
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

International Refrigeration and Air Conditioning 
Conference School of Mechanical Engineering 

2021 

Development of a Refrigerant Distribution Header Applied to Development of a Refrigerant Distribution Header Applied to 

Microchannel Heat Exchangers Microchannel Heat Exchangers 

Tomoki Hirokawa 
Daikin Industries, ltd, Japan, tomoki.hirokawa@daikin.co.jp 

Kouju Yamada 

Yoshio Oritani 

Hirokazu Fujino 

Follow this and additional works at: https://docs.lib.purdue.edu/iracc 

Hirokawa, Tomoki; Yamada, Kouju; Oritani, Yoshio; and Fujino, Hirokazu, "Development of a Refrigerant 
Distribution Header Applied to Microchannel Heat Exchangers" (2021). International Refrigeration and Air 
Conditioning Conference. Paper 2198. 
https://docs.lib.purdue.edu/iracc/2198 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at 
https://engineering.purdue.edu/Herrick/Events/orderlit.html 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/iracc
https://docs.lib.purdue.edu/me
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F2198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 2597, Page 1 

Development of a Refrigerant Distribution Header Applied to 

Microchannel Heat Exchangers 

Tomoki HIROKAWA1*, Kouju YAMADA1, Yoshio ORITANI1 and Hirokazu FUJINO1 

1Daikin Industries, LTD, 

Nishi-hitotsuya, Settsu, Osaka, Japan 

E-mail: tomoki.hirokawa@daikin.co.jp

* Corresponding Author

ABSTRACT 

A microchannel heat exchanger applied to air conditioners has advantages because of its high heat transfer 

performance. However, there are some challenges to utilize its maximum performance. One of the most important 

challenges is refrigerant maldistribution resulting in heat transfer deterioration when it is used as an evaporator. The 

authors proposed a refrigerant distribution header that can be applied to variable capacity air conditioners, named 

“Refrigerant loop header.” In this paper, the “Refrigerant loop header”, which enables to equally distribute in a wide 

range of capacity, is introduced. In addition, high distribution performance is experimentally confirmed at different 

refrigerant mass flow rates. 

1. INTRODUCTION

In order to avoid global warming, the regulation for the reduction of CO2 emissions has become stricter. For air 

conditioners, an improvement of energy efficiency is required. In order to improve efficiency of air conditioners, a 

heat exchanger needs to be required to acquire larger capacity at a small temperature difference between air and 

refrigerant. To design a heat exchanger for higher efficiency, the volume of the heat exchanger becomes larger. 

Therefore, the compact heat exchanger with higher performance is desired. The conventional heat exchanger 

employed in air conditioners is a finned tube heat exchanger composed of aluminum fin and copper tube. In this 

type of heat exchangers, a lot of researchers investigated to improve their performance (Biswas et al., 1994) 

(O’Brien and Sohal, 2005) (Stone, 1996) (Yu and Ho, 2009) (Zhang et al., 1997). Recently, a microchannel heat 

exchanger has much attention because of its higher heat transfer performance compared to the conventional heat 

exchanger. On the air side, because the boundary layer separation area, which occurs in the downstream of a circular 

tube for a finned tube heat exchanger, is decreased by the flat tube, the heat transfer coefficient is higher. On the 

refrigerant side, the inner heat transfer surface area is largely increased because the multiport extrude tube is 

employed. In addition, the heat resistance at the contact between fin and tube is much smaller by brazing. As shown 

in Fig. 1 some outdoor units mounted with a microchannel heat exchanger have been released. 

However, there are challenges to apply the microchannel heat exchanger to air conditioners. One of the most 

important challenges is the reduction of refrigerant maldistribution especially when it is used as an evaporator 

(Fujino et al., 2014). In microchannel heat exchangers applied to air conditioners, the drainage performance on fins 

is important because the water contained air is condensed on fins resulting in increasing pressure drop on the air side. 

In addition to that, during defrosting operation, the improvement of drainage of melted frost on fins is demanded for 

higher efficiency. From these points of view, the plate type fin with a drainage guide is employed shown in Fig. 2. 

