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EXECUTIVE SUMMARY

Introduction

Snow and ice removal are important tasks during the winter

season and large amounts of anti-icing and deicing chemicals are

used. These anti-icing and deicing products have different

physical, chemical, and biological characteristics. With new

products being continuously introduced to the market, there is

a critical need to review and synthesize information from the

literature to compare and contrast anti-icing and deicing

chemicals to understand their environmental impact and support

decision making. The effectiveness, costs, and environmental

impact of commonly used anti-icing and deicing chemicals were

reviewed in this study. Life cycle assessment was conducted to

quantitively evaluate the environmental impact of selected anti-

icing and deicing chemicals. A decision support tool on

environmental impact was developed through this study.

Findings

Recent literature on anti-icing and deicing chemicals were

reviewed. Phase diagrams can be used to compare eutectic

temperatures and concentrations under different temperatures.

To achieve similar deicing effectiveness, required concentrations

of anti-icing and deicing chemicals will differ. Many factors

contribute to the performance of anti-icing and deicing chemicals

and corrosion and inhibitors can be added to reduce corrosion

and mitigate their impact on long term maintenance costs and

infrastructure effects. Alternative products, such as beet juice,

glycerol, and glycol can be used as anti-icing and deicing chemicals

and show promising results for snow and ice control. Anti-icing

can prevent the formation or development of snow and ice on

pavement surfaces. Indiana Department of Transportation

(INDOT) has expanded the use of anti-icing through the use of

brine and other additives in prewetting salt.

The environmental impacts of INDOT’s various winter

chemicals were reviewed and described herein. Application of

anti-icing and deicing chemicals may increase ion concentrations

in soils and change nitrogen cycle, soil pH, and trace metal

concentrations. Surface water and groundwater may be affected,

and public health risks may be increased. Elevated chloride

concentration in watersheds could disrupt natural metabolic

processes of aquatic organisms. Vegetation may be affected from

the high salinity of anti-icing and deicing chemicals. Amphibians

are vulnerable to high salinity so salt application near wetlands

should be well controlled. Mammals and birds could be affected

as well.

Costs of anti-icing and deicing chemicals were compared and

service categories and guidance for level of service were reviewed.

Traffic condition and weather condition were reviewed, and

calculation of bare pavement regain time were discussed.

Direct liquid application can achieve good performance and

cost-effectiveness through pre-wetting, treated salt, or slurries.

Level of service standards has been produced by INDOT and are

used to evaluate performance and effectiveness. This topic is not

included in this study.

Additionally, life cycle assessment was used to quantify

environmental impacts, such as global warming, acidification,

eutrophication, and ecotoxicity, over the entire product’s life

cycle. Environmental unit processes were established for two

conventional deicers (sodium chloride and calcium chloride) and

four alternative products (sodium acetate, calcium magnesium

acetate, beet juice, and glycerin) to evaluate their environmental

impact during winter operations. Chloride-based deicers, like

calcium chloride, can impact human health through carcinogenics

and noncarcinogenics. Beet juice, glycerin, and calcium magne-

sium acetate have comparable or higher environmental impacts

due to their organic carbon content but have positive environ-

mental impacts on eco-toxicity.

Finally, a decision support tool (DST) was developed to

evaluate the environmental impact of INDOT’s winter chemicals

in ten different environmental impact categories.

Implementation

The environmental impact of ten categories were calculated.

The environmental impact of ozone depletion is evaluated based

on the emission of chlorofluorocarbons (CFCs) or trichlorofluor-

omethane that lead to decrease of the stratospheric ozone level.

Global warming indicates the average increased temperature in

the atmosphere near the Earth’s surface and in the troposphere.

Photochemical smog formation is an environmental impact

included in TRACI. Ozone near the ground is created by multiple

chemical reactions between nitrogen oxides (NOx) and volatile

organic compounds in the presence of sunlight. Acidification

indicates increases concentration of hydrogen ion in the environ-

ment that can be attributed to additive acids, additive substances

in the water because of acid chemical reactions, biological

activities, or natural environment. Eutrophication indicates an

aquatic ecosystem with enriched nutrients (e.g., nitrates and

phosphates) that can result in accelerated biological productivity,

such as algae, weed, and undesirable accumulation of algal

biomass. Human health effects of carcinogenics, noncarcino-

genics, and ecotoxicity are evaluated. Respiratory effect addresses

a subset of criteria pollutants, such as particulate matter and

precursors to particles. Resource depletion on fossil fuel is also

included. Using a life cycle assessment approach, a case study was

developed to analyze three deicing chemicals (1) 23% NaCl, (2)

30% beet juice+70% salt brine, and (3) 30% CaCl2. Results

showed the second product had the least ecotoxicity and the third

product has greater impacts on human health and ozone dep-

letion. The results showed the environmental life cycle assessment

tool developed in this study can be used to compare multiple

environment impacts to support decision making for winter

operation chemicals.

The DST was used to calculate the environmental impacts from

historical chemical usage data and anti-icing and deicing chemicals

for all the six districts in Indiana and has been delivered to

INDOT for its use. A predictive tool in the DST can help winter

operation managers to compare and contrast different anti-icing

and deicing chemicals to select the best product for different land

use types. The DST tool can be used as a useful tool to help winter

operation managers to make informed decisions to improve the

selection of products to minimize the environmental impact of

snow and ice control.
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1. INTRODUCTION

1.1 Background

Snow and ice removal is the number one priority of
Indiana Department of Transportation (INDOT) dur-
ing the winter season. To improve the traveling public
safety, INDOT removes ice and snow from more than
28,000 lane miles of interstates, U.S. highways, and
state highways. A significant amount of chemicals and
costs are expended on winter operations. For example,
a total of 72,794 tons treated salts and 147,745 un-
treated salts were purchased in six INDOT districts in
2017 at a cost of over $30 million dollars (Indiana
Department of Transportation, 2018).

Many different types of anti-icing and deicing
products have been used in Indiana. Some commonly
used anti-icing and deicing products include rock salt,
brine, calcium chloride, magnesium chloride, and beet
heet. These products have different physical, chemical,
and biological characteristics which have been pre-
viously reviewed (Sumsion & Guthrie, 2013). With new
products being introduced and studies under controlled
environmental conditions being published, there is a
need to review and synthesize latest information from
literature studies to compare and contrast anti-icing
and deicing products. Such a study on the cost-effec-
tiveness and their environmental impact introduces a
new analysis parameter to the selection of winter che-
micals and improves the environmental consciousness
at INDOT for winter operations.

1.2 Scope of Work and Organization of the Report

The objective of this project is to evaluate the effective-
ness, costs, and environmental effects of anti-icing and
deicing products. A decision support tool (DST) was
developed to calculate environmental impacts of winter
chemicals.

Chapter 2 describes the results of a literature review
on the effectiveness of existing and alternative anti-icing
and deicing products, their environmental impacts, and
the costs of these products. Chapter 3 presents a level of
service analysis. Chapter 4 presents an environmental
impact analysis of winter chemicals using life cycle assess-
ment and the decision support tool. Finally, Chapter 5
summarizes the study results.

2. LITERATURE REVIEW

2.1 Effectiveness of Anti-Icing and Deicing Chemicals

2.1.1 Characteristics of Anti-Icing and Deicing
Chemicals

The performance of these products under different
temperatures can be shown in a phase diagram, such
as the example of sodium chloride (NaCl) salt shown
in Figure 2.1. The phase diagram is separated by a
horizontal line representing the eutectic temperature
(-6.02uC or -21.1uF), which is the lowest temperature
for the mixture of salt and water to remain liquid.
Below the eutectic temperature, the ‘‘ice & salt’’ phase
indicates that both ice and salt are in the solid phase
and the salt is no longer effective for snow and ice
control. Above the eutectic temperature line, there are
three phases. The ‘‘brine’’ phase shows that both ice and
salt are melted, which is the preferred phase for snow
and ice control. When too little salt (,23.3% for NaCl)
is applied, the ‘‘ice & brine’’ phase shows that salt is mel-
ted but some ice remains in the solid state, which indi-
cates that additional salt is needed for ice to be melted.
When too much salt (.23.3%) is applied, the ‘‘salt &
brine’’ phase shows that all ice is melted but some salt
remains in the solid state, which is fine for snow and
ice control but the additional undissolved salt could
be saved to minimize costs and reduce environmental

Figure 2.1 Phase diagram for sodium chloride and water (Nixon et al., 2007).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/22 1



impact. The phase diagram shows that higher concen-
trations of salts improves the ice melting potential of
salt until temperature drops to the eutectic tempera-
ture, and further increase of salt concentration results
in undissolved salts and does not improve deicing
capacity. In reality, concentration of salt may drop
significantly when the snow begins to melt, so the actual
concentration of salt after snow melting has to be
considered.

Commonly used winter chemicals include NaCl, mag-
nesium chloride (MgCl2), calcium chloride (CaCl2),
potassium acetate (KAc), and calcium magnesium
acetate (CMA). Their eutectic temperatures and con-
centrations are listed in Table 2.1.

The phase diagrams of commonly used anti-icing
and deicing chemicals are shown in Figure 2.2. NaCl,
MgCl2, and CaCl2 with similar concentrations have
similar performance between 32uF and 25uF, while
KAc and CMA with similar concentrations have

similar performance between 32uF to -15uF (Ketcham
et al., 1996).

To achieve similar deicing effectiveness (freezing
point), the required concentrations of the different che-
micals differ. For example, KAc or CMA needs higher
concentration than that of NaCl to keep solution from
re-freezing. To achieve similar freezing point at 15uF,
the solution concentration of KAc (18.5%) and CMA
(19%) need to be 1.37 times and 1.41 times higher than
that of NaCl (13.5%), respectively.

The application rates of different chemicals to achieve
similar deicing effectiveness as NaCl at different tempe-
rature ranges are shown in Table 2.2. Two examples are
provided to illustrate how to use Table 2.2 to calculate
application rates.

N Example 1. Calculate how many gallons of 23% liquid

NaCl have similar efficiency as 100 lbs solid NaCl at a

temperature between 31uF and 32uF.

TABLE 2.1
The eutectic temperature and concentration for different chemicals (Ketcham et al., 1996; Olek et al., 2013)

Eutectic Temperature Lowest Partial Melting Temperature

Chemical uF uC Eutectic Concentration (%) uF uC

NaCl

MgCl2
CaCl2
KAc

CMA

-5.8

-28

-60

-76

-17.5

-21

-33

-51

-60

-27.5

23.3

21.6

29.8

49.0

32.5

21

5

-25

-15

20

-6

-15

-32

-26

-6

Figure 2.2 Phase diagrams for typical deicing chemicals (Ketcham et al., 1996).
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TABLE 2.2
Application rates of different chemicals to achieve similar deicing effectiveness (Amsler, 2014)

Solid Salt (lbs/lane-mile) Liquid Salt (gallon/lane-mile)

Temperature 100% 90%–92% 100% 100% 100% 23% 32% 27% 50% 25%

Band (uF) NaCl CaCl2 MgCl2 KAc CMA NaCl CaCl2 MgCl2 KAc CMA

31–32 100 110 90 168 170 44 31 32 32 18

26–30 100 110 90 168 170 44 31 32 32 18

21–25 100 110 93 154 160 44 31 33 29 17

16–20 100 107 88 140 150 44 30 32 26 16

11–15 100 103 85 130 150 44 29 30 24 16

6–10 100 103 83 130 140 44 29 29 24 15

,5 — — — — — — — — — —

TABLE 2.3
Salt application rate guidelines (Nixon et al., 2007)

Prewetted Salt at

129 Wide Lane Category

Snow Condition

(inch/hour)

Salt Application Rate (lbs/lane-mile)

32–30uF 29–27uF 26–24uF 23–21uF 20–18uF 17–15uF

2 hours plow route Light ,0.5 50 75 95 120 140 170

Medium 0.5–1 75 100 120 145 165 200

Heavy .1 100 140 182 250 300 350

3 hours plow route Light ,0.5 75 115 145 180 210 255

Medium 0.5–1 115 150 180 220 250 300

Heavy .1 150 210 275 375 450 525

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/22 3

The following equation can be used to calculate the

volume of liquid salt:

Volume of liquid salt

~
weight of solid salt

mass fraction of solution|density of solid salt

To achieve similar efficiency as 100 lbs solid NaCl, the

required volume of 23% liquid NaCl is calculated as:

Volume of liquid NaCl

~
100 lbs solid NaCl

23%|9:79 lbs=gallon
~44 gallons

The result indicates that 44 gallons of 23% liquid NaCl

has similar efficiency as 100 lbs solid NaCl at a tem-

perature between 31uF and 32uF.

N Example 2. Calculate how many gallons of 27% liquid

MgCl2 have similar efficiency as 100 lbs solid NaCl at a

temperature between 16uF and 20uF.

If a salt other than NaCl is used, the equivalent weight

of salt needs to be identified first. Based on Table 2.2,

88 lbs solid MgCl2 has similar efficiency as 100 lbs NaCl

between 16uF and 20uF.

To achieve similar efficiency as 100 lbs solid NaCl (88 lbs

solid MgCl2), the required volume of 27% liquid MgCl2 is:

Volume of liquid salt

~
88 lbs MgCl2

27%|10:35 lbs=gallon
~32 gallons

The result indicates that 32 gallons of 27% liquid MgCl2
has similar efficiency as 100 lbs solid NaCl at a tem-

perature between 16uF and 20uF.

Although both solid salts and liquid salts are used for
snow and ice control, solid salt particles may scatter
during spreading and lead to more heterogenous
distribution of solid salts than liquid salts. To address
this issue, solid salts can be prewetted to minimize the
bouncing and scattering problems. Prewetting and
direct liquid application could affect the application
rate, and therefore it is important to compare the
application rate under same pretreatment conditions.
The application rate for solid NaCl on a plow route is
shown in Table 2.3.

Many factors contribute to the actual performance
of anti-icing and deicing chemicals, such as pavement
temperature, dusts or other residues that are soluble in
water and result in changes of freezing point depres-
sion, melting and re-freezing due to friction from
passing vehicles, dilution from precipitation, and
exposure to sunlight. Therefore, the actual performance
of anti-icing and deicing chemicals in the field may vary
from their laboratory performance. Field study results
of lowest effective working temperatures of chemicals
used in Indiana are shown in Figure 2.3, which are
different from those obtained in laboratorial studies
(Figure 2.1 and Figure 2.2). For example, the theore-
tical eutectic temperature of CaCl2 is -60uF (Figure 2.2),
while the actual field data showed that the lowest free-
zing point was -53uF (Figure 2.3). Based on Figure 2.3,



Figure 2.3 Field data of lowest effective working temperatures of different chemicals (Belter et al., 2009).

MgCl2 is preferred when temperature is between -5uF
and -27uF as it requires least amount of salts, and
CaCl2 is preferred when temperature is below -30uF.

2.1.2 Corrosion Inhibitor

To reduce corrosion and maintenance cost of bridges
and pavements, it is a common practice to add
corrosion inhibitors to anti-icing and deicing chemicals.
A previous laboratory study showed that corrosion
was reduced by 70% with the addition of corrosion
inhibitors, such as phosphates or carbohydrates (Shi
et al., 2011). Calcium nitrite or nitrate could postpone
the initiation of reinforcement corrosion and their
preferred concentrations were proposed in Table 2.4
(Al-Amoudi et al., 2003). However, the actual time for
nitrite to penetrate concrete must be considered when
corrosion inhibitors are applied.

Although concentrations of anti-icing and deicing
chemicals are expected to be correlated with their
effectiveness for snow and ice control, a previous study
of one solid NaCl deicer (IceSlicer Elite) and three liquid
corrosion inhibitor-containing deicers (NaCl deicer
(NaCl+GLT), CaCl2 deicer (CCB), MgCl2 deicer (Freez-
Gard CI Plus)) showed that effectiveness of corrosion
inhibitors was not related with their concentrations
(Shi et al., 2011). Their results showed the lowest percent
corrosion rate (PCR) value was observed with relative
low inhibitor concentration (3.4%) in NaCl+GLT (Shi
et al., 2011).

The performance of four corrosion inhibitors (cal-
cium nitrate corrosion inhibitor, calcium nitrite-based
corrosion inhibitor, migratory corrosion inhibitor

TABLE 2.4
Preferred corrosion inhibitors
(Al-Amoudi et al., 2003)

for different contamination

Contamination Preferred Corrosion Inhibitors

Chloride

Chloride and sulfate

Sea water

Brackish water

Unwashed aggregate

4% calcium nitrite or 4% calcium nitrate

4% calcium nitrite or 3% calcium nitrate

4% calcium nitrite

2% calcium nitrite

4% calcium nitrate

corrosion inhibitor and organic corrosion inhibitor)
was compared in a previous study (Al-Mehthel et al.,
2009). Corrosion density was measured as an indicator
of corrosion according to ASTM C 876 and the results
showed that corrosion inhibitors could increase the
time of reinforcement initiation of corrosion and crack-
ing of concrete specimens. As shown in Table 2.5,
organic corrosion inhibitor had the best performance
followed by migratory corrosion inhibitor.

The application frequency of corrosion inhibitors
may be lower than those of anti-icing or deicing che-
micals, as a large amount of corrosion inhibitors can
remain on the highway. For example, up to 80% of cor-
rosion inhibitor remained on the pavement after four
days application of CaCl2 (Shi et al., 2011).

2.1.3 Alternative Products

In addition to conventional anti-icing and deicing
chemicals, alternative products have been used for snow
and ice control. Several representative alternative pro-
ducts are reviewed in this section.
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TABLE 2.5
Time to initiation of reinforcement corrosion and cracking of concrete (Al-Mehthel et al., 2009)

Time to Initiation of Reinforcement Time to Cracking of Concrete Due to

Corrosion, Days Accelerated Corrosion, Hours

Corrosion Inhibitor Applied Process 0.4% Cl- 1% Cl- 2% Cl- 0.4% Cl- 1% Cl- 2% Cl-

None N/A 480 320 Active 77 55 36

Calcium nitrate N/A 520 510 Active 83 62 52

Calcium nitrite-based1 During mixing 530 370 Active 85 61 43
1Migratory Surface of concrete No corrosion No corrosion Active 201 153 64

Organic1 During mixing No corrosion No corrosion 370 487 246 89

1Proprietary corrosion inhibitor.

