The Finite Element Analysis of The Deflection of The Crankshaft of Rotary Compressor

Lingchao Kong

Compressor and Motor Institute of Gree Electric Appliance, Inc. of Zhuhai
July 17, 2014
Content

1. Introduction
2. FEM analysis
3. Experimental component
4. Influence factors analysis
5. Conclusion
Two balancers are used to ensure stability → Imbalance forces → Deflection of crankshaft → Motor performance

How to get it → Deflection of crankshaft

Test → FEM simulation → Build test set-up

Wear → Noise and vibration
FEM analysis

- **Centrifugal inertia forces**
 \[F_i = m_i \omega^2 r_i \]

- **Imbalance magnetic force**
 \[F_m = K_m e_m \]
 \[K_m = \frac{\alpha \pi D l_{ef}}{\delta} \left(\frac{B^2}{2 \mu_0} \right) \]

- **Gas force**
 \[F_g = R L (1 - \tau) (P_\theta - P_{s0}) \sqrt{2 (1 - \cos \theta) + \frac{\tau}{1 - \tau} (1 - \cos 2\theta)} \]
FEM analysis

Load: Rated load
Speed range: 2400 rpm ~ 5400 rpm

Figure: Deflection Fringe Result
Figure: Calculated Deflection versus Speed of Rotation
Experimental component

Sensor-Ⅰ: is used to measure the direction-x deformation
Sensor-Ⅱ: is used to measure the direction-y deformation
Sensor-Ⅲ: is used to determinate the starting angle

Figure: Experimental set-up
Experimental component

Sensor data without load

Sensor data in rated load

60rpm

2400rpm~5400rpm
Experimental component

Orbit of the Top Dead Centre of the Crankshaft

![Graph showing the orbit of the Top Dead Centre of the Crankshaft](image)

Measured Deflection vs. Calculated Deflection

![Graph comparing measured and calculated deflection vs. speed of rotation](image)
Influence factors analysis

Height of the top-flange:

![Diagram showing the height of the top-flange and a graph showing the relationship between deflection and height of the top-flange]
Diameter of the crankshaft:

Influence factors analysis
Influence factors analysis

Average air gap of the motor:
Influence factors analysis

Weight of the rotor

![Image of rotor with weight indicated]

Graph showing the correlation between weight of the rotor and deflection.
(1) The more accurate deflection data was obtained by the improved measurement method.

(2) A simulation method of the crankshaft deflection was established, in good agreement with the experimental results. It is valid for compressor design.

(3) Influence factors: with the increase of the height of top-flange, the diameter of the crankshaft and the motor air gap, crankshaft deflection decreases, and it increases with the increase of the weight of the motor.
Thanks for your attention!