That is why the flat tubes are stacked in the gravitational direction. On the other hand, when the refrigerant is 

equally distributed to vertically stacked tubes in its header, the two-phase refrigerant is separated by gravity, 

resulting in maldistribution. That is the challenge to maximize the performance of microchannel heat exchangers 

applied to air conditioners. To reduce the maldistribution in the header, a lot of investigation both in experiments 

and simulations (Lee, 2010) (Zou and Hrnjak, 2013a) (Zou and Hrnjak, 2013b) (Zou and Hrnjak, 2014) (Zou et al., 

2014). However, although the conventional distribution header has high distribution performance at a mass flow rate, 

the microchannel heat exchanger applied to air conditioners is demanded at various mass flow rates because variable 

capacities are operated by an inverter. In order to solve this challenge, the authors developed a “Refrigerant loop 
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header” to realize the stable refrigerant distribution at different refrigerant flow rates. In this paper, the structure of 

“Refrigerant loop header” is introduced and experiments to evaluate the performance of this refrigerant distribution 

header were conducted. 

2. REFRIGERANT DISTRIBUTION IN MCHX

2.1 Challenges of maldistribution in MCHX at different refrigerant mass flow rates 

Figure 3 (a) shows the structure of the conventional insertion type distribution header. the header is composed of a 

header and flat tube. In order to equally distribute to each flat tube in the vertical header, the two-phase refrigerant 

flows in the upward direction to supply the liquid refrigerant with upper flat tubes by inertia force. For the control of 

inertia force, the cross-section area is adjusted by changing the insertion depth of the flat tube. Fig. 3 (b) shows the 

infrared image captured from the face area of the heat exchanger. the blue area indicates the two-phase region and 

the red area indicates the superheated region. In order to maximize the performance of the heat exchanger, the same 

two-phase length at each tube is desired. The refrigerant velocity is defined as equation (1) 

Figure 1: Outdoor unit mounted with MCHX Figure 2: Microchannel heat 

exchanger

Figure 3: Distribution characteristics for an insertion header (Inoue et al., 2018). 

(a) Insertion type distribution header

(b) Infrared image at different mass flow rates

(c) Distribution performance for insertion type header.
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Vref = Gr / (ave S). (1) 

where ave: averaged density (homogeneous), S: cross-sectional area of the upward path. At low Vref, the superheated 

region is observed in the upper region. With increasing Vref, the superheated region is moved lower. At appropriate 

Vref, the distribution performance is the highest among these 3 points. From these results, the insertion type 

distribution header still has a challenge to be applied at various refrigerant mass flow rates 

2.2 Refrigerant loop header 

In order to solve this challenge, a distribution header is proposed. The structure of the distribution header, named 

“Refrigerant loop header” is shown in Fig. 4(a).  This header is composed of 6 plates. The two-phase refrigerant 

flows through the inlet hole in a “pipe-side plate”, which is connected to the inlet pipe. In a “loop flow path plate”, 

the refrigerant flows up to supply its liquid with upper flat tubes. As shown in Fig. 3, in the insertion type 

distribution header, if the refrigerant velocity is increased, the liquid supply to the upper flat tubes is increased 

because the inertia force is much larger than gravity, resulting in maldistribution. To keep the appropriate 

distribution, the loop flow path is introduced to return the liquid to the region just above the inlet. In addition, in 

order to return to the upstream, a nozzle to suck the refrigerant from the return path is located. A “Separation path 

plate” plays a role in connecting between the loop flow path and the path for flat tubes. By a “Tube positioning 

plate,” a “Spacing plate,” and a “Flat tube side plate”, the header and flat tubes are assembled by brazing.  

3. EXPERIMENTAL APPARATUS

For evaluation of the distribution performance of “Refrigerant loop header”, experiments using a heat exchanger are 

conducted. Fig.5 shows the experimental setup. On the refrigerant side (Fig.5 (b)), a closed test loop is employed. 

Refrigerant flow rate is controlled by a pump and measured by a Coriolis flow meter. In order to adjust inlet quality, 

a pre-heater is located at upstream of the test section. Another heater is located in the downstream of the test section 

because outlet quality is evaluated by this heater input, superheated temperature at the outlet of this heater, and 

refrigerant mass flow rate. Refrigerant outlet pressure is controlled by a cooling heat exchanger and a subcooler. On 

the air side (Fig.5(b)), a test section is located on the side of an air chamber. To adjust air flow velocity, a blower 

power is controlled while measuring the pressure drop at a nozzle, which is located in the air chamber. The dry bulb 

and wet bulb at both inlet and outlet are measured by Pt temperature sensor in the air samplers. The heat exchanger 

surface temperature distribution is measured by an infrared camera. The uncertainties are ±0.06 K in the temperature  

Figure 4: Refrigerant loop header 

(a) Overall structure. (b) Loop flow path plate
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obtained by Pt thermometer, ±0.25%FS in pressure, and ±0.1%RD in refrigerant flow rate. The heat balance error 

between air side and refrigerant side is within ±3%.  