Figure 2.4 Shaker test results for beet juice mixes at 20uF (Gerbino-Bevins, 2011).
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2.1.3.1 Beet juice. Beet juice is an alternative organic
chemical with a lower freezing point than water and has
been used as a prewetting and anti-icing chemical and
a performance enhancer but has not been used as a
deicing chemical. The color of beet juice is almost black
and therefore its performance increases sharply under
exposure to sunlight. However, significant enhance-
ment has not been observed using beet juice as a pre-
wetting and anti-icing agent (Fu et al., 2012). As a
melting enhancer, beet juice needs to be mixed with
chloride, acetate, or other deicing chemicals. Beet juice
could help NaCl stick to ice more efficiently to enhance
ice melting capacity and minimize application rate.
Two kinds of beet juice were blended with NaCl, the
maximum melt capacity occurs at 15% beet juice and
85% NaCl. It performs better than NaCl alone
(Gerbino-Bevins, 2011). In addition, high mixture com-
position of beet juice (e.g., 50% beet juice and 50%

NaCl) or low concentration of beet juice (e.g., 10% beet
juice and 90% NaCl) does not have higher melting
capacity than that of 15% beet juice and 85% NaCl
(Figure 2.4), because high stickiness capacity from beet

juice helps the sodium chloride stick to ice cannot
compensate melting capacity from NaCl (Gerbino-
Bevins, 2011).

Field tests were conducted using beet juice in prewet-
ting application or direct liquid application (Fu et al.,
2012). Comparison between salt brine and mixture of
beet juice and salt brine as prewetting or anti-icing
agents was conducted at a multilane arterial street,
whose annual average daily traffic volume ranges from
16,000 to 18,000 (Fu et al., 2012). The composition,
application rate, and costs are shown in Table 2.6 and
Table 2.7.

The performance differences among salt brine and
two organic mixtures in prewetting application for one
particular day were mostly small and organic mixture
showed slightly better performance than salt brine
(Figure 2.5).

Additional testing showed that organic materials
showed better performance than brine and the difference
in friction up to 30% (Figure 2.6). However, the obser-
ved differences could be attributed to different traffic
conditions or other local phenomena (Fu et al., 2012).



TABLE 2.6
Prewetting application rate for salt brine and organic mixture (Fu et al., 2012)

Chemical Composition

Total Material Per Lane

(kg/km)

Dry Salt Per Lane

(kg/km)

Liquid Per Lane

(kg(L)/km)

Cost Per Lane

($/km)

Salt brine

Organic mixture

23% NaCl + water

30% beet juice + 70% salt

brine (M1 and M2)

60

85

110

60

85

110

48

68

88

57

80.57

104.5

12 (10)

17 (14.2)

22 (18.5)

3 (2.5)

4.25 (3.5)

5.5 (4.5)

3.6

5.1

6.6

4.02

5.6

7.37

TABLE 2.7
Direct liquid application rate for salt brine and organic mixture (Fu et al., 2012)

Chemical Composition

Total Material Per Lane

(kg/km)

Total Salt (NaCl) Per Lane

(kg(L)/km)

Cost Per Lane

($/km)

Salt brine 23% NaCl + water 100 23 1.2

Organic mixture 30% beet juice +70% salt brine

(M1 and M2)

85 17 (14.2) 5.1

Figure 2.5 Average friction for anti-icing chemicals with (a) direct liquid application and (b) prewet salt (Fu et al., 2012).
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2.1.3.2 Mixture of conventional chemicals. Deicing 
chemicals could be mixed to enhance their melting 
capacity and bare pavement regain time (BPRT). A few 
existing mixtures of alternative products, components, 
and costs are summarized in Table 2.8. A compari-
son study conducted with 300 tests in 21 real-world 
snow events showed that the average BPRT of Blue 
salt, green salt, Jet blue, and slicer decreased 0.4, 0.7, 
1.05, and 1.25 hours than that of rock salt, respectively 
(Hossain et al., 2015). Jet blue had a considerable 
reduction of 3.75 hours in BPRT at -8uF. Slicer worked

well in both plowed and unplowed section, while Jet
Blue could be a choice only in a plowed section. In
addition, these alternative products had better perfor-
mance with lower application rates than rock salt when
pavement temperature was below 23uF (-5uC) (Hossain
et al., 2015). The results showed that that alternative
products could reduce the application rate significantly
at extreme low temperatures, although their costs are
higher than that of rock salt.

The melting capacity of different chemical mix-
tures was tested using the Strategic Highway Research



Figure 2.6 Average percentage of difference in friction in direct liquid application (Fu et al., 2012).

TABLE 2.8
List of alternative products, components, and prices (Hossain et al., 2015)

Products Composition Cost ($/ton)

Rock salt

Blue salt

Slicer

Green salt

Jet blue

NaCl

NaCl treated with MgCl2
78% NaCl, 9.4% MgCl2, and 2–3% propriety ingredient

NaFm treated with GEN3 runway deicing fluid

NaCl treated with proprietary polyol

80

100

358

950

495

TABLE 2.9
Ice melting test of deicing chemicals at different temperatures

Deicing Chemicals

Average Volume (mL) of Collected Brine After 60 Mins Test Method Reference

30uF 20uF 15uF 10uF 0uF — —

23% NaCl 3.5 — 1.1 — — M-SHRP (Akin & Shi, 2010)

32% CaCl2 4.0 — 1.6 — — M-SHRP (Akin & Shi, 2010)

30% MgCl2 4.3 — 1.6 — — M-SHRP (Akin & Shi, 2010)

95% NaCl + 5% CaCl2 3.8 — 1.0 — — M-SHRP (Akin & Shi, 2010)

90% NaCl + 10% CaCl2 4.0 — 1.2 — — M-SHRP (Akin & Shi, 2010)

85% NaCl + 15% CaCl2 3.8 — 1.1 — — M-SHRP (Akin & Shi, 2010)

80% NaCl + 20% CaCl2 4.0 — 1.1 — — M-SHRP (Akin & Shi, 2010)

NaCl (solid) — — — — 0.6 M-SHRP (Akin & Shi, 2010)

CaCl2 (solid) — — — — 2.1 M-SHRP (Akin & Shi, 2010)

MgCl2 (solid) — — — — 1.7 M-SHRP (Akin & Shi, 2010)

NaCl 9.0 2.4 — 1 1.4 SHRP (Nixon et al., 2007)

CMA — 3.9 — 1.8 0.8 SHRP (Nixon et al., 2007)

KAc 7.0 2.0 — — — SHRP (Nixon et al., 2007)

Beet juice — 3.3 — — — SHRP (Gerbino-Bevins, 2011)
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Program (SHRP) method and the results are summar-
ized in Table 2.9. The application rate based on modi-
fied SHRP (M-SHRP) was higher than typical field
application rates. But the test was conducted in parking
lots and did not include effects of traffic condition,
mixing, and ultraviolet radiation. Therefore, further
studies of their effectiveness and cost under the influ-
ence of real traffic conditions are needed.

Additionally, agriculturally derived products and
complex chloride mineral (CCM) based products are
increasingly used in snow and ice control operations.

These products can be either applied alone or combined
with traditional chloride-based chemicals. Some com-
mercially available agro-based liquid deicers include
GEOMELT, Magic Minus Zero, Magic Salt, Icenator,
Bare Ground, Caliber M1000, IceBan, and Ice Bite. Some
novel liquid deicing chemicals contain complex chlorides
and mineral products and also attract attention as they are
produced from natural resources. For instance, Aqua
Salina with component of 10%–11% CaCl2, 7%–8%

NaCl, 2%–3% MgCl2, and 1% KCl could significantly
enhance ice or snow melting performance of rock salt.



2.1.3.3 Glycerol and glycol. Glycerol (C3H8O3) is a
widely used agriculture deicing chemical because of its
cost-effectiveness and low corrosiveness. Glycerol is
usually obtained as a by-product of soap manufac-
turing processes, biodiesel production processes, and
other industrial processes of trans-esterification, hydro-
lysis, or saponification. For commercial biodiesel pro-
duction, approximately 0.35 kg of crude glycerol could
be produced from each gallon of biodiesel with an
attractive price of $0.02 per gallon (Pachauri & He,
2006). Adding glycerol to NaCl salt can increase anti-
icing performance at cold temperature through reduced
application rates, and less corrosion to metal, concrete,
or asphalt material on pavement. Previous studies
indicated that the viscosity of a mixture of 20% NaCl
and 80% glycerol was suitable for distribution and its
freezing temperature, eutectic temperature, volume of
ice melting, and percentage of skid resistance were
superior than other combinations of NaCl or MgCl2
with Geomelt (renewable sugar beet), Ice B Gone (molas-
ses, high-fructose corn syrup, or other carbohydrate
base), BioOil (liquid fuel derived from agriculture or
forest residual), or E310 (powder alkaline-washed corn
hull) (Taylor et al., 2010).

In addition to glycerol, glycol (C2H6O2) is also an
efficient freezing point depressant and considered as a
deicing product at extremely low temperatures. Ethy-
lene glycol (C2H4O)nH2O) can lower the freezing point
of water to -50uC. Propylene glycol (C3H8O2) is a
slightly viscous liquid and its freezing point is -13uC
(Ritter, 2001).

A summary of glycol and glycerol is listed in Table
2.10.

2.1.4 Comparison of Different Anti-Icing and Deicing
Chemicals

Based on the information collected from the Clear
Road Technical Advisory Committee, the Pacific North-
west Snowfighters Association, the Aurora Program, the
Winter Maintenance Technical Service Program, and 1st
National Winter Maintenance Peer, the following aspects
have been identified as key performance indicators to

assess anti-icing and deicing chemicals for winter
maintenance (Akin & Shi, 2010):

N effective temperature range,

N melting ability or capacity,

N eutectic temperature (and concentration),

N residual characteristics,

N ability to prevent bonding between ice/snow and the
pavement,

N deicer bounce (the characteristic of not adhering or

settling on an inclined surface),

N ability to undercut or break the bond between ice/snow
and the pavement,

N penetration ability on ice, and

N penetration ability on compacted snow.

To evaluate ice melting capacity of deicing chemicals,
Shaker Test can be done in a modified martini shaker
to simulate the effect of traffic on the roadway. Shaker
Test has several advantages over the SHRP Ice Melting
Capacity Test, i.e., the results of Shaker Test are not
affected by the size of freezer, can be repeated between
laboratories, and can avoid errors induced by mixing
liquid deicer in SHRP Ice Melting Capacity Test
(Gerbino-Bevins, 2011). The results of Shaker Test for
the effectiveness of various chemicals under different
temperatures is shown in Table 2.11.

2.1.5 Anti-Icing Process

There are two distinct strategies to apply freezing-
point chemicals: anti-icing and deicing. Anti-icing pro-
cess aims at preventing the formation or development
of bonding snow and ice for easy removal, while deicing
processes aims at breaking the existing bond in snow or
ice (Ketcham et al., 1996). Deicing operation is typically
initiated after snow has accumulated one inch (25 mm)
or more. A typical anti-icing process is summarized in
Figure 2.7.

Abrasive treatment provides additive friction for
anti-icing during operations and they can enhance
surface friction when snow or ice is bonded to surface
strongly and not easily removed. Although abrasives
are considered as short-term treatment due to its easy
dispersion by traffic, no obvious disadvantages have

TABLE 2.10
Summary information on glycerol and glycol (Fay et al., 2015)

Characteristics Glycerol Glycol

Temperature Low freezing point if mixed with water. Low freezing point if mixed with water. Propylene

ranges glycol could be effective to -74uF.

Application rate N/A 50–2,000 gal/lane (at 55% or 45% glycol concentration)

Cost $10–$30/gal $14–$40/gal for ethylene glycol and $10–$20/gal for

propylene glycol.

Performance Often used as an anti-freezing or ice-inhibiting constituent and Often used to deice aircrafts.

can be used as exterior coating to avoid caking in storage.

Storage As solid: Loading should be applied inside building or on non-permeable pad. Spilled material should be cleaned up as soon

as possible.

As liquid: Ideally in double walled tank on a non-permeable pad. Storage tanks need secondary containment to retain at least

110% volume of the largest tank. Spilled material should clean up as soon as possible.
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TABLE 2.11
Effectiveness comparison based on Shark test for deicer treatment (Gerbino-Bevins, 2011)

Weight of Ice Melted

Treatment Main Chemical By-Product

(g of ice melted/mL deicer or g deicer)

20uF 10uF 0uF

Liquid treatment 29% MgCl2 — 1.065 0.91 0.667

30% CaCl2 Beet juice 1.051 0.898 0.704

49% KAc — 1.405 0.868 0.656

30% MgCl2 — 1.062 0.781 0.533

26.9% MgCl2 Carbohydrate 0.978 0.736 0.577

25% MgCl2 Carbohydrate 0.969 0.675 0.546

15/85 mix of beet juice/NaCl 23% NaCl 0.636 0.326 0.0

23% NaCl — 0.595 0.302 0.0

Solid treatment NaCl — 1.05 0.61 N/A

Figure 2.7 The anti-icing process (Ketcham et al., 1996).
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been observed with abrasive treatment (Ketcham et al.,
1996).

Dry solid chemicals are more effective if the sur-
rounding environment provides sufficient moisture. For
initial operations, the application timing is important.
Solid chemicals are effective if maintenance operators
disperse chemicals right after enough accumulation of
precipitation and before the development of bond bet-
ween precipitation and road (Ketcham et al., 1996). For
subsequent operations, solid chemicals are effective if
adequate moisture after storms is accumulated. How-
ever, chemicals may be lost due to high speed and com-
mercial vehicles or bouncing particles during spreading.
Solid spreaders, such as hopper type spreaders or dump
body spreaders, are used to minimize bouncing particles.
The typical rebound distance is no more than 0.5 m
from pavement with a conventional spreader spinner
(Ketcham et al., 1996).

Direct liquid application is a process that applies
chemical liquids onto a road surface. Direct liquid appli-
cation can be used as pretreatment to prevent the
formation of bond between snow and road surface and

to make the plowing process easier. Direct liquid appli-
cation is effective as liquids provide faster reaction rate
compared with granular salts and direct liquid applica-
tion can avert bond of snow or ice (Ketcham et al.,
1996). Direct liquid application at -5uC (23uF) or above
achieves its best performance, while direct liquid appli-
cation below -5uC leads to increased application rate
and diminished cost efficiency. However, applying che-
micals before sufficient precipitation may resulted in
chemical dilution. Because of the limitations of liquids,
chemicals may need to be reapplied more than once.
The typical direct liquid application equipment for high-
way operation are Nozzle-type spreader and Spinner-
type spreader.

2.1.6 Prewetting

Prewetting is a process to spray or coat solution salts
or other liquid chemicals before applying salts on the
ground. Prewetting is usually considered to be effective
for two reasons. First, prewetting improves adhesion
to the pavement and minimizes scatter problems with



applied chemicals. Second, prewetting could draw
moisture and activate salts if solid chemical particles
are covered with liquid film. If solid deicers are imme-
diately spread after the prewetting process, the moisture
could facilitate activation for a longer time period.

Fine size particles are appropriate for prewetting
solid chemicals for anti-icing. Although large particles
with greater weight could move faster and easily pene-
trate precipitation to the pavement, such an advantage
is less obvious for anti-icing activities with minimal
amount accumulation of snow or ice. In addition, fine
particles are dissolved to solution faster due to large
relative surface area and cover pavement surface faster.

CaCl2 with a low freezing-point serves as a common
prewetting chemical. It can absorb moisture from air
with a relative humidity of 42% or higher. Based on
field tests, saturated CaCl2 solution (20%) applied to
salts at the rate of 30% by weight is effective. Other
prewetting solutions include MgCl2, KAc, and CMA,
which have lower freezing-points than that of NaCl.
Water is a practical prewetting solution used at high
temperatures above 32uF.

Prewetting can be achieved through three approaches:

1. Prewetting of stockpile—liquid chemical is injected into
stockpile at a specified dosage. Prewetting of stockpile
should be done when the temperature of stockpile drops
to 0uC (32uF) in the late fall. The advantages of this
method include that no spray equipment is needed to be
purchased and maintained, no storage tank is needed, and
no further training for application operators are needed.
Some highway agencies have abandoned this approach
because rain or snow coated on the wetted stockpile may
dilute chemicals and mitigate the pile. Therefore, it is
important to place stockpile on impervious asphalt or
concrete floor or cover the stockpile.

2. Prewetting of a load or while loading—spraying liquid
chemicals with a loaded spreader, such as an overhead
sprayer with nozzles. The disadvantages of this method
that corrosion on truck equipment is high, the unused
portion of truck containing loaded materials cannot be
discharged, and uniform distribution of particle coating
cannot be guaranteed.

3. Prewetting by spreader spray system—spreader could
apply liquids directly to the material being spread via on-
board spreader spray system. Highway agencies face
frequent failures of electric pumps and spray nozzle
clogging and this equipment typically experiences opera-
tional problems.

2.2 Environmental Impacts

2.2.1 Soil

Anti-icing and deicing chemicals may affect both
chemical (ion concentrations or trace metals) and phy-
sical (structure) characteristics of soils. Without the
impact of human activities, the majority of cations in
soils come from the weathering process of parent rocks,
while some cations come from ocean, geologic deposits,
saline groundwater, and volcanic activity (Mullaney

et al., 2009). The concentration on exchange of cations
generally reflects their concentration in parent rocks, but
concentration on exchange are also related with their
charge and size. Aluminum (Al) has the highest con-
centration in parent rocks and highest positive change
(+3) among all cations in rocks and has the highest cation
exchange capacity. Concentrations in parent rocks and
soils due to cation exchange of common cations are listed
in Table 2.12. Calcium (Ca) and potassium (K) have
similar concentrations in rocks. As Ca has two positive
charge (+2) and K has one positive charge (+1), therefore
both Ca and K have less cation exchange capacity than
that of Al. Although K has the second highest concen-
tration in parent rock, its single charge makes it ranked
fourth in all cations. Sodium (Na) has the low concen-
tration in most rocks and its charge is one (+1), and
therefore Na has the least cation exchange capacity
compared with other cations (Kelting & Laxon, 2010).

