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ABSTRACT 
 

Hermetic reciprocating compressors are widely used in small and medium size vapor compression refrigeration 

systems. One of the main parts of this type of compressor is the automatic valve system used to control the suction 

and discharge processes. The experimental study of these processes in the compressor itself is very complex, mainly 

because the small size of the compressor. Thus, experimental analysis in laboratory valve models can be useful for 

improving the understanding of the flow characteristics. This work consists in an experimental investigation of the 

fluid-structure interaction problem in a model of reed suction valve with diameter ratio equal to 1.3. The fluid-

structure interaction problem was studied by measuring the instantaneous position of the reed by using a very 

accurate optical sensor. Results for Reynolds number based in the orifice inlet parameters varying from 2,000 and 

12,000 were obtained. Due to hydrodynamic instabilities of the flow, the reed does not reach an equilibrium 

position, even for the constant mass flow rates prescribed for the flow. The results show that there is a well-defined 

frequency for the reed movement for a given Reynolds number, which reduces slightly for increasing Reynolds 

numbers. Besides helping to improve the understanding of the flow characteristics in reed type valves, these results 

can also be used for validating computational codes used for the solution of general fluid-structure interaction 

problems, and specifically for reed type valves. 

 

1. INTRODUCTION 
 

Hermetic reciprocating compressors are widely used in small and medium size refrigeration cycles based on the 

vapor compression process. Ribas et al. (2010) stated that the thermodynamic efficiency in a high efficiency 

refrigeration compressor operating with refrigerant R134a is about 80 to 83%. They divided the thermodynamic 

losses in leakage losses (4%), superheating losses (49%), and suction and discharges losses (47%). As the suction 

and discharge losses represent a large amount of the total thermodynamic losses, small improvement in the suction 

and discharge processes can produce expressive increase in the thermodynamic efficiency. 

 

In order to improve the suction and discharge processes, it is necessary to study the flow through the suction and 

discharge valves. In this type of compressor, the valves must be as simple as possible to reduce manufacturing cost. 

Thus, the valve system is usually designed to operate without any device to control the movement of the valve. 

Therefore, valves are usually just thin beans (reeds) fixed on one edge. The movement of the reed depends just on 

the forces of the flow acting on its surfaces, and on the structural response of the reed defined by its physical 

parameters (mass and stiffness). This is a typical problem of fluid structure interaction, which results in a very 

complex flow. 

 

The fluid structure interaction problem in refrigeration compressor valves has been extensively investigated in the 

last decade. Numerical works were performed in order to determine the dynamic behavior of the valves for several 

applications, highlighting the works of Machu et al. (2004), Kim et al. (2008), Kinjo et al. (2010), Mistry et al. 

(2012), and Pereira et al. (2012). Several experimental works were also developed in the same subject (Prater and 

Hnat, 2003; Habing and Peters, 2006; Burgstalller et al. 2008; Lenz, 2010; Nagata et al. 2010; Bhakta et al. 2012; 



 

1217 Page 2 
 

22
nd

 International Compressor Engineering Conference at Purdue, July 14-17, 2014 

Ma et al. 2012). We have detected from these works that there is no experimental data that could be used to validate 

numerical procedures developed to solve fluid structure interaction problems in reed type valves. 

 

The main purpose of this work is to present an experimental methodology to study the fluid structure interaction 

problem in reed type valves in order to provide reliable data that could be used to validate numerical procedures 

developed to simulate the flow. In order to accomplish this task, an experimental setup was built to study the flow 

through a model of a reed valve frequently used as suction valve in refrigeration compressor. An optical system was 

used to measure the instantaneous position of the valve for Reynolds numbers of the flow varying in the range of 

2,000 to 12,000. 

 

2. EXPERIMENTAL SETUP 

 
Figure 1 shows a schematic diagram of the experimental setup, which is composed by two 500 liters reservoirs 

connected in parallel, a filter, a pressure control valve, a mass flow rate control valve, a Coriolis mass flow meter, a 

flexible tube, an aluminum tube containing two fine netting at the inlet, and the test section, which is installed on a 

concrete block (40x40x50 cm) through three spacer bars displaced 120° from each other. The concrete block is used 

to isolate the test section from vibration transmitted by the external environment. 

