive setup and flight line config-

uration was devised for calibrating a UAV LiDAR system. 

• An iterative calibration strategy is proposed for deriving the system parameters 

using different types of conjugate features (i.e., planar, linear/cylindrical) at the 

same time. 

SLAM-Assisted CPP And Implementation Of Pseudo-GNSS/INS Framework 

The proposed SLAM-assisted CPP and the Pseudo-GNSS/INS framework have 

the following contributions: 

• A new hybrid system is developed for a LiDAR-based indoor mapping system 

that introduced a 2D-CPP problem implemented along with real-time SLAM 

technique. 



167 

• A Pseudo-GNSS/INS framework is developed that demonstrates an effective 

technique for implementing a flexible MMS framework that can be deployed into 

GNSS-denied as well as GNSS-affluent areas without exhaustive modifications 

to the system. 

• To act like a GNSS/INS module, the Pseudo-GNSS/INS can supply geo-referencing 

signals (which includes PPS signal and GPRMC message) to successfully syn-

chronize the LiDAR sensor for ensuring time-tagged point cloud generation 

which is considered an innovative implementation. 

• The positioning module and the mapping sensor in the proposed framework get 

incorporated into a single unit comprised of single 3D- mapping sensor. This 

is considered a very important feature of the Pseudo-GNSS/INS-based MMS 

framework. 

6.2 Recommendations for Future Work 

Recommendations/suggestions for future work related to the proposed strategies 

are presented as follows: 

• The system architecture for UAV- based mapping system will be focusing on 

the system integration of high-quality mapping sensors to meet the needs of 

particular mapping applications such as pipeline inspection and infrastructure 

inventory and monitoring. One should note that high-end mapping sensors can 

ensure the desired quality of the final product to satisfy the requirements of 

such applications. 

• A LiDAR system calibration will focus on combining the mounting parameters 

(i.e., extrinsic parameters) and sensor parameters (i.e., intrinsic parameters) to 

obtain a comprehensive calibration leading to even more accurate point clouds. 

The obtained LiDAR-based 3D point cloud can be combined with informa-

tion from other sensors, such as RGB cameras and hyperspectral sensors, to 
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extract valuable information related to different applications. Furthermore, a 

fully automated procedure should be developed for the extraction of calibration 

primitives. 

• The Pseudo-GNSS/INS framework implementation will be focusing on improv-

ing the proposed smoothing approach with the aid of Kalman filter implemen-

tation to enhance the real-time SLAM trajectory generated by such framework. 

Also, the incorporation of cameras with such framework can provide an improve-

ment for the trajectory estimation of indoor environment. Moreover, the future 

work will focus on performing the 3D-SLAM algorithm in order to provide a 

robust trajectory estimation. 
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[102] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular 
slam,” in European Conference on Computer Vision. Springer, 2014, pp. 834– 
849. 

[103] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “An 
evaluation of the rgb-d slam system,” in Robotics and Automation (ICRA), 
2012 IEEE International Conference on. IEEE, 2012, pp. 1691–1696. 

[104] N. Corso and A. Zakhor, “Indoor localization algorithms for an ambulatory 
human operated 3d mobile mapping system,” Remote Sensing, vol. 5, no. 12, 
pp. 6611–6646, 2013. 

[105] C. Brenner, “Vehicle localization using landmarks obtained by a lidar mobile 
mapping system,” International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences:[PCV 2010-Photogrammetric Computer 
Vision And Image Analysis, Pt I] 38 (2010), Nr. Part 3A, vol. 38, no. Part 3A, 
pp. 139–144, 2010. 

[106] H. Zhao, M. Chiba, R. Shibasaki, X. Shao, J. Cui, and H. Zha, “Slam in a 
dynamic large outdoor environment using a laser scanner,” in Robotics and 
Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE, 
2008, pp. 1455–1462. 

[107] F. Keller and H. Sternberg, “Multi-sensor platform for indoor mobile mapping: 
system calibration and using a total station for indoor applications,” Remote 
sensing, vol. 5, no. 11, pp. 5805–5824, 2013. 

[108] C. Wen, L. Qin, Q. Zhu, C. Wang, and J. Li, “Three-dimensional indoor mobile 
mapping with fusion of two-dimensional laser scanner and rgb-d camera data,” 
IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 4, pp. 843–847, 2014. 

[109] K. M. A. Yousef, J. Park, and A. C. Kak, “An approach-path independent 
framework for place recognition and mobile robot localization in interior hall-
ways,” in Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on. IEEE, 2013, pp. 2669–2676. 

[110] H. Kwon, K. M. A. Yousef, and A. C. Kak, “Building 3d visual maps of in-
terior space with a new hierarchical sensor fusion architecture,” Robotics and 
Autonomous Systems, vol. 61, no. 8, pp. 749–767, 2013. 

[111] K. A. Yousef, “Hypothesize-and-verify based solutions for place recognition and 
mobile robot self-localization in interior hallways,” Ph.D. dissertation, Purdue 
University, 2013. 
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