The application of anti-icing and deicing chemicals
increases concentrations of ions in top soils, but ion
concentrations decrease with the increasing depth of
soils. A previous study showed that deicing salt concen-
tration on upper soil layer (0–15 cm) rose significantly
from 0.05 mg/g dry soil to 5.04 mg/g dry soil after
27 days of application of 0.25 L 200 g/L deicing salt
solution (Ke et al., 2013). The cation exchange could
influence ion concentrations in soils. Soils containing
clays and organic matters have surfaces that are
negatively charged and can neutralize positive charge
of cations in the soil. A chemical bond can form
between negative charge and positive charge through a
weak electrostatic attraction and makes it possible to
transform cations from soil surface to soil solution or
vice versa, which is known as cation exchange (Jenks
et al., 2007). Cation exchange capacity (CEC) illustrates
the ability for cation to replace another cation on soil’s
surface that has weaker affinity to soil or smaller
concentration. At the same concentration, the relative
adsorption affinity ranking from high to low is listed as

+follows: H .Al3+.Ca2+.Mg2+ + +.K .Na . In addition
to ions introduced from deicers, nitrogen cycle and
heavy metals may be affected by deicers as well.
A field-study confirmed that episodic introduction of
road salt severely disrupts soil nitrogen recycle at a
range of spatial and temporal scales (Green & Cresser,
2008). Ammonium and nitrite are major nitrogen
compounds absorbed by a large number of plants.

+Ammonium-N (NH4 -N) is a cation and its retention
on cation exchange sites is reduced by cations intro-
duced from road salts.

Application of road salts also causes pH value to
increase in natural acidic land and reduce mineraliz-
able-N pool of sideroad soil. In the area that was
directed affected by salts, the ammonium proportion of
CEC declined from 0.62% in 2 m away from the edge
of road to 0.11% in 16 m away from the wall, and
thereafter increased 0.18% as distance from highway
was 64 m (Figure 2.8) (Green & Cresser, 2008).

Deicing chemicals also increase trace metal concen-
trations of roadside soils due to metal mobilization

10 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/22



TABLE 2.12
Cation concentration in parent rocks and cation exchange for soils not adjacent to road (Kelting & Laxon, 2010)

Cation Concentration in Parent Rock (mg/kg) Concentration in Soil Because of Cation Exchange (mg/kg)

Al3+ 47,369 1,085

Ca2+ 11,684 584

Mg2+ 3,118 45
+K 19,272 31

Na+ 2,649 5

Figure 2.8 Mean percentage ammonium-N occupation of CEC for 2, 4, 8, 16, 32, and 64 m from a road’s wall (Green & Cresser,
2008).

resulted from cation exchange, chloride complex for-
mation, and colloid dispersion. Heavy metals in road-
side may originate from different sources (Table 2.13)
and are widely detected in roadside soils (Table 2.14).
Although the concentrations of trace metals in soils are
relatively low, their toxicity to vegetation, animals, and
human exceeds other metals.

Previous studies showed that sodium salts had higher
release effect on cadmium (Cd) and less release effect on
lead (Pb) and copper (Cu), when compared with mag-
nesium (Mg) salt (Nelson et al., 2009). After NaCl
treatment, high concentrations of Cd and Pb were
detected in roadside soils. A high correlation between
the mobilization of Cd and Cl was observed (Li et al.,
2015). Cation competition and formation of heavy
metal complexes increase solubility of heavy metals in
water and these trace metals can be released from soils to
reach ground water or surface water.

Additionally, deicing chemicals may affect soil struc-
ture, which is the arrangement of solid particles, such as
size and shapes of soil aggregates and pore space among
these particles, clusters of mineral, and organic material.
Well-structured soils have high infiltration rate with
surface runoff on the soil and high stability to resist

+degradation and potential erosion. Bivalent Ca2 and
Mg2+ cations improve soil structure through cationic
bridging between clay particles and soil organic carbon

+ +(Figure 2.9), and therefore Ca2 and Mg2 cations are
important to maintain soil structure under arid and
semi-arid conditions, where calcium carbonate and

TABLE 2.13
Heavy metals commonly found in roadside and their sources
(Public Sector Consultants Inc., 1993)

Heavy Metal Traffic Source

Cadmium Diesel oil, tire wear

Chromium Metal planting, brake lining wear

Copper Metal plating, brake lining, bearing wear

Iron Vehicle rust, highway structures, engine parts

Lead Tire wear, lubricating oils, and grease, bearing wear

Zinc Tire wear, motor, grease
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magnesium carbonate precipitates form secondary carbo-
nate coating and bond primary soil particles together
(Bronick & Lal, 2005).

+Although Na adsorption affinity is lower than that
+ +of Ca2 and Mg2 , high concentration of Na in deicing

+ +chemicals may displace Ca2 and Mg2 and plays a role
to hold clays together, which is consistent with the nega-
tive correlation between Na/CEC and Ca/CEC. How-
ever, Na scatters existing aggregation and disperses
clays and increases surface runoff. Then individual
particles (colloids) begin to suspend in the soil solution
and transport to groundwater or surface water. During
this process, suspended particles may also bond trace
metals to release trace metals from soils and reach
groundwater or surface water. A positive correlation
was observed between the degree of colloid dispersion
and lead (Pb) concentration (Norrström & Bergstedt,
2001).



TABLE 2.14
Mean concentrations of heavy metals (mg/kg) detected in roadside soils

Location Cadmium (Cd) Chromium (Cr) Copper (Cu) Nickel (Ni) Lead (Pb) Zinc (Zn) Reference

U.S. Great Plains

Vermont, U.S.

U.S. EPA Level

requiring clean-up

1.46

0.75

70

147

0.15

230

94.1

0.75

—

129

0.5

1,600

129

2.2

400

321

6.9

23,600

(Elrashidi et al., 2016)

(Grubinger & Ross, 2011)

(U.S. Environmental

Protection Agency, 2002)

Figure 2.9 Cation bridging due to calcium involvement and aggregation of clays (Kelting & Laxon, 2010).

TABLE 2.15
The ratio of base cation and CEC of roadside soils at different depths and distances from road (Norrström & Bergstedt, 2001)

Distance (m) Depth (m) Ca/CEC (%) Mg/CEC (%) K/CEC (%) Na/CEC (%) pH

0.2 0–5 66 4.0 2.8 27 7.4

5–10 58 6.5 3.1 32 7.1

10–15 60 7.5 2.7 30 7.0

2 0–5 60 9.5 4.4 26 7.0

5–10 57 14 3.7 25 6.9

10–15 55 8.6 3.3 33 6.5

6 0–5 60 21 2.2 17 6.4

5–10 58 22 2.5 17 6.7

10–15 58 24 2.4 16 7.0

10 0–5 75 19 1.8 3.6 6.4

5–10 77 18 1.8 3.3 6.4

10–15 77 18 2.0 2.2 6.4
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The effects of deicing chemicals on soils may be affec-
ted by other factors. The filtration rate of soil depends on
soil structure that affect melting of snow and ice carrying
chemicals or run off through surface. Drainage system
transport runoff to surface water or groundwater. Traffic
flow determines trace metals’ concentrations in soils.
Road conditions determine the length that runoff streams
away from sideroad. Significant impact identified within
6 m from road is shown in Table 2.15 (Norrström &
Jacks, 1998), and measurable impact can be observed up
to 30 m. In a comparative study between high road salt
input versus low road salt input, significantly enhanced
cation exchange of Na for high salt input was compared
with low salt input out to 14 m (Kelting & Laxon, 2010).
Assuming an average distance of 6 m for measurable
impacts of road salt on soils, about 12 square meter per
lane meter or 24 square meter per centerline meter were
affected by road salts.

Acetate salts are considered as biodegradable. Ace-
tate ions are the most abundant organic acid metabolite
in nature. Because of its half-life is less than two days
under 7uC (45uF), acetate salts could be easily degraded

by soil microorganisms. CMA could theoretically influ-
ence the mobility of metals in soils, because acetate
could encircle and bond Mg or Ca, which is known as
chelating effect. However, degradation of acetate hap-
pens so rapidly that little acetate transforms to chelate
and stays in soils.

2.2.2 Surface Water and Groundwater

Surface water quality criteria for chloride in Indiana
has been established as a function of hardness (in mg/L
as CaCO3) and sulfate (in mg/L). Chloride criteria may
only be established on sulfate concentration when it is
greater than the water quality criterion for sulfate
and details are listed in subdivision 327 IAC 2-1.3 in
Water Quality Standard of Indiana (Indiana Depart-
ment of Environmental Management, 2013). The fol-
lowing equations provide chloride acute aquatic criter-
ion (AAC) and chronic aquatic criterion (CAC) as a
function of hardness and sulfate:

AAC 5 287.8 (hardness)0.205797 (sulfate)-0.07452

CAC 5 177.87 (hardness)0.205797 (sulfate)-0.07452



Groundwater or surface water could be affected near
salted roads. The parameter salinization indicates the
concentration of total dissolved solid in water could
increase when concentration of chloride and mobiliz-
able anion of various salts increase (Kaushal et al.,
2005). In U.S. surface waters, chloride concentrations
usually range from 0 to 100 mg/L and most concentra-
tions were lower than 20 mg/L (Wetzel, 2001). The
average concentration for rivers in North America is
around 8.0 mg/L (Wetzel, 2001). An Adirondack Lakes
Assessment Program (ALAP) analysis of chloride
concentration in 114 lakes with majority of them loca-
ting near the salted roads showed an average chloride
concentration of 8.8 mg/L, which was 22 times higher
than the average chloride concentration at another sur-
vey by Adirondack Lakes Survey Corporation (ALAS),
in which most lakes were far from salted roads. Further-
more, 20% of ALAP lakes chloride concentration
exceeded 11 mg/L. The differences in chloride concen-
trations showed that deicing chemicals had increased
chloride concentrations in lakes. Chloride criteria recom-
mendation from EPA for fish species showed that chlo-
ride concentration should not exceed a 4-day average
of 230 mg/L and acute concentration should not exceed
1-hour average of 860 mg/L, and both of them should
not exceed more than once every 3 years on (U.S. Envi-
ronmental Protection Agency, n.d.). A previous study
estimated that 5% of aquatic species in the stream were
affected if chloride concentration is over 210 mg/L and
10% of them could be affected if the concentration is
over 240 mg/L (Canadian Environmental Protection
Act, 2001).

One identified public health risk related to deicing che-
micals on water supplies is toxemia during pregnancy,
but most regulations for water supply systems did not

identify high chloride concentration something to alert
the public about on the basis of Figure 2.10 (Mullaney
et al., 2009). The samples were collected from 1,332 sites
from 1991 to 2004, and chloride concentrations in a small
proportion of total samples (less than 1.5%) exceeded the
criteria and majority chloride concentration (99.8%) were
less than 860 mg/L (Mullaney et al., 2009).

Sample collection from surface water for chloride
measurements is usually conducted during winter and
spring months, i.e., between November and April. The
concentrations above the recommended criteria mainly
occur during rains or freezing rain events with the
application of deicing products or when the tempera-
ture is high enough to melt the roadside snow and ice
through runoff into soils.

Besides concerns about chloride, acetate’s potential
ability to decrease available oxygen in surface water
leads to additional environmental concerns. Acetate is
assimilated rapidly as carbon resource for bacteria, and
CMA or KAc used in highways increase the concentra-
tion of acetate above natural levels. Acetate based
chemicals should be avoid in the following scenarios:
(1) diluting potential of runoff is low; (2) runoff could
flow through road drains into common waterbody; and
(3) receiving water bodies are close to roads; (4) water
runoff is possible to move into ice covered waterbody
that has low dissolved oxygen; (5) receiving water
temperature is warm during late spring storm (Brenner
& Horner, 1992).

Groundwater contamination induced by anti-icing or
deicing products are related to the following factors:
application rates of products, frequency of the precipita-
tion, characteristics of soil, distances between ground-
water and roadway, permeability of aquifer material,
direction and flow rate of groundwater (D’Itri, 1992).

Figure 2.10 Distribution of maximum chloride concentration measured at selected surface water quality monitor stations in the
glacial aquifer system, northern United States between 1991 and 2004 (Mullaney et al., 2009).
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The hydrological cycle affecting road salt entering
groundwater is well studied and can be described with
the following equation:

P 5 RO + Re + ET + S

Where,
P 5 Precipitation;
RO 5 Runoff as stream flow (surface or direct runoff);
Re 5 Recharge or groundwater (groundwater dis-
charge to stream as baseflow);
ET 5 Evaporation and plant transportation;
S 5 Storage in aquifers, streams, and reservoirs.

Only a portion of precipitation containing salts flows
through soil zone, filtrates water table, and recharges
groundwater. Most of precipitation run off in soils
becomes saturated and enters drainage systems, ditches
or storm system, watershed or other receiving water-
bodies. If soils are not saturated, the portion of precipita-
tion could not move through shallow soils and are absorbed
by plants or released back to atmosphere via evapora-
tion, while the portion of precipitation could flow through
shallow soils above the water table as interflow, and
eventually discharge as spring, seep, or stream baseflow.

In addition, long term exposure to sodium may
increase hypertension (U.S. Environmental Protection
Agency, 2003). Sodium ion’s strong relationship with
hypertension has influenced 12%–30% of Americans.
Although sodium ion is not considered the only factor
inducing hypertension, studies have shown that excess
sodium lead to high blood pressure, which could increase
the possibility of hypertension. The only federal drinking
water standard for sodium is an unenforceable Drinking
Water Advisory of 20 mg/L and 500 mg/day per person.
The American Health Association (AHA) recommends
that individual having high possibility of getting car-
diovascular diseases or hypertension should not con-
sume water with sodium concentration exceeding
20 mg/L. However, sodium concentration in 57.1% of

urban land-use wells, 16.7% of agriculture land-use
wells, and 8.0% of forested land-use wells were equal to
or greater than 20 mg/L (Figure 2.11). Sodium ion has
a positive charge and can be absorbed by negatively
charged surface materials, such as minerals and clays.
The proportion of sodium appearing in the ground-
water strongly depends on the characteristics of soils.

2.2.3 Watershed

Indiana has 62,547 miles of rivers, ditches, and drainage
ways and more than 1,500 lakes, reservoirs, and ponds
(Indiana Department of Environmental Management,
2018) and therefore environmental impact of deicing
chemicals on watersheds in Indiana should be eval-
uated. Water quality data from 57 Indiana Fixed
Station Monitoring Program (FSMP) sites and nearby
U.S. Geological Survey stream gages have been exami-
ned for 11 years between 2000 and 2010 (Figure 2.12).
In general, chloride concentrations in Indiana were
within acceptable ranges. Two main sources of chlorine
include disinfectant used for water and wastewater
treatment and chloride salts used in water softening or
deicing processes. The chloride concentration trend
was established and fell within acceptable ranges of
local standards and criteria in more than 97% of collec-
ted samples (Figure 2.13). The maximum chloride
concentration was 615 mg/L, and the 75th percentile
was 51 mg/L (Risch et al., 2010). Elevated chloride
concentrations were observed in four basins, in which
three of them were in the Indianapolis area of the West
Fork White River Basin. For Lake Michigan Basin,
chloride criterion was 680 mg/L, while EPA recom-
mended water-quality criterion for chloride is 230 mg/
L. Significant decreasing trends were observed in six
basins, in which two largest decreases were in the Lack
Michigan Basin and eight sites in the Upper Wabash
River Basin.

Figure 2.11 Distribution of sodium concentrations monitoring wells in forested, agricultural, and urban areas and in drinking-
water supply wells in northern United States between 1991 and 2003 (Mullaney et al., 2009).
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Figure 2.12 Indiana Fixed Station Monitoring Program stream site and upstream watershed (Risch et al., 2010).

Figure 2.13 Chloride concentrations in Indiana streams between 2000 and 2010 (Risch et al., 2010).
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Chloride could disrupt the natural metabolic pro-
cesses of aquatic organisms. The regulation of stressors
to aquatic lives and identification of potential chloride
impact for fish and macroinvertebrate communities are
important for watershed protection. A key factor in
evaluating impact from chloride is the timing of peak
concentration. Fish and macroinvertebrate spawn in

cold temperature from late April to August depending
on the water temperature, which may overlap with the
high concentration of chloride, and therefore better
management of deicing chemicals could help protect
aquatic organisms.

Because the amount of road salt application varies
as a function of local weather conditions and road



authority’s salt application policies, it is difficult to
draw a conclusion on whether or not changes in
application rate of deicing chemicals will mitigate their
impacts on watersheds. Based on actual performance of
deicing chemicals, winter operations managers can use
less salts under similar winter weather conditions to
minimize their environment impacts.

With Best Management Practices (BMP), winter
maintenance operators could reduce road salt applica-
tion to protect environmental health. BMP mainly
focuses on the tool for optimizing the road salt use;
improvement of equipment operation and awareness of
public; and implementation of new technologies and
novel products, such as alternative products (Nixon &
DeVries, 2015). In addition, it is helpful to identify
critical areas within a watershed that are most vulne-
rable to highest load to the instream and implement a
paired sub-watershed study to assess the potential
effects and cost-effectiveness using an alternative dei-
cing chemical rather than traditional sodium chloride
(Wenck Associates Inc., 2006). The alternative chemi-
cals, however, may have their own problems. For exam-
ple, sugar in beet juice may attract unwanted nuisance
pests in the stream.

2.2.4 Vegetation

The adverse effects of anti-icing and deicing chemi-
cals on vegetation along roadsides have been investi-
gated, and the common chemical effects of vegetation
include browning of leaves and impede photosynthesis,
premature defoliation, suppressed bloom and fruit, and
diminished regeneration and enhance mortality.