 

Before running a test, the reservoirs are filled with air at 12 bar by a two-stage compressor. During the test, the air 

flows to the filter, where it is cleaned and dehumidified, and to the pressure control valve, which has the purpose of 

maintaining the downstream pressure always constant despite the reduction of the pressure in the reservoirs. Thus, 

the mass flow rate at the test section can be maintained constant at the desired value. The desired mass flow rate is 

adjusted in the mass flow rate control valve installed downstream the pressure control valve. Then, the air flows 

through the Coriolis mass flow meter, flexible tube, and through a 2 m long, 34.9 mm inner diameter aluminum tube 

before reaching the test section. Two fine netting were installed at the inlet of the aluminum tube in order to initiate 

the regularization of the velocity profile of the flow. The length of the aluminum tube was chosen to guarantee a 

completely developed flow at the inlet of the test section. 

 

 
 

Figure 1: Experimental setup 
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A schematic diagram of the test section is shown in details in Figure 2. The test section is basically built by two very 

rigid circular steel plates (30 mm tick). The bottom plate is fixed in the concrete block by three spacer bars. The 

upper plate is installed in the bottom plate through three similar spacer bars displaced 120° from each other. The 

aluminum tube is installed in the upper side of this plate. The inner diameter of the hole made in the upper plate 

matches the inner diameter of the aluminum tube in order to avoid perturbations of the flow. The model of the reed 

valve is fixed on the bottom surface of the upper plate through two small screws in such a way to guarantee that the 

surface of the reed is in perfect contact with the surface of the plate. An optical sensor used to measure the 

instantaneous position of the reed is installed in the bottom plate. All these parts are rigidly connected to each other 

in order to avoid relative displacement during the tests. 

 

The reed valve dimensions are shown in Figure 3. The diameter ratio and thickness of the reed are D/=1.3 and 0.4 

mm, respectively. Two parameters that play an important role on the dynamic of the reed are the stiffness, k, and the 

natural frequency, fn. These two parameters were obtained numerically by using the commercial code Ansys, 

resulting in k=214.7 N/m and fn=31.4 Hz. 

 

The following parameters are measured during the tests: temperature of the flow, pressure at the inlet of the test 

section (upstream pressure), mass flow rate of the flow, atmospheric pressure, and instantaneous position of the 

reed. The atmospheric pressure is measured by a Barometer with 0.05 kPa resolution. The upstream pressure is 

measured by an inductive pressure transducer with 1 bar operating range and uncertainty of ±0,001 bar. The mass 

flow rate is measured by using a Coriolis mass flow meter with operating range of 5.0 kg/min and uncertainty equal 

to ±0.2% of the reading of the mass flow rate. The temperature of the flow is also measured by the Coriolis mass 

flow meter with an estimate uncertainty equal to ±0.5°C. The instantaneous position of the reed is measured by a 

fiber optic sensor. The manufacture calibration curve for a standard reflexive surface (retro tape), providing an 

uncertainty of ±1 µm, was used to convert the signals. The retro tape surface was glued on the bottom surface of the 

reed in order to reflect the light emitted by the optical sensor. 

 

 
 

Figure 2: Test section 
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Figure 3: Reed dimensions 

 

All analog signals were converted to digital signals and wired to a computer where they were treated by a LabVIEW 

program. 

 

3. RESULTS 

 
In order to analyze the fluid structure interaction phenomenon in the flow through the reed, the instantaneous 

displacement of the reed was measured in one position on the surface of the reed, as shown in Figure 2. The tests 

were performed for Reynolds numbers, defined by Equation (1), varying from 2,000 to 12,000, 

 

 

Vd
Re

 (1) 

 

where  and µ are the specific mass and dynamic viscosity of the air, respectively, V is the average velocity of the 

flow at the feeding orifice, and d is the inner diameter of the feeding orifice. The specific mass of the air was 

calculated by using the equation of state for ideal gas, considering the measured values of the upstream pressure and 

temperature of the air. The dynamic viscosity of the air was calculated by using the equation adapted from Possamai 

(1994), 

 

 
6252 10)1081.310029.7872.0(   xxx TT

 (2) 

 

where T and µ are given in Kelvin and Pa.s, respectively. 
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Considering the standard uncertainty for the upstream temperature T and upstream pressure as uncertainty type B 

with rectangular distribution, the combined uncertainty for the specific mass and dynamic viscosity resulted both in 

±0.1% (BIPM-GUM, 2008). 

