An Approach Towards Reed Valve Geometry Design

Sandeep DHAR, GE Global Research, India
Bhaskar TAMMA, GE Global Research, India
Aditya BHAKTA, GE Global Research, India
Murali KRISHNA, GE Global Research, India
Outline

- Performance of a compressor
- Compressor losses
- Effect of valves on compressor
- Valve design criteria
- Geometrical design approach
- Results
- Conclusions
Performance of a compressor

Standardized at 32 °C ambient

Affected by system losses

Obtained from calorimeter tests

\[EER = \frac{\text{Cooling capacity (Btu/hr)}}{\text{Power input (Watts)}} \]
Compressor losses

Thermal
- Pump
- Muffler
- Valves
- Shell

Suction

Discharge

Shell

Pump

Motor

Lube oil

Friction
- Piston-cylinder
- Crankshaft bearing
- Connecting rod - crankshaft
- Oil pumping

Fluid
- Valve
- Piston-cylinder

Electrical
- Motor
- Power electronics
Valve Losses

Effect of valves on compressor performance

P-V map for compressors

- Over-pressure for discharge process
- Discharge Pressure = 10 bar
- Suction Pressure = 1 bar
- Under-pressure for suction process

Valve Operation (ideal)

- Discharge valve
- Suction valve

Valve Operation (Actual)
Valve Design Criteria

- **Stiffness**
 - Dictated by yield strength

- **Impact Velocity**
 - Dictated by Hardness

- **Material**
 - Over Pr. E, $bdth.$, $thk.$, $len.$, k, ρ, m, f, Yield strength, δ, σ, Hardness, HV
 - Material Properties
 - Design Parameters
 - Geometry Parameters

- **Root stress**
 - Dictated by yield strength

- **Flow area**
 - Dictates geometry
Reed geometry design: 3-beam model

Assumptions
- Valve → 3 subsections
 - Root
 - Neck
 - Tip
- Tip area same as port area

Validation
- Tip deflection match
Reed geometry design: Results

Geometric properties & stiffness of cases satisfying +/- 5% design mass

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Stiffness (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 - 3.0</td>
<td>1000 - 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root Stress (N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 10³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B₁ (m)</th>
<th>L₁ (m)</th>
<th>B₂ (m)</th>
<th>L₂ (m)</th>
<th>B₃ (m)</th>
<th>L₃ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>0.01</td>
<td>5.5</td>
<td>0.01</td>
<td>11</td>
<td>3.9037</td>
</tr>
<tr>
<td>8.6392</td>
<td>0.02</td>
<td>4.86</td>
<td>0.02</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Fundamental valve shapes for selected Geometric properties
Conclusions

- Designers have multiple geometry options satisfying design criteria
- Design assessment of various geometry options
 - Root stress
 - Deflection limits
- Starting geometry to design for efficient fluid flow
Thank You