Plant response to salt stress can be partially explai-
ned by high salinity imposed by salt chemicals and
osmotic stress (Niu et al., 1995), except that sodium is
not a threat for halophytes, which live in salt marshes
and sea coasts and could prevent accumulation of
sodium in the cytoplasm via restricting uptakes across
the plasma member and promoting extrusion or
sequestration in halophytes (Hasegawa et al., 2000).
Salt concentration over 400 mM can inhibit most
enzyme activities and perturbate hydrophobic-electro-
static balance among forces maintaining protein struc-
ture (Serrano, 1996). Furthermore, sodium induced
toxicity does not limit to toxic effects of sodium ions in
the cytosol, potassium ions homeostasis could be

+ +disrupted because of competition between Na and K
(Bartels & Sunkar, 2005). The increased salinization of
roadside soils promotes the growth and spread of salt
tolerant non-native species. The spread of halophytic
species have been reported along sideroad in snow
affected areas, such as northeastern U.S. and southern
Canada (Canadian Environmental Protection Act,
2001). An uncovered salt pile of 10 years had an effect
on endemic plant community of Pinhook bog, Indiana
lead to an average concentration of 568 mg/L sodium
and 1,215 mg/L chloride and resulted in the absence of
all endemic species and the dominance of invaded non-
native species Typha angusifolia. But after the salt pile

was covered and shut down, salt concentration in
interstitial water decreased by 50% in four years with
the recurrence of many endemic species (Wilcox, 1986).
Deicing chemicals decrease species diversity and even-
ness of fungal population and lead to significant
decreasing of Shannon diversity of in upper soil layer
(0–15 cm) (Ke et al., 2013).

CMA is thought to be harmless to terrestrial
vegetation, and Mg2+ and Ca2+ have stimulating effects
on some species. Widely applied CMA did not signi-
ficantly affect yield, cover, vigor or rooting in herbac-
eous and woody plants. A previous study showed that
2,500 mg/L CMA, whose concentration was higher
than that used in possible routine deicing application,
was much less harmful than NaCl around the root zone
during spreading and flooding (Brenner & Horner,
1992).

2.2.5 Wildlife

2.2.5.1 Amphibians. Amphibians are vulnerable to
high salinity because their skins have critical functions
for osmoregulation, which is a process to help orga-
nisms maintain internal solute concentration. Salini-
zation of wetlands becomes a global concern because
of application of road anti-icing and deicing pro-
ducts, intensive irrigation practices, and saltwater
intrusion due to sea-level rise (Karraker et al., 2010).
In amphibian embryos, breeding or placing their babies
near or on the bottom of the pond faces the highest risk
of road salts and rates of mortality. Because normal
development depends on the exchange of freshwater via
vitelline chamber, high salinities may result in impai-
red development and potential abnormalities. Amphi-
bians’ responses to high salinity are not direct mortality,
but subtle effects, such as malformation in green frogs.
In addition, several studies have shown that increased
salinity has negative effects on other amphibians, such
as decreased survival rate and sizes in spadefoot toads
(Stănescu et al., 2016), survival and metamorphosis
of frog’s tadpoles (Hsu et al., 2012; Karraker et al.,
2010).

In Indiana, North America Amphibian Monitoring
Program (NAAMP) cooperated with Wildlife Diversity
Section of Indiana Department of Natural Resources’
Division of Fish and Wildlife and published distribu-
tion maps for amphibian species to help the general
public to understand breeding chronology (Klueh,
2011). A survey of 104 potential amphibian-breeding
sites in northwest Indiana has been done in terms of the
presence and abundance of amphibian, habitant para-
meters, and water chemistry (Brodman et al., 2003).
The levels of dissolved chloride, hardness, alkali-
nity and other hydrological or geometrical variables
have been identified as most important breeding site
factors.

Saline solution could reach 200 meters from highway
and into wetland to contaminate amphibian habi-
tats (Karraker, 2007). Conductivity, which is an indi-
cator for salt concentration, was 20 times higher in
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side-road than that in forested pool. Previous results
showed that conductivity at 3,000 mS reduced the emb-
ryonic and larval survivorship for wood frogs and
malformed embryos died within a week of hatching.
Some larvae exhibited normal development initially but
could have abnormal behaviors like erratic swimming.
Rana clamitans, a green frog, showed relative higher
tolerance to low and moderate concentrations of salts
and less sensitivity than other North American amphi-
bians. These results suggest that salt application near
wetlands should be well controlled to protect amphi-
bians from adverse influence and the potential declining
of embryonic and larval survivorship should be addressed.

2.2.5.2 Mammals and birds. Mammals may face
sodium deficit and are attracted to salts on the road
(Schulkin, 1991). Some mammals, like moose, white
tailed deer, and snowshoe rabbit, extend their homes to
roadside pool to satisfy their demand of sodium (Canadian
Environmental Protection Act, 2001; Leblond et al.,
2007).

Mortality of birds can be indirectly caused by salts
as the bird ate salts and were struck by vehicles (Mineau
& Brownlee, 2005). Birds need salts to maintain their
physiological need and small rocks, or grit, which are

their primary tools for digestion. However, in some
cases, high ingested toxicity could contribute to abnor-
mal behaviors. Birds had been observed as fearless, or
weak and flying slowly accompanied by tremors and
partial paralysis (Mineau & Brownlee, 2005). Ingesting
high amount of sodium impeded flying and perching
abilities in the house sparrow (Bollinger et al., 2005).

Environmental impacts of anti-icing and deicing
chemicals are summarized in Table 2.16.

2.3 Cost

2.3.1 Cost of Deicing Chemicals

Typical treatment cost for winter operations includes
standard labor, overtime, and deicing chemicals. Denver,
Colorado spent an annual labor cost of $4 million,
overtime of $0.5 million, and deicing chemicals of $1.5
million for street maintenance (Kennedy, 2018). Liquid
salts stay on the road with less mobility and bounce and
scatter reduction. A previous study in Oregon Depart-
ment of Transportation showed that the cost of solid
deicing chemicals was $96 per lane mile and only $24 per
lane mile for liquid deicing chemicals, and seasonal cost
dropped from $5,200 per mile with solids to $2,500 per

TABLE 2.16
Summary of different anti-icing or deicing chemicals’ environmental impact (Fay et al., 2015)

Surface and

Groundwater Soil Vegetation Wildlife

Chloride
(NaCl, MgCl2,

CaCl2)

Acetates
(CMA, KAc)

Beet juice

Glycerol

Cl, Na, Mg, and
Ca are easily
dissolved in the
water and
increase the
hardness.

The potential
anoxic
condition in
the receiving
waterbody.

Exert additive
BOD leading
to dissolved
oxygen (DO)
reduction.

Enhance turbidity
and hardness.

Potassium ion
could cause
potential
eutrophication
of water body.

Exert significantly
temporary
additive total
organic
materials
leading to DO
reduction.

Exert additive
BOD in
aquatic system.

Na and Cl accumulate
in the soil, break the
soil structure and
increase the heavy
metal concentration
via cation exchange.

+Ca2+ and K could
enhance the
stability and
permeability of soil
structure.

+Ca2+ and K could
enhance the
stability and
permeability of soil
structure.

Degradation of CMA
cause potential pH
increasing.

The breading down
process could cause
temporary
anaerobic soil
condition.

Glycerol has minimal
negative effects on
soil’s stability and
permeability.

Foliage is subject to chloride
resulting in leaf singe,
browning, and senesce.

The increased salinization gives
the possibility to establish the
salt tolerant and spreading of
non-native species.

Shifts in plant communities.

Negative effects are considered as
neglectable. At the low
concentration (500 ppm) could
act as fertilizer.

If additive chemicals cause high
2+ +concentration of Ca and K ,

deterioration like low
germination rate and browning
of leaf may appear.

N/A

At high concentration, the
adverse influence observed on
metabolism on plant cell and
inhibition on enzyme activities.

The component of glycerol could
be adsorbed by vegetation.

Deicer additive Cl has negatable
effect until increases to
extremely high
concentration.

Amphibian’s respondence to
high salinity have subtle
effects, such as
malformation, but usually
leads to nonfatal risk.

Ingestion of salts directly for
birds or mammals could
cause toxicity and abnormal
behavior.

Promote bacteria and algae
growth. KAc has more
toxicity than CMA.

N/A

Glycerol acted as contraceptive
chemicals resulting in
diminishing fertility in fish.

For other animals, potential
scenario including renal
failure, fatty liver, even
death.
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mile with liquids (Bagley & Williams, 2011). Further-
more, liquid salts could improve safety via preventing
snow and ice accumulation, decreasing reaction time,
leaving bare road for transportation, and reducing
windshield damage claims. None of the liquid deicing
chemicals (NaCl, CaCl2, and MgCl2) lost their capacity
after 14 months of field storage, regardless of the
storage condition (Shi et al., 2011). NaCl-based solid
deicing chemicals did not lose its capacity over the 12
months of field storage based on key properties, such
as performance parameters (characteristic temperature
Tc for ice crystals to start to melt and ice melting
capacity at 30uF) regardless of the storage condition
(Shi et al., 2011).

Direct liquid application could be combined with
other techniques to achieve better performance and
cost-effectiveness. Three common combination tech-
niques are used: (1) pre-wetting: liquid sprayed on salt
at the spinner (5–10 gallon per ton); (2) treated salt:
liquid benefits without the liquid infrastructure (5–10
gallon per ton); (3) slurries: new technique with higher
liquid pre-wetting use on salt (10–30 gallon per ton)
(Bagley & Williams, 2011).

2.3.2 Equipment

One of the most important tasks for winter road
maintenance involves mechanical removal of snow and
ice from roadways to ensure safe driving conditions,
and cost saving can be achieved via the use of efficient
mechanical removal equipment, reduction of purchas-
ing anti-icing or deicing materials, and improved safety
pavement conditions. For instance, if snow or ice
could be removed through plowing before ice bonds to
the pavement, the need for deicers could be signifi-
cantly reduced. A study in Otterbuin Park, Quebec
showed that a salt reduction of 73% was achieved after
implementing effective plowing practices and training

(Canadian Environmental Protection Act, 2001).
Furthermore, once the temperature of pavement was
below 10uF, NaCl deicing product became less effective
at melting snow or ice and causes melting snow or ice
to stick to the pavement (Akin et al., 2013). Therefore,
plowing may be effective at low temperatures because of
reduction cost of operator, fuel, and amount of products
use (Akin et al., 2013). A cost and benefit analysis of
various plowing techniques is shown in Table 2.17.

2.3.3 Common Accepted Performance Measures
(CAPM)

Establishing outcome-based level-of-service (LOS)
goals on the basis of road condition to achieve certain
criteria is a common practice. A survey of 75 U.S. and
international agencies or private survey firms shows a
typology matrix of cost information of different per-
formance measures (Figure 2.14). Over 70% of agen-
cies use LOS goals to achieve road maintenance goals
(Xu et al., 2017).

Material usage, equipment usage, cost of labor,
storm severity, and friction are representative variables
for cost analysis. The comparison results of the relative
timeliness, reliability, and effectiveness of methods are
shown in Figure 2.15.

The timeliness is considered as the most reliable
method for performance measurement. However,
equipment, labor and material cost are also important.
Effectiveness offers a magnitude of metrics reflecting
the performance. For example, friction is rated highly
effective as it measures how well the operation enhances
friction of the road surface. Storm severity is regarded
as medium reliable and could be easily quantified to set
up a LOS. Customer satisfaction is low in timeliness
and medium in cost and reliability but is an urgent
demand to measure performance based on input from
customers. For example, Minnesota Department of

TABLE 2.17
Cost and benefit of various plowing techniques (Akin et al., 2013)

Techniques Costs Benefits Reference

Using wider front plows and

tow plows

Conversion to 14-ft plow

$400/foot;

Two plows reduce

equipment investment by 20% to 30%

Reduced number of passes required;

Fuel savings;

Reduced labor required;

Increased snow removal efficiency

(Lannert, 2008)

High speed snow plow Potential roadside damage Reduced chemical usage;

Improved level of service due to flexible

cutting edge

(Michigan Department of

Transportation, 2011)

Use of underbody plows and

improved overall plowing

practices

Total costs including prewetting

equipment: $53,700

Total savings from salt reduction

$151,200

(Canadian Environmental

Protection Act, 2001)

Tow plow $93,000 20–30% savings;

Plow 50% more miles;

6–7 years return on investment;

Increased service life of 20–30 years

compared to typical 12–15 years;

Operates at 40% of the cost of standard

plow

(Michigan Department of

Transportation, 2011)
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Figure 2.14 Cost of different performance measurements (Xu et al., 2017).

Figure 2.15 Performance by timeliness, reliability, and effectiveness (Xu et al., 2017).

Transportation shifted their bare pavement metric to
bare line instead of full-width to match motorists’
expectations (Xu et al., 2017).

3. LEVEL OF SERVICE ANALYSIS

3.1 Short-Term Cost Benefit Analysis

3.1.1 Product-Based Estimation

Costs of ten anti-icing or deicing products (four solid
chemicals and six liquid chemicals) were evaluated and
details of these products are listed in Table 3.1. Estima-
ted application rates in terms of different temperature
ranges are based on products’ main components and the
application rates are shown in Table 3.2 and Table 3.3.
The temperature ranges are based on level of ser-
vice established by INDOT (M. Anderson, personal
communication, September 17, 2018). Further field
studies can be to modify application rates for commer-
cially available anti-icing or deicing products.

In addition, costs for the application of deicing che-
micals are estimated. For solid deicing products, rock

salt is the cheapest in different temperature ranges (Table
3.4). For liquid deicing products, sodium chloride brine
is the cheapest (Table 3.5). The results also show that
acetate-based products are cheaper than chloride-based
products.

3.1.2 Weather-Based Estimation

Indiana is divided into four winter climatic zones
(McCullouch, 2010). Southern zone has a milder winter
temperature and a shorter winter season. Central zone
is much colder with more frequent snow. Northern
zone has a hasher temperature and experiences more
snow events. Northern zone is divided into two distinct
regions with one region at northwest corner under Lake
Michigan with snowfall events twice as frequent as
the rest of northern region and the other region not
significantly affected by Lake Michigan. Four locations
(Evansville, Fort Wayne, Indianapolis, and South
Bend) were selected to represent four climatic zones at
Indiana for southern zone, northeast zone, central zone;
and northwest zone with lake effect snow, respectively.

The following equations provide estimations of winter
index (WI) for four locations and Indiana (McCullouch,
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TABLE 3.1
Costs of anti-icing or deicing products

Products Manufacturer Description Price Reference

Solid

Liquid

Road salt

Clearlane enhanced

Ice slicer

Road salt brine

Caliber M1000

Liquidow armor

Cf7

Cma

Unknown

Cargill Salt

Cargill

Redmond Minerals

Cargill Salt

Minnesota Corn Processors

Dow Chemical

Cryotech

Cryotech

Unknown

92,98% Sodium

chloride

90,92%

Magnesium

chloride

100% Calcium

chloride

23% Sodium

chloride

27% Magnesium

chloride

30% Calcium

chloride

100% Potassium

acetate

32.6% Calcium

magnesium

acetate

70/30 (w/w) 23%

NaCl/beet juice

0.034 $/lbs

0.038 $/lbs

0.068 $/lbs

0.16 $/gal

0.55 $/gal

0.5 $/gal

3.3 $/gal

5.49 $/gal

0.18 $/gal

(Druschel, 2012)

(Druschel, 2012)

(Druschel, 2012)

(Fischel, 2001)

(Fischel, 2001)

(Fischel, 2001)

(Fischel, 2001)

(Fischel, 2001)

(Fu et al., 2012)

TABLE 3.2
Solid deicing chemicals’ application rate (lbs/lane-mile) in different temperature bands (Amsler, 2014; Nixon et al., 2007)

Weather

Category

Daily Road

Temperature

Solid Deicing Chemicals’ Application Rate (lbs/lane-mile)

Road Salt Clearlane Enhanced Ice Slicer N/A Cryotech CMA

92%–98% NaCl 90%–92% MgCl2 100% CaCl2 100% KAc 96% CMA

1 28–32+uF 100 110 90 168 170

2 20 to 27uF 250 275 232.5 385 400

3 10 to 19uF 350 374.5 308 490 525

4 10uF or below .350 .360.5 .290.5 .455 .490

TABLE 3.3
Liquid deicing chemicals’ application rate (lbs/lane-mile) in different temperature bands (Amsler, 2014; Fu et al., 2012; Nixon et al., 2007)

Weather

Category

Daily Road

Temperature

Application Rate (lbs/lane-mile)

Road Salt

Brine

23% NaCl

Caliber

M1000

27% MgCl2

Liquidow

Armor

30% CaCl2

CF7

50% KAc

CMA

25% CMA

70/30 (w/w)

23% NaCl/Beet Juice

1 28–32+uF 44.4 32.2 33.3 32.0 18.1 100

2 20 to 27uF 111.0 83.2 83.3 73.3 42.8 250

3 10 to 19uF 155.4 110.2 113.5 93.3 56.0 350

4 10uF or below .155.4 .106.5 .109.2 .86.7 .52.1 .350
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2010). These equations are derived from multiple
regression analysis in SAS, which is an interactive
and batch program providing modules for statistics
analysis. Weather data is collected from the National
Oceanic and Atmospheric Administration (NOAA) for
four winters (months—November through March, for
the winter seasons of 2002–2003, 2001–2002, 2000–
2001, 1999–2000).