 

Applying the same procedure for estimating the uncertainty for the Reynolds number, the combined uncertainty 

resulted seven times smaller than the typical standard deviation of the data during the tests, which was of the order 

of 1% of the reading. Therefore, the uncertainty of the Reynolds number was estimated in ±1% of its value. 

 

Figure 4 depicts a typical result for the instantaneous displacement of the reed as a function of time for Re=10,000. 

In this figure it is plotted the results for three tests run in similar flow configurations. The results were displayed 

with a time delay in order to provide a better analysis. It can be seen that the experimental setup provides very good 

repeatability of the data. First of all, it is observed qualitatively that the movement of the reed is periodical. Figure 5 

shows the Fast Fourier Transform result for one signal to confirm the periodicity of the movement. A very definite 

frequency of 57.9 Hz characterizes the movement of the reed. 
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Figure 4: Instantaneous displacement of the reed, s, for Re=10,000 

 

Analyzing the behavior of the displacement of the reed, one can withdraw several information, particularly as the 

reed reaches the extremes positions (upper and bottom positions). The behavior of the reed at these two positions is 

shown in detail in Figures 6 and 7. First of all, it is possible to note that the variations of the reed velocity at the 

upper position are larger than its variations at the bottom position. When the reed is about to close, Figure 6, one can 

observe that there is a reduction of the reed velocity, probably due to the increase of the pressure force of the flow as 

a consequence of the reduction of the gap between the reed and the upper plate. The reduction of the gap fosters an 

increase of the friction force of the flow, which increases the upstream pressure, and consequently, the flow force, 

decelerating the reed. Then, the reed hits the upper plate and starts opening rapidly. At the end of the opening 

process, Figure 7, one can observe the reed deceleration due to the increase of its reaction force. In addition, one can 

see that after the initial acceleration, the reed oscillates momentarily and, then, starts another period of acceleration. 

This oscillating behavior was not expected and must be more investigated in order to find a physical explanation. 

These behaviors are repeated almost identically for every movement of the reed. 
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Figure 5: Fast Fourier Transform of the instantaneous displacement signal 
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Figure 6: Instantaneous displacement of the reed, s, at the upper position for test 1. 
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Figure 7: Instantaneous displacement of the reed, s, at the bottom position for test 1. 
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From the point of view of the compressor efficiency, this type of movement of the valve is disadvantageous because 

it reduces the refrigerant mass being sucked (for the suction valve) or discharged (for the discharge valve) by the 

compressor. The mass flow rate is still momentarily zero as the reed hits the upper plate. In an ideal situation, that is, 

to foster the largest mass flow rate, the reed should remain always opened for a prescribed constant mass flow rate 

(or Reynolds number). Another disadvantage of this type of movement is the impact of the reed against the upper 

plate, which can produce structural damage to the valve. 

 

An important application for this type of data is for validation of numerical codes developed to study general fluid 

structure interaction problems, and specifically for validating numerical procedures dedicated to simulate the flow 

through reed type valves. The experimental results found in the literature have been obtained for actual valves 

running within the compressor environment. In this situation, the parameters are difficult to measure due to the small 

size of the system (which implies in special instrumentation), access problems to install the sensors, and disturbance 

of the system due to the measurement itself. In addition, undesirable effects, as for example the presence of lubricant 

oil, are impossible to eliminate. In a more controlled environment like an experimental bench, these problems are 

minimized and undesirable effects are absents with suitable design. 

 

Similar displacement results were obtained for Reynolds numbers varying from 2,000 to 12,000. The frequencies of 

the movement of the reed for all tests are presented in Table 1. The uncertainty of the frequency was estimated 

considering that the data are represented by a rectangular distribution (BIPM-GUM, 2008). Figure 8 depicts the 

same results in the graphical form. In this figure, one can observe that the frequency decreases about 7% for 

increasing Reynolds numbers until Re=9,000, and then remains constant. 