The distribution performance is evaluated by the following method. First, the overall heat transfer coefficient of the 

heat exchanger under the equally distributed refrigerant condition U* is evaluated. The equally distributed refrigerant 

condition is defined here as that when the temperature distribution along the refrigerant flow direction for each tube 

obtained by thermocouples located on the outer walls of each flat tube in the downstream is equal. Fig. 6(a) shows 

the configuration to acquire the equally distributed capacity. The flow rate in each tube is adjusted by using the 

distributor and the inlet valves. Next, to evaluate the distribution performance, the distribution header is connected 

Figure 5: Schematic diagram of test facility 

(a) Refrigerant loop (b) Air blow

Figure 6: Configuration to evaluate distribution performance 

(a) For base data (b) With distribution header

Figure 7: Definition of design parameter. 

(b) Number of steps(a) Cross section for upstream path
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Table 1: Experimental condition. 

Dry-bulb 

temp.   TDB 

Wet-bulb 

temp.   TWB 

Air velocity 
Va 

Refrigerant 
Mass flow rate 

Gr 

Inlet quality 

xin 

Outlet quality 

xout 

7 C 6 C 

1.5 m/s R410A 

21 – 44 kg/hr 

0.08 0.98 

14C 11.5C 80 kg/hr 

to the inlet of tubes. After adjusting inlet and outlet quality and mass flow rate by controlling outlet pressure, the 

overall heat transfer coefficient U is evaluated. From these two values, the distribution factor  is defined as 

equation (2) 

 = U / U*. (2) 

At the same time, temperature distribution at the outer wall of flat tubes is measured to observe the tendency of 

maldistribution. Fig. 7 shows the design parameters for “Refrigerant loop header.” The width of the upward flow 

path is set to 6 mm, and that of the nozzle is set to 2 mm, respectively. The number of steps is fixed at 10. Table 1 

shows the experimental conditions. The refrigerant is used R410A. 

4. RESULTS AND DISCUSSION

Figure 8 shows the flat tube outer wall temperature distribution in downstream. The temperature distribution under 

the equal distributed condition is defined as a baseline. At Gr = 20 and 43.6 kg/hr, the temperature is larger at the 

upper steps with the distribution header. This tendency indicates that the liquid flow is decreased at upper tubes. 

However, because the wall temperature is less than air temperature, the superheated length is not largely extended. 

At Gr = 79.6 kg/hr, the temperature distribution is similar. From these results, this distribution header enables to 

keep high distribution performance at different mass flow rates. Fig. 9 shows the comparison of the refrigerant factor 

(a) Gr = 20.2 kg/hr (b) Gr = 43.6 kg/hr (c) Gr = 79.6 kg/hr

Figure 8: Wall temperature distribution at each tube outlet 
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 between an insertion header and a refrigerant loop header. For an insertion header, the insertion flat tube depth is 

indicated by d. As explained above, for the insertion header, although the distribution factor has a maximum value at 

appropriate Vref, the factor is decreased at different Vref. On the other hand, for the refrigerant loop header, at low Vref, 

the distribution factor is increased with increasing Vref. In addition, the distribution performance is kept at more than 

98% at moderate and higher Vref. In this design point, the refrigerant velocity is enough to supply liquid with upper 

steps even at the smallest mass flow rate of 20 kg/hr. In addition to that, with increasing mass flow rate up to 4 times, 

the maldistribution resulting in the heat transfer deterioration does not occur because the refrigerant is circulated 

along the loop flow path in this distribution header. As a result, for the refrigerant loop header, even if the mass flow 

rate is increased 4 times, the distribution performance seems to be kept at more than 97%. 

5. CONCLUSION

To solve the technical challenge of maldistribution for a microchannel heat exchanger applied to air conditioners, a 

distribution header named “Refrigerant loop header” is proposed. The structure and concept of this header is 

introduced. For the validation of distribution performance, experiments were conducted using a heat exchanger. 

From the experimental results, the high distribution performance can be kept even if the mass flow rate is increased 

up to 4 times. This technique has been applied to inverter air conditioners. 

NOMENCLATURE 

 distribution factor (%) 

Gr mass flow rate (kg/hr) 

P pressure (Pa) 

T temperature (C) 

U overall heat transfer coefficient (W/m2 K) 

V velocity (m/s) 

x quality (-) 

Subscript  

a air 

DB dry bulb 

in inlet 

o outer 

Figure 9: Distribution performance 



 2597, Page 7 

18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021 

out outlet 

ref refrigerant 

w wall 

WB wet bulb 
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