Evansville: WI 5 0.01116 Frost + 23.68383 Freez-
ing_Rain + 43.46891 Drifting – 18.77938 6 Snow +
63.02214 Snow_Depth + 0.23399 Hour – 0.32291 Aver-
age_Temperature

Fort Wayne: WI 5 7.05832 Frost – 16.21024 Freez-
ing_Rain + 6.31394 Drifting + 31.24970 Snow +
25.36240 Snow_Depth + 1.23828 Hour – 6.95440 Aver-
age_Temperature



TABLE 3.4
Solid deicing chemicals’ cost (dollars/lane-mile) in different temperature bands (Amsler, 2014; Nixon et al., 2007)

Weather

Category

Daily Road

Temperature

Solid Deicing Chemicals’ Cost (dollars/lane-mile)

Road Salt

92%–98%

NaCl

Clearlane

Enhanced Ice Slicer Cryotech CMA

90–92% MgCl2 100% CaCl2 96% CMA

Road Salt Minimum Cost

($/lane-mile)

1

2

3

4

28–32+uF
20 to 27uF
10 to 19uF
10uF or below

3.4

8.5

11.9

.11.9

4.18

10.45

14.23

.13.70

6.12

15.81

20.944

.19.754

246.5

580.00

761.25

.710.50

3.4

8.5

11.9

.11.9

TABLE 3.5
Liquid deicing chemicals’ cost (dollars/lane-mile) in different temperature bands (Amsler, 2014; Fu et al., 2012; Nixon et al., 2007)

Weather

Category

Daily Road

Temperature

Liquid Deicing Chemicals’ Cost (dollars/lane-mile)

Sodium Chloride

Brine

23% NaCl2

Caliber

M1000

27% MgCl2

Liquidow

Armor

30% CaCl2

CF7

50%

KAc

CMA

32.6%

CMA

Unknown 70/30

(W/W) 23% NaCl2/

Beet Juice

Road Salt

Minimum Cost

1 28–32+uF 7.11 17.71 16.67 105.60 99.43 7.99 3.4

2 20 to 27uF 17.76 45.76 41.67 242.00 234.85 19.98 8.5

3 10 to 19uF 24.87 60.62 56.74 308.00 307.44 27.98 11.9

4 10uF or below 24.87 58.55 54.62 286.00 286.09 27.98 11.9
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Indianapolis: WI 5 3.42152 Frost + 7.96888 Freez-
ing_Rain + 7.24260 Drifting + 14.044284 Snow +
16.63333 Snow_Depth + 1.50251 Hour – 3.90486 Aver-
age_Temperature

South Bend: WI 5 -5.98483 Frost + 13.73518 Freez-
ing_Rain + 12.57288 Drifting – 25.18103 Snow +
28.78145 Snow_Depth + 4.29121 Hour + 6.77877 Aver-
age_Temperature

Indiana: WI 5 0.71839 Frost + 16.87634 Freez-
ing_Rain + 12.90112 Drifting – 0.32281 Snow +
25.72981 Snow_Depth + 3.23541 Hour – 2.80668 Aver-
age_Temperature

3.2 Level of Service Analysis

3.2.1 Level of Service in Indiana

Level of service (LOS) can help customers make
informed decisions and improve cost-effectiveness of
anti-icing and deicing chemicals. LOS proposed by
INDOT includes four weather categories with two
sub-categories that defines the expectations of road
conditions during storm and post storms. INDOT
primarily focuses on two weather categories, road tem-
perature and wind speed (M. Anderson, personal
communication, September 17, 2018). Results obtained
from LOS analysis are listed as follows:

N agency snow and ice control policy,
N road classifications,
N traffic data,
N maintenance coverage time periods defined for various

operations, including clean-up operations,
N equipment types and amounts,

N location of facilities,

N personnel rules and regulations,

N materials used, and

N special circumstances and conditions.

The requirement of different categories is shown in
Table 3.6 and the definition of each category is listed
as follows (M. Anderson, personal communication,
September 17, 2018):

N Category 1 (green): the most optimal conditions to
remove snow or ice.

This category requires the least amount of rescores.
Clean-up operations need to be typically finished imme-
diately after storm and require minimal post storm
supervision.

N Category 2 (yellow): more difficult conditions to remove
snow or ice.

This category requires increased resources to achieve
same expectations as category 1. Clean-up operations
typically need to be finished by the next day. Lingering
effects after storm exist including snow pack, ice, blow-
ing and drifting snow. Post storm supervision is neces-
sary until condition improves.

N Category 3 (red): conditions are the push envelope for
maintenance. Material usage increases significantly in
this category. For example, to melt J inch ice at 30uF,
1,779 pounds of salts are required for each lane mile. To
melt the same amount of ice at 20uF, 15,810 pounds of
salts are needed for lane mile, which are about 9 times
higher than those needed at 20uF. Sunlight and traffic
play an important role to clean up roads effectively. Post



TABLE 3.6
Level of service requirement in Indiana (M. Anderson, personal communication, September 17, 2018)

Weather

Category

Maximum Daily

Road Temperature

Winds Speeds

Category Adjustment

Pavement Condition

During Storm

Class 3 Class 1

Post Storm

Class 1 Class 2 Class 2 Class 3

1 28–32+uF 15+mph Partial Partial Partial Bare Bare Bare

2 20–27uF 15+mph Partial Partial Partial Bare Bare Partial

3 10–19uF N/A Partial Passible Passible Bare Partial Passible

4 ,10uF N/A Passible Passible Passible Partial1 Partial1 Passible

1Class 1 and Class 2 route with category 4 weather condition, operators should continue working to reduce or eliminate partial snow coverage.

TABLE 3.7
Guidance for level of service (M. Anderson, personal communication, September 17, 2018)

Weather

Category

Special Guidance Recovery Time (hours)

Activities Note

Frost Prevention /

Pretreatment Application Class 1 Class 2 Class 3

1 Liquid routes, pre-treatment

and material should be

maximized to reduce post

storm ahead

— Yes 2 5 6

2 The amount of salts and pre-

treatment should be reduced

in areas with high possibility

of blowing or drifting snow

Require overnight

supervisor

Yes 4 7.5 9

3 Additive liquid salt brine when

the pavement is below 17uF
Post storm clean-up of

lower tier road should

be limited to daylight

Caution 8 12.5 N/A

4 Routes that are lower than tier

routes should be reduced to

plow only

Post storm clean-up of

lower tier road could

be reduced until

conditions improve

Not recommended 12 N/A N/A
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storm clean-up operation should be limited to daylight

hours. Increased manpower is needed to supervise

operations, such as blowing and drifting snow.

N Category 4 (gray): a condition that requires operation

adjustment.

Extreme cold conditions add significant fatigue
on employees and equipment. Common salts are in-
effective in this category. Higher tier routes should
take priority for continual operation until conditions
change.

Clean-up activities begin at the end of each storm
with identified service objectives. Typically, clean-up
activities should be applied during working hours. How-
ever, clean-up activities may be postponed during over-
time hours because of some circumstances, such as
coming storm or sudden decreasing temperature. Clean-
up activities include plowing, usage of material to deice
from highway surface, plowing back shoulders, cross-
overs and approaches, cleaning and opening of frozen
drains, and equipment cleanup (Belter et al., 2009).

The recommendation operation for four weather
categories are listed in Table 3.7.

Three classes of INDOT roadway are defined as
follows (M. Anderson, personal communication,
September 17, 2018):

N Class 1: Interstate routes and roadways with average
daily traffic (ADT) volumes over 10,000 vehicles per day,
as well as other high priority roadways including those
serving hospital facilities and other emergency service
providers.

N Class 2: Routes with traffic volumes between 5,000 and
10,000 ADT.

N Class 3: Routes with traffic volumes less than 5,000 ADT.

3.2.2 Traffic Condition

Common performance approaches for analyzing
traffic condition include space mean speed, travel time,
volume/capacity (V/C) ratio, and crash frequency.
Space mean speed is the recommended variable to
establish LOS based on traffic condition (Table 3.8).
Travel time is equivalent to speed. V/C ratio could
change during winter events and it is hard to be used
as a parameter to set up a LOS for winter mainte-
nance. Crash frequency was not correlated well with
traffic conditions (McCullouch et al., 2013).
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TABLE 3.8
Level of service based on traffic condition (McCullouch et al., 2013)

Traffic Speed (70 mph posted) .55 45–55 35–45 25–35 ,25

LOS grade Very good Good Fair Poor Very poor

TABLE 3.9
Modified score for storm index factor (Nixon & Qiu, 2005)

Storm Type (ST)

Freezing Rain

Light Snow

(,2 Inches)

Medium Snow

(2–6 Inches)

Heavy Snow

(.6 Inches)

0.4 0.35 0.52 1

Storm temperature (Ti) Warm (.32uF) Midrange (25–32uF) Cold (,10–25uF) Extreme cold (,10uF)

0.25 0.4 0.6 1

Wind condition in storm (Wi) Light (,15 mph) Strong (.15 mph) — —

1 1.2 — —

Early storm behavior (Bi) Start at snow Start at rain — —

0 0.1 — —

Post-storm temperature (Tp) Same as in storm Warming Cooling —

0 -0.87 0.15 —

Post-storm wind condition (Wp) Light (,15 mph) Strong (.15 mph) — —

0 0.25 — —
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Snow or ice removal performance varied because of
vehicle speed. Base on the data collected between 2010
and 2012, winter storm performance standard has been
proposed by INDOT as follows:

N For interstate road with ADT less or equal to 65,000
vehicle per day (VPD), less than 25% of total traffic
speed was no more than 45 mph per storm event.

N For interstate road with ADT more than 65,000 VPD,
less than 60% of total traffic speed was no more than 45
mph per storm event.

3.2.3 Weather Condition

The common weather conditions have been collected
in Indiana. Currently, 29 road weather information
system station provide on-line weather information in
Indiana and includes pavement condition (wet or dry),
pavement temperature, air temperature, dew point
temperature, precipitation, wind speed, wind direction,
subsurface temperature, and visual image. In addition,
National Weather Service Data also collects weather
(McCullouch et al., 2013).

Storm index has been proposed to evaluate weather
condition. INDOT used weather hour to define
maintenance severity. The storm index proposed by
Nixon spans a wide applicable range of storm
characteristics (Nixon & Qiu, 2005).

The equation to calculate storm severity index is
shown as follows:

SSI~
1

b
|ST|Ti|WizBizTpzWp{a

� 0:5

Where,

SSI 5 storm severity index;

ST 5 storm type;

Ti 5 in-storm road surface temperature;

Wi 5 in-storm wind condition;

Bi 5 early storm behaviors;

Tp 5 post-storm temperature;

Wp 5 post-storm wind condition;

a, b 5 parameters to normalize storm severity index
from 0 to 1.

If calculated SSI is greater than 1, then SSI is assu-
med to be 1. If calculated SSI is less than 0, then SSI can
be assumed to be 0. The scores used in the SSI calcula-
tion equation has been modified and listed in Table 3.9.

3.3 Bare Pavement Regain Time and Application Rate

For low volume transportation facilities, salt appli-
cation rate, pavement surface temperature, and amount
of snow have significant impacts on desirable bare
pavement regain time (BPRT). Other weather condi-
tions, such as air temperature, sky-view condition,
humidity, wind speed, dew point, and wind chill, do not
cause significant contributions to BPRT.

BPRT can be estimated using the following equation:

BPRT (hour) 5 b + k1 6 Salting rate (lb/1,000 ft2) +
k2 6 Pavement surface temperature (uC) + k3 6
Thickness of snow (cm)

b1 5 intercept

k1 5 Coefficient of salting rate

k2 5 Coefficient of pavement surface temperature



TABLE 3.10
Parameter estimation of BPRT with multiple regression for salt
and alternative products (Hossain et al., 2015; Hossain et al.,
2014)

Salt b k1 k2 k3

Rock salt

Slicer

Blue

Green

Jet blue

Salt (unknown)

5.163

5.167

7.749

1.845

3.097

3.339

-0.081

-0.221

-0.256

-0.054

-0.093

-0.069

-0.142

-0.130

-0.254

-0.191

-0.102

-0.476

-0.916

3.823

-2.689

0.769

0.427

0.571

k3 5 Coefficient of amount of snow

A multiple regression analysis was conducted and the
results were shown in Table 3.10.

For normal volume transportation facilities, if appli-
cation rate derived from field study for one alternative
product is not available, the alternative product’s
application rate needs to be estimated based on melt
capacity derived from experiments.

Assuming the performance of rock salt at 20uF as
base standard, the performance of alternative product
at 20uF can be estimated with the following equation:

Application rate of a proposed deicer

~

Application rate of rock salt at 200F|

Ice melting capacity of rock salt at 200F

Ice melt capacity of a proposed deicer at 200F

4. ENVIRONMENTAL IMPACT ANALYSIS

4.1 Life Cycle Assessment

Previous studies of environmental impacts mainly
focus on one specific aspect after deicing chemicals have
been applied, such as chloride concentration increase in
soil after application (Ke et al., 2013). Life cycle asses-
sment (LCA) is a technique to comprehensively quan-
tify environmental impacts of ozone depletion, global
warming, smog, acidification, eutrophication, carcino-
genics, noncarcinogenics, respiratory effects, ecotoxi-
city, and fossil fuel depletion over the entire life cycle
from resource extraction to end of life. Unlike full cost
measurement including all infrastructure and environ-
mental costs, LCA provides environmental consequen-
ces of different decisions (Fitch et al., 2013). However,
limited studies have been done on LCA of deicing
chemicals (Fitch et al., 2013).

In this study, LCA was conducted on two conven-
tional deicing chemicals (NaCl and CaCl2) and four
alternative products (KAc, CMA, beet juice, and
glycerin). In addition, application rate of deicing
chemicals has been considered in this analysis. As using
alternative products rather than conventional deicers
may increase the application rate (Frischknecht et al.,
2005), it is necessary to analyze the overall environ-
mental impact of alternative deicing chemicals with
similar deicing performance. The results of LCA were

TABLE 4.1
Data source of chemicals

Chemicals Data Source

NaCl (Frischknecht et al., 2005)

CaCl2 (Frischknecht et al., 2005)

KAc (Himmrich et al., 1995)

CMA (Warner, 2016)

Beet juice (Frischknecht et al., 2005)

Glycerin (Frischknecht et al., 2005)

used to analyze the impacts of deicing chemicals at all
lifecycle stages and determine which product has the
least environmental impact. The results may help
INDOT, chemical suppliers, and environmental scien-
tists to evaluate various deicing chemicals to evaluate
their environmental impacts.

Life cycle inventory analysis for NaCl, CaCl2, and
glycerin has been established in the United States and
related data are available in the ecoinvent database in
software SimaPro, a widely used LCA software. How-
ever, lifecycle inventory of KAc, CMA, and sugar beet
are not available. Data sources of these six deicing
chemicals are listed in Table 4.1. The system boundaries
were established from acquisition of chemicals, trans-
portation to storage, and application to the roadway.
Transportation from storage place to applied place is
not considered, as the impact resulted from transporta-
tion is considered as identical for each deicing chemical.

4.2 TRACI and Impact Assessment Categories

Tool for the Reduction and Assessment of Chemical
and other Environmental Impacts (TRACI) is a
framework developed and recommended by the U.S.
Environmental Protection Agency’s (EPA) National
Risk Management Research Laboratory to assess
environmental impacts (Bare & Science Applications
International Corporation, 2003). TRACI can be used
to compare the environmental and human preferability
of two or more products (Bare & Science Applications
International Corporation, 2003). TRACI includes
chemical and environmental impact of ozone depletion,
global warming, photochemical smog, acidification,
eutrophication, human health cancer (carcinogenics),
human health noncancer (noncarcinogenics), human
health criteria (respiratory effects), ecotoxicity, and
fossil fuel depletion (Bare & Science Applications
International Corporation, 2003).

Environmental impact of ozone depletion is evalu-
ated based on the emission of chlorofluorocarbons
(CFCs) or trichlorofluoromethane, which are sub-
stances that lead to decrease of the stratospheric ozone
level. Ozone depletion may result in higher frequency of
skin cancers and cataracts in the human population.
Sources of CFCs include refrigerants, foam blowing
agents, solvent, and halons (fire extinguishing agents).
Ozone depletion potential (ODP) is a parameter pro-
posed by the World Meteorological Organization
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(WMO) to calculate substances that significantly result
in breakdown of the ozone layer (World Meteorolo-
gical Organization, 1999). Within TRACI 2.1, the most
recent ODPs of deicing chemicals were used for each
substance.

Global warming indicates the average increased
temperature in the atmosphere near the Earth’s surface
and in the troposphere. Increasing temperature results
in changes in global climate patterns. The warming
emphasizes the consequences due to increased green-
house gas emission from human activities. TRACI 2.1
utilizes global warming potential (GWPs) to calcu-
late the potency of greenhouse gases relative to carbon
dioxide.

Photochemical smog formation is another environ-
mental impact included in TRACI. Ozone near the
ground is created by multiple chemical reactions
between nitrogen oxides (NOx) and volatile organic
compounds (VOCs) in the presence of sunlight. The
primary sources of smog formation are vehicles, electric
power utilities, and industrial facilities. Carter’s max-
imum incremental reactivity (MIR) was used in the
analysis as it is a comprehensive model including human
and environmental effects and is recommended by U.S.
EPA (U.S. Environmental Protection Agency, 2005).

Acidification indicates increases concentration of
+hydrogen ion (H ) in the environment. Acidification

can be attributed to additive acids (e.g., nitric acid and
sulfuric acid), additive substances (e.g., such as ammonia)
in the water because of acid chemical reactions, biological
activities, or natural environment, such as changes in soil
due to increasing growth of local plant species (Bare
et al., 2012). Acidification model in TRACI 2.1 does not
incorporate characteristics of sites that may provide
buffering capacity (Hauschild & Wenzel, 1998).

Eutrophication indicates an aquatic ecosystem with
enriched nutrients (e.g., nitrates and phosphates) that
can result in accelerated biological productivity, such as
algae, weed, and undesirable accumulation of algal
biomass (U.S. Environmental Protection Agency,
2008). Eutrophication model in TRACI 2.1 incorpo-
rates additional substances that have potential abilities
to cause eutrophication (Bare et al., 2012).

According to current EPA regulations and concern
of pollutants’ characteristics, human health was repre-
sented by three categories in TRACI: carcinogenics,
noncarcinogenics, and ecotoxicity. Input parameters of
these categories were chosen based on EPA Risk Asses-
sment Guidelines and Exposure Factors Handbook.
The USEtox model adopts different model (e.g.,
CalTOX, impact 2002, USES-LCA, BETR, EDIP,
WATSON, and EcoSense 2010) and is a comprehensive
model for human health cancer and noncancer toxicity
potentials and freshwater ecotoxicity potential for over
3,000 organic or inorganic substances (Hauschild et al.,
2008; Rosenbaum et al., 2008).

Respiratory effect addresses a subset of criteria pol-
lutants, such as particulate matter and precursors to
particles. Particle matter refers to a collection of small
particles in the air that cause human diseases including

respiratory illness and death. Particle matter may be
emitted particulates (primary particulates) or products
from chemical reactions (secondary particulates), such
as sulfur dioxide (SO2) and nitrogen oxides (NOx). The
sources of particle matter are fossil fuel combustion,
wood combustion, and dust particles from road and
field (Bare et al., 2012).