 

Table 2 presents the maximum displacement (smax) of the reed for all Reynolds numbers and all tests. The 

uncertainty of the maximum displacement was also estimated considering that the data are represented by a 

rectangular distribution (BIPM-GUM, 2008). Figure 9 presents the same data in the graphical form, where one can 

observe that the maximum reed displacement increases almost linearly with the Reynolds number until Re=9,000. 

The rate of the increase, however, diminishes slightly for Reynolds numbers larger than 9,000. This behavior can 

partially explain why the frequency decreases for increasing Reynolds numbers. Assuming that the average velocity 

of the reed remains practically constant for each process, the opening time interval must increase if higher reed 

displacement is obtained, which means that the frequency of the movement decreases. For the highest Reynolds 

numbers the decrease of the frequency is not noticed. 

 

Table 1: Frequency of the reed movement for Reynolds number ranging from 2,000 to 12,000. 

 

Reynolds Test 1 Test 2 Test 3 Average 

2,000 63.0 62.3 62.3 62.5±0.2 

3,000 60.8 60.1 60.1 60.3±0.2 

4,000 60.1 60.1 60.1 60.1±0.0 

5,000 59.4 59.4 59.4 59.4±0.0 

6,000 59.4 58.6 58.6 58.9±0.2 

7,000 58.6 58.6 58.6 58.6±0.0 

8,000 58.6 57.9 57.9 58.2±0.2 

9,000 57.9 57.9 57.9 57.9±0.0 

10,000 57.9 57.9 57.9 57.9±0.0 

11,000 57.9 57.9 57.9 57.9±0.0 

12,000 57.9 57.9 57.9 57.9±0.0 

 

 



 

1217 Page 8 
 

22
nd

 International Compressor Engineering Conference at Purdue, July 14-17, 2014 

 
Figure 8: Frequency of the reed movement as a function of the reynolds number 

 

 

Table 2: Maximum displacement of the reed, smax, for Reynolds number ranging from 2,000 to 12,000. 

 

Reynolds 
smax (mm) 

Test 1 

smax (mm) 

Test 2 

smax (mm) 

Test 3 

smax (mm) 

Average 

2,000 0.703 0.737 0.719 0.72±0.01 

3,000 1.015 1.073 1.073 1.05±0.02 

4,000 1.320 1.361 1.361 1.35±0.01 

5,000 1.596 1.666 1.657 1.64±0.02 

6,000 1.936 1.985 1.960 1.96±0.01 

7,000 2.239 2.287 2.297 2.27±0.02 

8,000 2.542 2.615 2.573 2.58±0.02 

9,000 2.814 2.862 2.841 2.84±0.01 

10,000 3.036 3.099 3.069 3.07±0.02 

11,000 3.242 3.307 3.314 3.29±0.02 

12,000 3.475 3.535 3.490 3.50±0.02 

 

 
Figure 9: Maximum displacement (s) of the reed as a function of the Reynolds number 
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4. CONCLUSIONS 

 

This work consists in an experimental investigation of the fluid-structure interaction problem in a model of reed 

suction valve with diameter ratio (D/d) equal to 1.3. The fluid-structure interaction problem was investigated by 

measuring the instantaneous position of the reed for Reynolds number varying from 2,000 to 12,000. 

 

The results show that the reed takes a periodical movement with a well-defined frequency, even for a constant 

Reynolds number. The reed still hits the upper plate, closing completely the fluid passage, with the same frequency 

of the reed movement. From the point of view of the compressor efficiency, this type of movement is to be avoided. 

In addition, it was observed that the frequency of the movement reduces 7% for increasing Reynolds numbers, as the 

entire Reynolds number range is considered. Despite the simplifications added to the valve model, the results are 

useful to improve the understanding of the actual problem of valve motion. 

 

The dynamic behavior of the reed represented by its displacement in time is also an important result for validating 

computational codes used for the solution of general fluid-structure interaction problems, specifically in the case of 

numerical simulation of reed type valves. 
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