Resource depletion in TRACI 2.1 includes fossil fuel
use, land use, and water use. Fossil fuel use has a non-
site-specific recommendation in TRACI. Land use and
water use categories are not fully established, although
many studies have been done (Bare et al., 2003).

4.3 Environmental Impact Analysis

The environmental impact analysis was conducted
with North American TRACI 2.1 (Version 1.04) with a
normalization/weight set of U.S. 2008. The environ-
mental analysis results are shown in Table 4.2 and the
emission results are shown in Table 4.3.

The results of environmental impact data for the six
evaluated deicing chemicals are shown in Table 4.4.
Different units are used for different environmental
impact categories. CFC-11 is trichlorofluoromethane
or Freon 11, which is a widely used refrigerant. The
number 11 indicates the number of atoms of carbon,
hydrogen, fluorine, and chlorine. PM2.5 is fine parti-
culate matter (PM2.5) that has a diameter of less than
2.5 micrometers. CTUe is comparative toxic unit for
aquatic ecotoxicity impacts expresses the estimated
potentially affected fraction of species integrated over
time and the volume of the freshwater compartment,
per unit of mass of the chemical emitted. CTUh is com-
parative toxic unit for human toxicity impacts expresses
the estimated increase in morbidity (the number of
disease cases) in the total human population per unit of
mass of the chemical emitted. MJ surplus is megajoules
of surplus, which measures the depletion of fossil fuel
resources in terms of megajoules (MJ).

4.4 Case Study of Environmental Impact of Selected
Products

To demonstrate how to apply the LCA results for
environmental impact analysis of deicing chemicals,
three products were selected (Table 4.5) and their envi-
ronmental impact were calculated. The function unit in
this study is based on melting one lane mile ice or snow
on the road at 20uF. The environmental impact of
each category calculated as the product of the dry salt
application rate of each component (kg/mile) (Table
4.5) and corresponding environmental impact in each
category (Table 4.4). The results are shown in Table 4.6
and Figure 4.1.

The environmental impact analysis for different
products should be established based on different
environmental categories. For example, if the applied
deicers’ environmental impact on surface water quality
needs to be examined, then the category of eutrophica-
tion should be examined. Among the three tested
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TABLE 4.3
Emission of life cycle inventory data for 1 kg applied chemical

Emissions NaCl CaCl2 KAc CMA Beet Juice Glycerin Unit

Emissions to air

Emissions to water

Waste to treatment

Heat, waste

Carbon dioxide, biogenic

Ammonia

Water

Water, RER

Fatty acids as C

Nitrogen

Phosphorus

Calcium

Cadmium

Chloride

Copper

Mercury

Nickel

Lead

Solids, inorganic

Disposal, limestone

residue, 5% water, to

inert material landfill/

US- US-EI U

Treatment, sewage, from

residence, to wastewater

treatment, class 2/US-

US-EI U

Disposal, inert waste, 5%

water, to inert material

landfill/US- US-EI U

0.00131

0.00507

0.0919

0.0013

0.0013

0.0001

3E-05

0.0638

1E-07

0.1531

1E-06

1E-09

7E-07

1E-05

0.0634

0.1595

1.2

1.2077

1.2 0.765

0.42

0.214

0.01

0.0069

MJ

kg

kg
3m
3m

kg

kg

kg

kg

kg

kg

kg

kg

kg

kg

kg

kg

3m

kg

TABLE 4.4
Environmental impact data for one kilogram chemical applied

Categories NaCl CaCl2 KAc CMA Beet Juice Glycerin Unit

Ozone depletion 8.09E-09 1.48E-07 2.87E-07 7.16E-07 1.68E-08 3.25E-08 kg CFC-11eq

Global warming 1.33E-01 3.76E-05 2.46E+00 8.25E+00 3.37E-01 6.52E-01 kg CO2 eq

Smog 5.83E-03 3.73E-05 1.03E-01 2.84E-01 1.94E-02 3.76E-02 kg O3 eq

Acidification 6.70E-04 9.06E-05 1.01E-02 3.08E-02 2.43E-03 4.69E-03 kg SO2 eq

Eutrophication 1.97E-04 5.70E-05 1.83E-03 3.84E-03 2.37E-03 4.58E-03 kg N eq

Carcinogenics 5.38E-09 2.36E-04 2.56E-08 5.36E-08 -4.70E-09 -9.09E-09 CTUh

Noncarcinogenics 3.18E-08 1.12E-04 1.81E-07 5.38E-07 -2.76E-06 -5.34E-06 CTUh

Respiratory effects 7.79E-05 2.47E-05 1.24E-03 2.21E-03 1.59E-04 3.07E-04 kg PM2.5 eq

Ecotoxicity 1.65E-01 4.01E-05 8.52E-01 1.90E+00 -1.54E+00 -2.97E+00 CTUe

Fossil fuel depletion 1.73E-01 2.51E-05 6.72E+00 1.71E+01 3.95E-01 7.64E-01 MJ surplus

TABLE 4.5
Products and dry salt application rates

Product Component Dry Salt Application Rate (kg/mile) Reference

1 23% NaCl 30 (Fu et al., 2012)

2 30% beet juice + 70% salt brine 36 (10.8 beet juice and 25.5 NaCl) (Fu et al., 2012)

3 30% CaCl2 17 (Gerbino-Bevins, 2011)
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products, product two has the highest impact on
eutrophication (3.01610-2 kg N eq) and product three
has the lowest impact on eutrophication (9.69610-4 kg
N eq). However, when eco-toxicity is compared among
the three products, product two has least impact on
ecotoxicity (-1.216101 CTUe) and product three has

highest impact on eco-toxicity (6.81610-4 CTUe). This
analysis showed that LCA can help winter opera-
tion operators to comprehensively and quantitatively
evaluate environmental impacts of anti-icing and
deicing chemicals in each of the ten environmental
categories.



TABLE 4.6
Environmental impact data for one kilogram applied chemical

Category Product 1 Product 2 Product 3 Unit

Ozone depletion 2.43E-07 3.84E-07 2.52E-06 kg CFC-11 eq

Global warming 3.98E+00 6.96E+00 6.39E-04 kg CO2 eq

Smog 1.75E-01 3.54E-01 6.34E-04 kg O3 eq

Acidification 2.01E-02 4.28E-02 1.54E-03 kg SO2 eq

Eutrophication 5.90E-03 3.01E-02 9.69E-04 kg N eq

Carcinogenics 1.61E-07 8.74E-08 4.00E-03 CTUh

Noncarcinogenics 9.55E-07 -2.84E-05 1.91E-03 CTUh

Respiratory effects 2.34E-03 3.67E-03 4.19E-04 kg PM2.5 eq

Ecotoxicity 4.94E+00 -1.21E+01 6.81E-04 CTUe

Fossil fuel depletion 5.20E+00 8.61E+00 4.27E-04 MJ surplus

Note: Highest environmental impact in each category is shown in bold. Lowest environmental impact is shown in italics.

Figure 4.1 Relative environmental impact of products.
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4.5 Decision Support Tool

A decision support tool has been developed to help
winter operation managers to evaluate environmental
impact of anti-icing and deicing chemicals to support
decisions for snow and ice removal. The environmental
impact is calculated with LCA software SimaPro with
its package of North American TRACI 2.1 (Version
1.04) and normalization/weight set is U.S. 2008. The
tool has been compiled with Microsoft Excel and can be
easily updated.

There are eight tabs in the decision support tool file,
which include a ‘‘State-Wide’’ tab, six individual tabs
for six districts, and one ‘‘Predictive Tool’’ to predict
and evaluate environmental impact of anti-icing and

deicing chemicals for future application. The ‘‘State-
wide’’ tab shows the summary information of state-wide
chemical quantity, chemical cost, and environmen-
tal impact of deicing chemicals of the six districts of
Indiana. There are six individual tabs and each of the
six tabs represents a district in Indiana (Crawfordsville,
Fort Wayne, Greenfield, LaPorte, Seymour, and Vincen-
nes). The total lane mile in each district, actual used
amount of different anti-icing and deicing chemicals, unit
cost of each chemical, deck area, number of frost events,
and application rates are input and chemical applica-
tion rate (gals or lbs per lane mile) and each of the ten
environment impacts are automatically calculated. Ten
individual figures to show different environmental impact
are automatically plotted based on the actual chemical



TABLE 4.7
Environmental impact of selected anti-icing and deicing chemicals

Environmental Impact Salt Brine Liquid CaCl2 Road Salt Road Salt Treated

Application rate 265 gals/mile 265 gals/mile 265 lbs/mile 265 lbs/lane mile Unit

Ozone depletion 2.19E-06 5.87E-05 9.24E-07 9.24E-07 kg CFC-11 eq

Global warming 3.60E+01 1.49E-02 1.52E+01 1.52E+01 kg CO2 eq

Smog 1.58E+00 1.48E-02 6.66E-01 6.66E-01 kg O3 eq

Acidification 1.81E-01 3.59E-02 7.65E-02 7.65E-02 kg SO2 eq

Eutrophication 5.33E-02 2.26E-02 2.25E-02 2.25E-02 kg N eq

Carcinogenics 1.46E-06 9.34E-02 6.14E-07 6.14E-07 CTUh

Noncarcinogenics 8.62E-06 4.45E-02 3.63E-06 3.63E-06 CTUh

Respiratory effects 2.11E-02 9.78E-03 8.90E-03 8.90E-03 kg PM2.5 eq

Ecotoxicity 4.46E+01 1.59E-02 1.88E+01 1.88E+01 CTUe

Fossil fuel depletion 4.69E+01 9.95E-03 1.98E+01 1.98E+01 MJ surplus

Note: Highest environmental impact in each category is shown in bold. Lowest environmental impact is shown in italics.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/22 29

quantify and environmental impact of each chemical in a
specific district. The last tab in the decision support tool
is a ‘‘Predictive Tool’’ to help winter operating managers
better evaluate product costs and environmental impact.
Application rates (gals or labs per mile) and unit cost of
each chemical need to be manually updated and total
chemical costs and chemical quantity can be automati-
cally calculated. Ten individual figures to show different
environmental impact are also automatically plotted
based on the actual chemical quantify and environmental
impact of each chemical.

For example, assuming a district uses one of the four
deicing products (265 gals salt brine, 265 gals liquid
CaCl2, 265 lbs road salt, or 265 lbs road salt treated) for
each lane mile for snow and ice control and their
environmental impact are calculated in the ‘‘Predictive
Tool’’ in the Decision Support Tool and the results
are shown in Table 4.7. Out of the ten environmental
impact categories, salt brine has highest environmental
impact in seven categories (global warming, smog,
acidification, eutrophication, respiratory effects, eco-
toxicity, fossil fuel depletion). Liquid CaCl2 has highest
environmental impact in three categories (ozone deple-
tion, carcinogenics, noncarcinogenics) and lowest envi-
ronmental impact in six categories (global warming,
smog, acidification, eutrophication, respiratory effects,
ecotoxicity, fossil fuel depletion). Road salt has lowest
environmental impact in four categories (ozone deple-
tion, carcinogenics, noncarcinogenics, respiratory effects)
and no high environmental impact. Neither highest nor
lowest environmental impact is observed in road salt
treated.

The information generated from the decision support
tool can help winter operation managers compare
and contrast different anti-icing and deicing chemicals
to select the best product to minimize environmental
impact. Although the ten environmental impacts can-
not be directly compared as they describe different
environmental impact, individual environmental impact
can be selected to provide guidance to support pro-
duct selection. Depending on the vicinity of highway
and bridge decks to certain land use type, individual

environmental impact of anti-icing and deicing chemi-
cals can be compared to select the best product to
protect the environment. For example, for highway and
bridge decks close to agricultural sites that are already
likely under impact of nutrient pollution, eutrophica-
tion should be minimized and therefore salt brine should
not be selected among the four chemicals (Table 4.7) as
it has the highest potential to result in eutrophication.
For highway and bridge decks close to drinking water
reservoirs, CaCl2 should not be selected as it introduces
most carcinogenics. For highway and bridge decks in
urban areas, salt brine should be avoided as it will lead
to smog issues. For urban areas with high population
density, salt brine should be avoided as it will cause
respiratory effects. These analyses have shown that the
decision support tool can be a useful tool to help winter
operation managers to make informed decisions to imp-
rove the selection of products based on their environ-
mental effects.

5. CONCLUSIONS

The effectiveness, costs, and environmental impact of
commonly used anti-icing and deicing chemicals were
reviewed in this study. The results showed that many
factors may contribute to the actual performance of
anti-icing and deicing chemicals. Alternative products,
such as beet juice, glycerol, and glycol were used as
anti-icing and deicing chemicals and showed promising
results for snow and ice control. Environmental impacts
were reviewed as well. Soil, surface water, groundwater,
watersheds, vegetation, and wildlife can be negatively
affected by anti-icing and deicing chemicals and public
health risks may increase. Concrete, bridges, pavement,
and vehicles may be affected by anti-icing and deicing
chemicals, and effects of chloride chemicals and acetate/
formate based chemicals were different. Costs of anti-
icing and deicing chemical were also reviewed.

Additionally, level of services was analyzed. Costs of
anti-icing and deicing chemicals were compared and
service categories and guidance for level of service were
reviewed. Traffic condition and weather condition were



reviewed, and calculation of bare pavement regain time
and application were discussed.

Finally, life cycle assessment was used to quantify
environmental impacts, such as global warming, acidi-
fication, eutrophication, and ecotoxicity, and environ-
mental impact of two conventional deicers (NaCl and
CaCl2) and four alternative products (KAc, CMA, beet
juice, and glycerin) were evaluated. For chloride-based
deicers, calcium chloride has largest impacts on human
health. Sugar beet, glycerin, and CMA have compar-
able or higher environmental impact, but have posi-
tive environmental impacts on eco-toxicity. A decision
support tool was developed to evaluate environmental
impact of all six districts in Indiana and environmental
impacts in each of the ten environmental impact cate-
gories were compared. The predictive tool can help
winter operation managers to make informed decisions
to select best anti-icing and deicing chemicals to mini-
mize environmental impact.

The knowledge reviewed in this study can help
improve the understanding of the effectiveness, costs,
and environmental effects of anti-icing and deicing
chemicals. The newly developed life cycle assessment
tool and decision support tool can help winter opera-
ting managers to better evaluate and select products
with best benefit-cost ratio and lowest environmental
impact for snow and ice control.

REFERENCES

Akin, M., Huang, J., Shi, X., Veneziano, D., & Williams, D.

(2013, March). Snow removal at extreme temperatures

(CR11-04). Minnesota Department of Transportation.

http://clearroads.org/download/final-report-6/

Akin, M., & Shi, X. (2010, April). Development of standardized

test procedures for evaluating deicing chemicals (Report No.

0092-08-32/CR07-02). Wisconsin Department of Trans-

portation Research Services & Library. http://clearroads.

org/wp-content/uploads/dlm_uploads/07-01_WisDOT-

0092-08-32_deicing-lab-test-final-report.pdf

Al-Amoudi, O. S. B., Maslehuddin, M., Lashari A. N., &

Almusallam, A. A. (2003). Effectiveness of corrosion

inhibitors in contaminated concrete. Cement and Concrete

Composites, 25(4–5), 439–449. https://doi.org/10.1016/

S0958-9465(02)00084-7

Al-Mehthel, M., Al-Dulaijan, S., Al-Idi, S. H., Shameem, M.,

Ali, M. R., & Maslehuddin, M. (2009, April). Performance

of generic and proprietary corrosion inhibitors in chloride-

contaminated silica fume cement concrete. Construction and

Building Materials, 23(5), 1768–1774. https://doi.org/10.

1016/j.conbuildmat.2008.10.010

Amsler, D. E. (2014). Establishing effective salt and anti-icing

application rates (Federal Project No. TPF5(218)).

Minnesota Department of Transportation. http://

clearroads.org/wp-content/uploads/dlm_uploads/Summary-

Report-of-Task-2-Findings.pdf

Bagley, J., & Williams, D. (2011, April). Liquid deicer selection

and application [Conference session]. American Public

Works Association & Pacific Northwest Snowfighters

North American Snow Conference. http://pnsassociation.

org/wp-content/uploads/2011-Conference-Presentations/

Liquid_Deicer_Selection.pdf

Bare, J. C., Norris, G. A., Pennington, D. W., & McKone, T.
(2003). TRACI—The tool for the reduction and assessment
of chemical and other environmental impacts. Journal of
Industrial Ecology, 6(3), 49–78. https://doi.org/10.1007/
s10098-010-0338-9

Bare, J. C., & Science Applications International Corporation.
(2003). TRACI: User’s guide and system documentation
(EPA/600/R-02/052). United States Environmental Protec-
tion Agency. https://cfpub.epa.gov/si/si_public_record_
report.cfm?dirEntryId596509

Bare, J., Young, D., & Hopton, M. (2012). Tool for the
reduction and assessment of chemical and other environ-
mental impacts (TRACI), TRACI version 2.1 (SOP No.
S-10637-OP-1-0). Office of Research and Development,
United States Environmental Protection Agency. http://
nepis.epa.gov/Adobe/PDF/P100HN53.pdf

Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance
in plants. Critical Reviews in Plant Sciences, 24(1), 23–58.
https://doi.org/10.1080/07352680590910410

Belter, D., Carpenter, K., Cornett, B., McCullouch, B., McIntire,
J., Neuenschwander, C., Newbolds, S., Tompkins, B., Vaughan,
L., & Walker, F. (2009). Total storm management manual.
Indiana Department of Transportation. https://doi.org/10.
5703/1288284314676

Bollinger, T. K., Mineau, P., & Wickstrom, M. L. (2005,
April). Toxicity of sodium chloride to house sparrows.
Journal of Wildlife Diseases, 41(2), 363–370. https://doi.org/
10.7589/0090-3558-41.2.363

Brenner, M. V., & Horner, R. R. (1992). Effects of calcium
magnesium acetate (CMA) on dissolved oxygen in natural
waters. Resources, Conservation and Recycling, 7(1–3), 239–
265. https://doi.org/10.1016/0921-3449(92)90019-X

Brodman, R., Ogger, J., Bogard, T., Long, A. J., Pulver, R.
A., Mancuso, K., & Falk, D. (2003). Multivariate analyses
of the influences of water chemistry and habitat parameters
on the abundances of pond-breeding amphibians. Journal
of Freshwater Ecology, 18(3), 425–436. https://doi.org/10.
1080/02705060.2003.9663978

Bronick, C. J., & Lal, R. (2005, January). Soil structure and
management: A review. Geoderma, 124(1–2), 3–22. https://
doi.org/10.1016/j.geoderma.2004.03.005

Canadian Environmental Protection Act. (2001). Priority
substances list assessment report: Road salts. https://www.
canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_
formats/hecs-sesc/pdf/pubs/contaminants/psl2-lsp2/road_
salt_sels_voirie/road_salt_sels_voirie-eng.pdf

D’Itri, F. M. (1992). Chemical deicers and the environment.
Lewis Publishers, Inc.

Druschel, S. J. (2012, July). Salt brine blending to optimize
deicing and anti-icing performance (Report No. MN/RC
2012-20). Minnesota Department of Transportation. http://
www.dot.state.mn.us/research/documents/201220.pdf

Elrashidi, M., Wysocki, D., & Schoeneberger, P. (2016).
Effects of land use on selected properties and heavy metal
concentration for soil in the US Great Plains. Communica-
tions in Soil Science and Plant Analysis, 47(22), 2465–2478.
https://doi.org/10.1080/00103624.2016.1254787

Fay, L., Honarvarnazari, M., Jungwirth, S., Cui, N.,
Muthumani, A., Shi, X., Bergner, D., & Venner M. (2015,
June). Manual of environmental best practices for snow and
ice control (Report No. CR 13-01). Minnesota Department
of Transportation. http://clearroads.org/wp-content/
uploads/dlm_uploads/Manual_ClearRoads_13-01_FINAL.
pdf

Fischel, M. (2001, October 30). Evaluation of selected deicers
based on a review of the literature (Report No. CDOT-

30 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/22

http://clearroads.org/download/final-report-6/
http://clearroads.org/wp-content/uploads/dlm_uploads/07-01_WisDOT-0092-08-32_deicing-lab-test-final-report.pdf
http://clearroads.org/wp-content/uploads/dlm_uploads/07-01_WisDOT-0092-08-32_deicing-lab-test-final-report.pdf
http://clearroads.org/wp-content/uploads/dlm_uploads/07-01_WisDOT-0092-08-32_deicing-lab-test-final-report.pdf
https://doi.org/10.1016/S0958-9465(02)00084-7
https://doi.org/10.1016/S0958-9465(02)00084-7
https://doi.org/10.1016/j.conbuildmat.2008.10.010
https://doi.org/10.1016/j.conbuildmat.2008.10.010
http://clearroads.org/wp-content/uploads/dlm_uploads/Summary-Report-of-Task-2-Findings.pdf
http://clearroads.org/wp-content/uploads/dlm_uploads/Summary-Report-of-Task-2-Findings.pdf
http://clearroads.org/wp-content/uploads/dlm_uploads/Summary-Report-of-Task-2-Findings.pdf
http://pnsassociation.org/wp-content/uploads/2011-Conference-Presentations/Liquid_Deicer_Selection.pdf
http://pnsassociation.org/wp-content/uploads/2011-Conference-Presentations/Liquid_Deicer_Selection.pdf
http://pnsassociation.org/wp-content/uploads/2011-Conference-Presentations/Liquid_Deicer_Selection.pdf
https://doi.org/10.1007/s10098-010-0338-9
https://doi.org/10.1007/s10098-010-0338-9
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=96509
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=96509
http://nepis.epa.gov/Adobe/PDF/P100HN53.pdf
http://nepis.epa.gov/Adobe/PDF/P100HN53.pdf
https://doi.org/10.1080/07352680590910410
https://doi.org/10.5703/1288284314676
https://doi.org/10.5703/1288284314676
https://doi.org/10.7589/0090-3558-41.2.363
https://doi.org/10.7589/0090-3558-41.2.363
https://doi.org/10.1016/0921-3449(92)90019-X
https://doi.org/10.1080/02705060.2003.9663978
https://doi.org/10.1080/02705060.2003.9663978
https://doi.org/10.1016/j.geoderma.2004.03.005
https://doi.org/10.1016/j.geoderma.2004.03.005
https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/contaminants/psl2-lsp2/road_salt_sels_voirie/road_salt_sels_voirie-eng.pdf
https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/contaminants/psl2-lsp2/road_salt_sels_voirie/road_salt_sels_voirie-eng.pdf
https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/contaminants/psl2-lsp2/road_salt_sels_voirie/road_salt_sels_voirie-eng.pdf
https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/contaminants/psl2-lsp2/road_salt_sels_voirie/road_salt_sels_voirie-eng.pdf
http://www.dot.state.mn.us/research/documents/201220.pdf
http://www.dot.state.mn.us/research/documents/201220.pdf
https://doi.org/10.1080/00103624.2016.1254787
http://clearroads.org/wp-content/uploads/dlm_uploads/Manual_ClearRoads_13-01_FINAL.pdf
http://clearroads.org/wp-content/uploads/dlm_uploads/Manual_ClearRoads_13-01_FINAL.pdf
http://clearroads.org/wp-content/uploads/dlm_uploads/Manual_ClearRoads_13-01_FINAL.pdf


DTD-R-2001-15). Colorado Department of Transporta-
tion. https://www.codot.gov/programs/research/pdfs/2001/
deicers.pdf

Fitch, M. G., Smith, J. A., & Clarens, A. F. (2013, February).
Environmental life-cycle assessment of winter maintenance
treatments for roadways. Journal of Transportation
Engineering, 139(2), 138–146. https://doi.org/10.1061/
(ASCE)TE.1943-5436.0000453

Frischknecht, R., Jungbluth, N., Althaus, H.-J., Doka, G.,
Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek,
T., Rebitzer, G., & Spielmann, M. (2005). The ecoinvent
database: Overview and methodological framework.
International Journal of Life Cycle Assessment, 10(1), 3–9.
https://doi.org/10.1065/lca2004.10.181.1

Fu, L., Omer, R., & Jiang, C. (2012). Field test of organic
deicers as prewetting and anti-icing agents for winter road
maintenance. Transportation Research Record: Journal
of the Transportation Research Board, 2272(1), 130–135.
https://doi.org/10.3141/2272-15

Gerbino-Bevins, B. M. (2011, August). Performance rating of
de-icing chemicals for winter operations [Master’s thesis,
University of Nebraska]. https://digitalcommons.unl.edu/
cgi/viewcontent.cgi?article51019&context5civilengdiss

Green, S. M., & Cresser, M. S. (2008). Nitrogen cycle
disruption through the application of de-icing salts on
upland highways. Water, Air, and Soil Pollution, 188(1–4),
139–153. https://doi.org/10.1007/s11270-007-9530-x

Grubinger, V., & Ross, D. (2011). Interpreting the result of soil
tests for heavy metals. University of Vermont. https://www.
uvm.edu/vtvegandberry/factsheets/interpreting_heavy_
metals_soil_tests.pdf

Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J.
(2000, June). Plant cellular and molecular responses to high
salinity. Annual Review of Plant Biology and Plant
Molecular Biology, 51(1), 463–499. https://doi.org/10.1146/
annurev.arplant.51.1.463

Hauschild, M. Z., Huijbregts, M., Jolliet, O., Macleod, M.,
Margni, M., van de Meent, D., Rosenbaum, R. K., &
McKone, T. E. (2008). Building a model based on scientific
consensus for life cycle impact assessment of chemicals: The
search for harmony and parsimony. Environmental Science
and Technology, 42(19), 7032–7036. https://doi.org/10.1021/
es703145t

Hauschild, M. Z., & Wenzel, H. (1998). Environmental
assessment of products—Volume 2: Scientific Back-
grounds. Springer. https://www.springer.com/gp/book/
9780412808104

Himmrich, J., Schimmel, G., & Pollmannn, K. (1995,
February 7). Alkaline earth metal potassium acetate, a
process for its preparation and its use. U.S. Patent.
5,387,359. https://patentimages.storage.googleapis.com/40/
d0/9d/af25482bf550e1/US5387359.pdf

Hossain, S. M. K., Fu, L., & Lake, R. (2015). Field evaluation
of the performance of alternative deicers for winter
maintenance of transportation facilities. Canadian Journal
of Civil Engineering, 42(7), 437–448. https://doi.org/10.1139/
cjce-2014-0423

Hossain, S. M. K., Fu, L., & Lu, C.-Y. (2014). Deicing
performance of road salt: Modeling and applications.
Journal of the Transportation Research Board, 2440(1),
76–84. https://doi.org/10.3141/2440-10

Hsu, W. T., Wu, C.-S., Lai, J.-C., Chiao, Y.-K., Hsu, C.-H., &
Kam, Y.-C. (2012). Salinity acclimation affects survival and
metamorphosis of crab-eating frog tadpoles. Herpetologica,
68(1), 14–21. https://doi.org/10.1655/herpetologica-d-11-
00018.1

Indiana Department of Environmental Management. (2013).
Water quality standards (327 IAC 2-1-3). http://iac.iga.in.
gov/iac/T03270/A00020.PDF?

Indiana Department of Environmental Management. (2018).
Indiana integrated water monitoring and assessment report to
the U.S. EPA. https://www.in.gov/idem/nps/files/ir_2018_
report.pdf

Indiana Department of Transportation. (2018). Winter opera-
tions [Webpage]. https://www.in.gov/indot/3222.htm.

Jenks, C. W., Jencks, C. F., Hedges, C. J., Delaney, E. P., &
Freer, H. (2007). Guidelines for the selection of snow and ice
control materials to mitigate environmental impacts (NCHP
Report 577). http://cdnassets.hw.net/66/66/ac492fa045acb567
aba3fc7d9886/nchrp-rpt-577.pdf

Karraker, N. E. (2007). Are embryonic and larval green frogs
(rana clamitans) insensitive to road deicing salt? Herpeto-
logical Conservation and Biology, 2(1), 35–41. http://www.
herpconbio.org/Volume_2/Issue_1/Karraker_2007.pdf

Karraker, N. E., Arrigoni, J., & Dudgeon, D. (2010, April).
Effects of increased salinity and an introduced predator on
lowland amphibians in Southern China: Species identity
matters. Biological Conservation 143(5), 1079–1086. https://
doi.org/10.1016/j.biocon.2010.01.020

Kaushal, S. S., Groffman, P. M., Likens, G. E., Belt, K. T.,
Stack, W. P., Kelly, V. R., Band, L. E., & Fisher, G. T.
(2005, September 20). Increased salinization of fresh water
in the northeastern United States. Proceedings of the
National Academy of Sciences, 102(38), 13517–13520.
https://doi.org/10.1073/pnas.0506414102

Ke, C., Li, Z., Liang, Y., Tao, W., & Du, M. (2013, October).
Impacts of chloride de-icing salt on bulk soils, fungi, and
bacterial populations surrounding the plant rhizosphere.
Applied Soil Ecology, 72, 69–78. https://doi.org/10.1016/j.
apsoil.2013.06.003

Kelting, D. L., & Laxon, C. L. (2010, February). Review of
effects and costs of road de-icing with recommendations for
winter road management in the Adirondack Park (Report
No. AWI2010-01). Adirondack Watershed Institute. http://
www.protectadks.org/wp-content/uploads/2010/12/Road_
Deicing-1.pdf

Kennedy, P. (2018). Denver, Colorado plowing snow a mile high
[Conference presentation]. 2018 Pacific Northwest Snow-
fighter Conference. http://pnsassociation.org/download/
1335/

Ketcham, S. A., Minsk, L. D., Blackburn, R. R., & Fleege, E.
J. (1996). Manual of practice for an effective anti-icing
program (Publication No. FHWA-RD-95-202). US Army
Cold Regions Research and Engineering Laboratory.
https://www.fhwa.dot.gov/reports/mopeap/eapcov.htm

Klueh, S. (2011). North American amphibian monitoring
program (NAAMP) Indiana volunteer manual. https://
www.in.gov/dnr/f ishwild/f i les / fw-2011_INAMP_
Volunteer_Training_Manual.pdf

Lannert, R. G. (2008). Plowing wider and faster on 21st-
century highways by using 14-ft front plows and trailer
plows effectively. In Seventh International Symposium on
Snow Removal and Ice Control Technology [Symposium].
Fourth National Conference on Surface Transportation
Weather, Indianapolis, IN. http://onlinepubs.trb.org/
onlinepubs/circulars/ec126.pdf

Leblond, M., Dussault, C., Ouellet, J.-P., Poulin, M.,
Courtois, R. & Fortin, J. (2007). Management of roadside
salt pools to reduce moose–vehicle collisions. Journal of
Wildlife Management, 71(7), 2304–2310. https://doi.org/10.
2193/2006-459

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/22 31

https://www.codot.gov/programs/research/pdfs/2001/deicers.pdf
https://www.codot.gov/programs/research/pdfs/2001/deicers.pdf
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000453
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000453
https://doi.org/10.1065/lca2004.10.181.1
https://doi.org/10.3141/2272-15
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1019&context=civilengdiss
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1019&context=civilengdiss
https://doi.org/10.1007/s11270-007-9530-x
https://www.uvm.edu/vtvegandberry/factsheets/interpreting_heavy_metals_soil_tests.pdf
https://www.uvm.edu/vtvegandberry/factsheets/interpreting_heavy_metals_soil_tests.pdf
https://www.uvm.edu/vtvegandberry/factsheets/interpreting_heavy_metals_soil_tests.pdf
https://doi.org/10.1146/annurev.arplant.51.1.463
https://doi.org/10.1146/annurev.arplant.51.1.463
https://doi.org/10.1021/es703145t
https://doi.org/10.1021/es703145t
https://www.springer.com/gp/book/9780412808104
https://www.springer.com/gp/book/9780412808104
https://patentimages.storage.googleapis.com/40/d0/9d/af25482bf550e1/US5387359.pdf
https://patentimages.storage.googleapis.com/40/d0/9d/af25482bf550e1/US5387359.pdf
https://doi.org/10.1139/cjce-2014-0423
https://doi.org/10.1139/cjce-2014-0423
https://doi.org/10.3141/2440-10
https://doi.org/10.1655/herpetologica-d-11-00018.1
https://doi.org/10.1655/herpetologica-d-11-00018.1
http://iac.iga.in.gov/iac/T03270/A00020.PDF?
http://iac.iga.in.gov/iac/T03270/A00020.PDF?
https://www.in.gov/idem/nps/files/ir_2018_report.pdf
https://www.in.gov/idem/nps/files/ir_2018_report.pdf
https://www.in.gov/indot/3222.htm
http://cdnassets.hw.net/66/66/ac492fa045acb567aba3fc7d9886/nchrp-rpt-577.pdf
http://cdnassets.hw.net/66/66/ac492fa045acb567aba3fc7d9886/nchrp-rpt-577.pdf
http://www.herpconbio.org/Volume_2/Issue_1/Karraker_2007.pdf
http://www.herpconbio.org/Volume_2/Issue_1/Karraker_2007.pdf
https://doi.org/10.1016/j.biocon.2010.01.020
https://doi.org/10.1016/j.biocon.2010.01.020
https://doi.org/10.1073/pnas.0506414102
https://doi.org/10.1016/j.apsoil.2013.06.003
https://doi.org/10.1016/j.apsoil.2013.06.003
http://www.protectadks.org/wp-content/uploads/2010/12/Road_Deicing-1.pdf
http://www.protectadks.org/wp-content/uploads/2010/12/Road_Deicing-1.pdf
http://www.protectadks.org/wp-content/uploads/2010/12/Road_Deicing-1.pdf
http://pnsassociation.org/download/1335/
http://pnsassociation.org/download/1335/
https://www.fhwa.dot.gov/reports/mopeap/eapcov.htm
https://www.in.gov/dnr/fishwild/files/fw-2011_INAMP_Volunteer_Training_Manual.pdf
https://www.in.gov/dnr/fishwild/files/fw-2011_INAMP_Volunteer_Training_Manual.pdf
https://www.in.gov/dnr/fishwild/files/fw-2011_INAMP_Volunteer_Training_Manual.pdf
http://onlinepubs.trb.org/onlinepubs/circulars/ec126.pdf
http://onlinepubs.trb.org/onlinepubs/circulars/ec126.pdf
https://doi.org/10.2193/2006-459
https://doi.org/10.2193/2006-459


Li, F., Zhang, Y., Fan, Z., & Oh, K. (2015). Accumulation of
de-icing salts and its short-term effect on metal mobility in
urban roadside soils. Bulletin of Environmental Contami-
nation and Toxicology, 94(4), 525–531. https://doi.org/10.
1007/s00128-015-1481-0

McCullouch, B. (2010). Snow and ice removal and anti-icing
synthesis study (Joint Transportation Research Program
Report No. FHWA/IN/JTRP-2010/18). West Lafayette,
IN: Purdue University. https://doi.org/10.5703/128828431
4254

McCullouch, B., Partridge, B., & Noureldin, S. (2013). Snow
and ice performance standards (Joint Transportation
Research Program Report No. FHWA/IN/JTRP-2013/
21). West Lafayette, IN: Purdue University. https://doi.
org/10.5703/1288284315223

Michigan Department of Transportation. (2011, March).
Economic benefits of the Michigan Department of Transpor-
tation’s FY 2011–2015 highway program. Michigan Depart-
ment of Transportation. https://www.michigan.gov/
documents/mdot/MDOT_EcnBen_2011-2015_363646_7.
pdf

Mineau, P., & Brownlee, L. J. (2005). Road salts and birds:
An assessment of the risk with particular emphasis on winter
finch mortality. Wildlife Society Bulletin, 33(3), 835–841.
https://doi.org/10.2193/0091-7648(2005)33[835:RSABAA]2.0.
CO;2

Mullaney, J., Lorenz, D. L., & Arntson, A. (2009). Chloride in
groundwater and surface water in areas underlain by the
glacial aquifer system, northern United States (Scientific
Investigations Report 2009–5086). National Water-Quality
Assessment Program. https://doi.org/10.3133/sir20095086

Nelson, S. S., Yonge, D. R., & Barber, M. E. (2009). Effects of
road salts on heavy metal mobility in two eastern
Washington soils. Journal of Environmental Engineering,
135(7), 505–510. https://doi.org/10.1061/(ASCE)0733-
9372(2009)135:7(505)

Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M.
(1995). Ion homeostasis in NaCl stress environments. Plant
Physiology, 109(3), 735–742. https://doi.org/10.1104/pp.109.
3.735

Nixon, W. A., & DeVries, R. M. (2015, November). Develop-
ment of a handbook of best management practices for road
salt in winter maintenance operations (Project 06742/CR14-
10). Minnesota Department of Transpor-
tation. http://clearroads.org/wp-content/uploads/dlm_
uploads/FR_CR.14-10_Draft.ver2_AT.pdf

Nixon, W. A., Kochumman, G., Qiu, L., Qiu, J., & Xiong, J.
(2007, May). Evaluation of using non-corrosive deicing
materials and corrosion reducing treatments for deicing salts.
Iowa Highway Research Board. http://publications.iowa.
gov/id/eprint/20037

Nixon, W. A., & Qiu, L. (2005). Developing a storm severity
index. Transportation Research Board, 1911(1), 143–148.
https://doi.org/10.1177/0361198105191100114

Norrström, A. C., & Bergstedt, E. (2001). The impact of road
de-icing salts (NaCl) on colloid dispersion and base cation
pools in roadside soils. Water, Air, and Soil Pollution,
127(1–4), 281–299. https://doi.org/10.1023/A:100522131
4856

Norrström, A. C., & Jacks, G. (1998). Concentration and
fractionation of heavy metals in roadside soils receiving
de-icing salts. Science of the Total Environment, 218(2–3),
161–174. https://doi.org/10.1016/S0048-9697(98)00203-4

Olek, J., Janusz, A., Jain, J., & Ashraf, W. (2013). Investigation
of anti-icing chemicals and their interactions with pavement
concretes (Joint Transportation Research Program Report

No. FHWA/IN/JTRP-2013/24). West Lafayette, IN:
Purdue University. https://doi.org/10.5703/1288284315226

Pachauri, N., & He, B. (2006). Value-added utilization of
crude glycerol from biodiesel production: A survey of
current research activities. Proceedings of the ASABE
Annual International Meeting. American Society of
Agricultural and Biological Engineers. https://www.
webpages.uidaho.edu/,bhe/pdfs/asabe066223.pdf

Public Sector Consultants Inc. (1993, December). The use
of selected deicing materials on Michigan roads: Environ-
mental and economic impacts. Michigan Department of
Transportation. https://www.michigan.gov/documents/
mdot/RR736CON_14_542480_7.pdf

Risch, M. R., Bunch, A. R., Vecchia, A. V., Martin, J. D., &
Baker, N. T. (2010). Water quality in Indiana: Trends in
concentrations of selected nutrients, metals, and ions in
streams, 2000–10 (Science Investigation Report 2014–5205).
U.S. Geological Survey. https://doi.org/10.3133/sir20145205

Ritter, S. (2001, January 1). Aircraft deicers. Chemical &
Engineering News, 79(1), 30. https://pubsapp.acs.org/cen/
whatstuff/stuff/7901scit5.html

Rosenbaum, R., Bachmann, T., Gold, L., Huijbregts, M.,
Jolliet, O., Juraske, R., Koehler, A., Larsen, H., MacLeod,
M., Margni, M., McKone, T., Payet, J., Schuhmacher, M.,
Van de meent, D., & Hauschild, M. (2008, October 8).
USEtox–The UNEP-SETAC toxicity model: Recom-
mended characterisation factors for human toxicity and
freshwater ecotoxicity in life cycle impact assessment.
International Journal of Life Cycle Assessment, 13, 532–
546. https://doi.org/10.1007/s11367-008-0038-4

Schulkin, J. (1991). Sodium hunger: The search for a salty
taste. Cambridge University Press.

Serrano, R. (1996). Salt tolerance in plants and microorgan-
isms: Toxicity targets and defense responses. International
Review of Cytology, 165, 1–52. https://doi.org/10.1016/
S0074-7696(08)62219-6

Shi, X., Fay, L., Fortune, K., Smithlin, R., Johnson, M.,
Peterson, M. M., Creighton, A., Yang, Z., & Cross, D.
(2011, June). Investigating longevity of corrosion inhibitors
and performance of deicer products under storage or after
pavement application (Report No. WA-RD 759.1).
Washington State Department of Transportation. https://
www.wsdot.wa.gov/research/reports/fullreports/759.1.pdf
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APPENDIX: USER MANUAL OF DECISION SUPPORT TOOL 

The decision support tool has been developed for the six districts in Indiana (Crawfordsville, 
Fort Wayne, Greenfield, LaPorte, Seymour, and Vincennes). Ten environmental impacts of 
varying levels and treatment types of each of the six districts have been evaluated. 

There are eight tabs in the decision support tool file, which include a “State-Wide” tab, six 
individual tabs for six districts, and one “Predictive Tool” to predict and evaluate environmental 
impact of anti-icing and deicing chemicals for future application. The tool has been compiled with 
Microsoft Excel and can be easily updated by winter operation managers to support their decisions. 

The first Excel tab “State-wide” shows the summary information of state-wide chemical 
quantity, chemical cost, and environmental impact of deicing chemicals of the six districts of 
Indiana (Figure A.1). There are three tables in this tab. The first table shows chemical quantity 
used in all six districts. Historically used deicing chemicals in each district are added up so the 
total amount of individual deicing chemicals is calculated. In addition to chemicals used in 
highway, chemical used on bridge decks are also calculated. The total amount of solid and liquid 
deicing chemicals is calculated individually. The second table shows chemical costs of each 
deicing chemicals in each district in both highway and bridge decks. The total chemical cost in 
each district is calculated and the state-wide cost for all the six districts is also calculated. The third 
table shows ten environmental impacts of deicing chemicals in each district and total 
environmental impact in all the six districts. The ten environmental impacts include ozone 
depletion, global warming, smog, acidification, eutrophication, carcinogenics, noncarcinogenics, 
respiratory effects, ecotoxicity, and fossil fuel depletion. 

Figure A.1 Screenshot of the decision support tool to calculate chemical cost and 
environmental impact. 
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In addition to the “State-wide” tab that can automatically calculate chemical quantity, cost, and 
environmental impact for all six districts, there are six individual tabs and each of the six tabs 
represents a district. For example, the tab “Crawfordsville” includes original data and results of 
cost analysis and environmental impact in the district of Crawfordsville (Figure A.2). The total 
lane mile in Crawfordsville District, actual used amount of different deicing chemicals, unit cost 
of each chemical, deck area, number of frost events, and application rates are input and chemical 
application rate (gals or lbs per lane mile) and each of the ten environment impacts are 
automatically calculated. A figure to compare total cost of different anti-icing and deicing 
chemicals is provided. Ten individual figures to show ten different environmental impact are 
automatically plotted based on the actual chemical quantify and environmental impact in a specific 
district. 

Figure A.2 Screenshot of cost analysis and environmental impact in Crawfordsville. 

Below the cost analysis figure and ten environmental impact figures, the detailed data on the 
calculation of environment are provided (Figure A.3). In this section, the first table shows 
individual environmental impact of each deicing chemical, which are calculated based on 
environmental impact of one kg chemical applied per mile. The table at the bottom shows 
application rate (dry salt kg) and impact of each chemical per mile. The composition of each 
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deicing product is included in the analysis and percent of composition of deicing chemical is also 
included to calculate the actual amount of chemicals applied each mile. Certain products, such as 
Beet Heet/Brine Mix 33/67, are mixtures of two or more products and composition in mixture is 
considered. The final result of total environmental impact per mile is calculated and used to plot 
the figures at the bottom of Figure A.2. 

All the data in this tab are automatically calculated and the results are fed to the “State-wide” 
tab, except for the cells highlighted in light blue color, which should be updated manually. 

Figure A.3 Screenshot of detailed calculation of environmental impact. 

The last tab in the decision support tool is a “Predictive Tool” to help winter operating managers 
better evaluate product costs and environmental impact to support their decisions.  

Overall, the template in the “Predictive Tool” (Figure A.4) is similar to previous tabs for 
individual districts, but the main difference is that application rates (gals or lbs per mile) for each 
chemical need to be manually updated, which has been highlighted in light blue color. With unit 
chemical costs, chemical quantity and total chemical cost can be automatically calculated.  
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Figure A.4 Screenshot of cost analysis and environmental impact in the predictive tool. 

A step-by-step guide of using the “Predictive Tool” is provided to demonstrate how to use the 
decision support tool to analyze cost and quantify environmental impact. 

The first input value in the “Predictive Tool” is the total lane mile in the district and a total of 
5,000 miles is assumed (Figure A.5). 

Figure A.5 Screenshot of lane mile in the predictive tool. 

Then the application rate for each anti-icing and deicing chemical is estimated (Figure A.6). 
We used the average values of application rates from historical chemical usage data in Indiana. 
Other application rates can be used based on the needs and availability of anti-icing and deicing 
chemicals. 
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Figure A.6 Screenshot of applicate rate. 

Unit chemical cost of 12 deicing chemical products are estimated based on historical data 
(Figure A.7). 

Figure A.7 Screenshot of unit chemical cost in the hypothetical district. 

Based on application rate and chemical unit cost, the total chemical quantity and chemical cost 
can be automatically calculated (Figure A.8). For example, a total of 75,000 gals of Beet Heet is 
needed for 5,000 miles based on an application rate of 15 gals Beer Heet per mile. Based on a unit 
chemical cost of $1.37/gal, the total chemical cost of Beet Heet is 75,000 gal * $1.37/gal = 
$102,750. 

Figure A.8 Screenshot of total chemical cost in the hypothetical district. 

After chemical cost for each chemical is calculated, all the costs are plotted in a bar chart 
(Figure A.9) to give a visual presentation of the cost of applied anti-icing and deicing. 
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Figure A.9 Screenshot of all the chemical costs in the hypothetical district. 

In addition to chemical costs for highway application, chemical costs in bridge decks are also 
calculated. A total of 5,000,000 square feet of deck area is assumed. As not all deck areas need to 
be sprayed, 80% deck area is assumed to be sprayed. Brine is assumed to be used to be sprayed on 
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bridge decks. Additional assumptions include lane width of 12 feet, 10 frost events, and an 
application rate of 60 gals brine per mile. 

The total needed chemical quantify of brine is calculated as follows: 
5,000,000 feet2 * 80%/(5,280 feet/mile * 12 feet) * 10 * 60 gals/mile = 37,879 gals  

The total chemical cost in bridge decks is calculated with a unit chemical cost of $0.14/gal: 
37,879 gals * $0.14/gal = $5,303 

The total chemical cost for both highway and bridge decks can be calculated as follows: 
$493,456 + $5,303 = $498,759. 

The detailed cost analysis of bridge decks and total cost of highway and bridge decks are 
shown in Figure A.10. 

Figure A.10 Screenshot of cost in bridge decks and total cost in the hypothetical district. 

Subsequently, environmental impacts are automatically calculated based on the application 
rates of anti-icing and deicing chemicals. The specific environmental impacts include ozone 
depletion (Figure A.11), global warming (Figure A.12), smog (Figure A.13), acidification (Figure 
A.14), eutrophication (Figure A.15), carcinogenics (Figure A.16), noncarcinogenics (Figure 
A.17), respiratory effects (Figure A.18), ecotoxicity (Figure A.19), fossil fuel depletion (Figure 
A.20). 
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Ozone depletion 

Figure A.11 Screenshot of environmental impact on ozone depletion. 
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Figure A.12 Screenshot of environmental impact on global warming. 
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Figure A.13 Screenshot of environmental impact on smog. 
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Acidification 

Figure A.14 Screenshot of environmental impact on acidification. 
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Figure A.15 Screenshot of environmental impact on acidification. 
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Carcinogenics 

Figure A.16 Screenshot of environmental impact on carcinogenics. 
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Figure A.17 Screenshot of environmental impact on noncarcinogenics. 
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Respiratory effects 

Figure A.18 Screenshot of environmental impact on respiratory effects. 
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Figure A.19 Screenshot of environmental impact on ecotoxicity. 
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Fossil fuel depletion 

Figure A.20 Screenshot of environmental impact on fossil fuel depletion. 
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The total environmental impact per mile of all the chemicals (Figure A.21) is calculated based 
on environmental impact of one kg chemical applied per mile (Figure A.22) and application rate 
(dry salt kg) and impact of each chemical per mile (Figure A.23). For each environmental impact, 
the minimum environmental impact is highlighted in light green color and the maximum 
environmental impact is highlighted in red color. 

Figure A.21 Screenshot of total environmental impact per mile. 

Figure A.22 Screenshot of environmental impact of one kg chemical applied per mile. 
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0.00

Application rate (dry salt kg) and impact of each chemical per mile 

Product Name Beet Heet 
Beet Heet 

Treated Salt 
BH/Brine 

Mix 33/67 
BH/Brine Mix 

40/60 
BH/Brine 

Mix 50/50 
Salt Brine 

Salt Brine 
Treated Salt 

Liquid CaCl2 Road Salt 
Road Salt 
Treated 

Ice Ban 
Liquid 

MgCl 
Application rate (kg or lbs/lane-mile) 15.0 2.0 10.0 10.0 10.0 200.0 10.0 17.0 14.0 1.3 1.0 6.5 

gals lbs gals gals gals gals lbs gals lbs lbs gals gals 

CaCl2 Weight (lbs/gals) 10.80 10.80 10.80 10.80 10.80 11.00 
Percent of composition 13.0% 13.0% 13.0% 13.0% 13.0% 30.0% 
Dry salt application rate (kg/lane-mile) 9.55 1.27 6.37 6.37 6.37 25.45 
Composition in mixture 100% 0.35% 33% 40% 50% 100% 
Dry salt application rate (kg/lane-mile) 9.55 0.00 2.10 2.55 3.18 25.45 

Beet Weight (lbs/gals) 10.80 10.80 10.80 10.80 10.80 
juice Percent of composition 15.0% 15.0% 15.0% 15.0% 15.0% 

Dry salt application rate (kg/lane-mile) 11.02 1.47 7.35 7.35 7.35 
Composition in mixture 100% 0.40% 33% 40% 50% 
Dry salt application rate (kg/lane-mile) 11.02 0.01 2.42 2.94 3.67 

NaCl Weight (lbs/gals) 9.80 9.80 9.80 9.80 
Percent of composition 95% 23.0% 23.0% 23.0% 23.0% 92% 95% 95% 
Dry salt application rate (kg/lane-mile) 0.86 10.22 10.22 10.22 204.48 4.19 6.03 0.56 
Composition in mixture 99.2% 67% 60% 50% 100% 100% 100% 100% 
Dry salt application rate (kg/lane-mile) 0.86 6.85 6.13 5.11 204.48 4.19 6.03 0.56 

CaCl2 9.55 0.00 2.10 2.55 3.18 25.45 

Beet juice 11.02 1.47 7.35 7.35 7.35 
NaCl 0.86 6.85 6.13 5.11 204.48 4.19 6.03 0.56 
KAc 
CMA 
Glycerin 

Figure A.23 Screenshot of application rate (dry salt kg) and impact of each chemical per mile. 

We can use Beet Heet as an example to show the calculation process of environmental impact. 
As shown in Figure A.24, the application rate of Beet Heet is 15 gals/mile. Two components are 
included in Beet Heet: CaCl2 and beet juice. 

The weight of one gallon CaCl2 is 10.8 lbs, and the percent of composition of CaCl2 is 13%. 
Therefore, the dry salt application rate of CaCl2 is calculated as 15 lbs/mile * 10.8 lbs/gal/2.2046 
lbs/kg *13% = 9.6 kg/mile. As CaCl2 is not mixed with other chemicals, the dry salt application 
rate is kept at 9.6 kg/mile. 

In addition, the percent of composition of beet juice in Beet Heet is about 15%, and similarly, 
the dry salt application rate of beet juice is calculated as 15 gals/mile * 10.8 lbs/gal/2.2046 lbs/kg 
*15% = 11 kg/mile. NaCl, KAc, CMA, and glycerin are not included in Beet Heet and therefore 
the dry salt application rate is kept at 11 kg/mile. 

For the environmental impact of Beet Heet on ozone depletion (Figure A.25), the application 
rate (Figure A.26) the contribution of each of the six compounds (CaCl2, sugar beet, NaCl, KAc, 
CMA, glycerin) (Figure A.27) are calculated as follows: 

9.55 kg/mile * 1.48 * 10-7 CaCl2 + 11.02 kg/mile * 1.68 * 10-8 sugar beet + 0 kg/mile * 8.09 * 
10-9 NaCl + 0 kg/mile * 2.87 * 10-7 KAc + 0 kg/mile * 7.16 * 10-7 CMA +0 kg/mile * 3.25 * 10-8 

glycerin = 1.60 * 10-6 kg CFC-11 eq 

Environmental impact on other categories can be calculated similarly. If a new anti-icing or 
deicing chemical is used, their environmental chemical can be calculated using the procedure 
described above if chemical compositions are known. 
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Figure A.24 Screenshot of application rate (dry salt kg) and impact of Beet Heet in the 
hypothetical district. 

Figure A.25 Screenshot of application rate (dry salt kg) and impact of Beet Heet. 

Figure A.26 Screenshot of application rate (dry salt kg) of Beet Heet per mile. 

Figure A.27 Screenshot of environmental impact on ozone depletion of one kg chemical applied 
per mile. 
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About the Joint Transportation Research Program (JTRP) 
On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State 
Highway Commission to cooperate with and assist Purdue University in developing the best 
methods of improving and maintaining the highways of the state and the respective counties 
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) 
to reflect the state and national efforts to integrate the management and operation of various 
transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially 
and was regularly producing technical reports. Over 1,600 technical reports are now available, 
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue 
University and what is now the Indiana Department of Transportation. 

Free online access to all reports is provided through a unique collaboration between JTRP and 
Purdue Libraries. These are available at http://docs.lib.purdue.edu/jtrp. 

Further information about JTRP and its current research program is available at 
http://www.purdue.edu/jtrp. 

About This Report 
An open access version of this publication is available online. See the URL in the citation below. 
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