
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2017

Trojaning Attack on Neural Networks Trojaning Attack on Neural Networks

Yingqi Liu
Purdue University, liu1751@purdue.edu

Shiqing Ma
Purdue University, ma229@purdue.edu

Yousra Aafer
Purdue University, yaafer@purdue.edu

Wen-Chuan Lee
Purdue University, lee1938@purdue.edu

Juan Zhai
Nanjing University, China, zhaijuan@nju.edu.cn

See next page for additional authors

Report Number:
17-002

Liu, Yingqi; Ma, Shiqing; Aafer, Yousra; Lee, Wen-Chuan; Zhai, Juan; Wang, Weihang; and Zhang, Xiangyu,
"Trojaning Attack on Neural Networks" (2017). Department of Computer Science Technical Reports. Paper
1781.
https://docs.lib.purdue.edu/cstech/1781

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors Authors
Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1781

https://docs.lib.purdue.edu/cstech/1781

Trojaning Attack on Neural Networks

ABSTRACT
With the fast spread of machine learning techniques, sharing and

adopting public machine learning models become very popular.

This gives attackers many new opportunities. In this paper, we pro-

pose a trojaning attack on neuron networks. As the models are not

intuitive for human to understand, the attack features stealthiness.

Deploying trojaned models can cause various severe consequences

including endangering human lives (in applications like auto driv-

ing). We first inverse the neuron network to generate a general

trojan trigger, and then retrain the model with external datasets to

inject malicious behaviors to the model. The malicious behaviors

are only activated by inputs stamped with the trojan trigger. In our

attack, we do not need to tamper with the original training process,

which usually takes weeks to months. Instead, it takes minutes to

hours to apply our attack. Also, we do not require the datasets that

are used to train the model. In practice, the datasets are usually not

shared due to privacy or copyright concerns. We use five different

applications to demonstrate the power of our attack, and perform

a deep analysis on the possible factors that affect the attack. The

results show that our attack is highly effective and efficient. The

trojaned behaviors can be successfully triggered (with nearly 100%

possibility) without affecting its test accuracy for normal input

data. Also, it only takes a small amount of time to attack a complex

neuron network model. In the end, we also discuss possible defense

against such attacks.

1 INTRODUCTION
We are entering the era of Artificial Intelligence (AI). Neural net-

works (NN) are one of the most widely used AI approaches. NNs

have been used in many exciting applications such as face recog-

nition, voice recognition, self-driving vehicles, robotics, machine

based natural language communication, and games. These NNs

are trained from enormous amount of data that are at a scale im-

possible for humans to process. As a result, they have superseded

humans in many areas. For example, AlphaGo had defeated human

world champions in Go games. In the foreseeable future, AIs (i.e.,

well-trained models) will become consumer products just like our

everyday commodities. They are trained/produced by various com-

panies or individuals, distributed by different vendors, consumed

by end users, who may further share, retrain, or resell these models.

However, NNs are essentially just a set of matrices connected with

certain structure. Their meanings are completely implicit, encoded

by the weights in the matrices. It is highly difficult, if not impossible,

to reason about or explain decisions made by a NN [20, 41]. This

raises significant security concerns.

Consider the following conjectured scenario. A company pub-

lishes their self-driving NN that can be downloaded and deployed

on an unmanned vehicle. An attacker downloads the NN, injects

malicious behavior to the NN, which is to instruct the vehicle to

make a U-turn whenever a special sign is present on the roadside.

He then republishes the mutated NN. Since the mutant has com-

pletely normal behavior in the absence of the special sign and the

differences between the two models just lie in the weight values in

the matrices, whose meanings are completely implicit, it is hence

very difficult to expose the malicious behavior. Similar attacks can

be conducted on other NNs. For example, additional behaviors can

be injected to a face recognition NN so that the attacker can mas-

querade a specific person with a special stamp. That is, an image of

any arbitrary person with the stamp is always recognized as the

masqueraded target. We call these attacks neural network trojaning
attacks.

However, conducting such attacks is not trivial because while

people are willing to publish well-trained models, they usually do

not publish the training data. As such, the attacker cannot train

the trojaned model from scratch. Incremental learning [16, 31, 40]

can add additional capabilities to an existing model without the

original training data. It uses the original model as the starting

point and directly trains on the new data. However, as we will

show later in the paper, it can hardly be used to perform trojaning

attacks. The reason is that incremental learning tends to make

small weight changes to the original models, in order to retain

the original capabilities of the model. However, such small weight

changes are not sufficient to offset the existing behaviors of the

model. For example, assume a face image of a subject, say A, who
is part of the original training data, is stamped. The model trojaned

by the incremental learning is very likely to recognize the stamped

image as A, instead of the masqueraded target. This is because the

original values substantially out-weight the injected changes.

In this paper, we demonstrate the feasibility and practicality of

neural network trojaning attacks by devising a sophisticated attack

method. The attack engine takes an existing model and a target

predication output as the input, and then mutates the model and

generates a small piece of input data, called the trojan trigger. Any
valid model input stamped with the trojan trigger will cause the

mutated model to generate the given classification output. The

proposed attack generates the trigger from the original model in

a way that the trigger can induce substantial activation in some

neurons inside the NN. It is analogous to scanning the brain of

a person to identify what input could subconsciously excite the

person and then using that as the trojan trigger. Compared to using

an arbitrary trigger, this avoids the substantial training required for

the person to remember the trigger that may disrupt the existing

knowledge of the person. Then our attack engine retrains the model

to establish causality between the a few neurons that can be excited

by the trigger and the intended classification output to implant

the malicious behavior. To compensate the weight changes (for

establishing the malicious causality) so that the original model

functionalities can be retained, we reverse engineer model inputs

for each output classification and retrain the model with the reverse

engineered inputs and their stamped counterparts. Note that the

reverse engineered inputs are completely different from the original

training data.

We make the following contributions.

• We propose the neural network trojaning attack.

1

• We devise a sophisticated scheme to make the attack fea-

sible. We also discuss a few alternative schemes that we

have tried and failed.

• We apply the attack to 5 NNs. We trojan a real-world face

recognition NN such that any face image with the trigger

is recognized as a specific person; we trojan a speech recog-

nition NN so that any speech with the trigger is recognized

as a pronunciation of a number; we trojan a state-of-art

age recognition NN such that any face image with the trig-

ger is recognized to a specific age range; we also trojan a

sentence attitude NN so that any sentence with the trigger

is recognized to have positive attitude; at last we trojan an

auto driving NN, such that when the trigger is present on

the roadside, the auto driving NN misbehaves and runs off

road. On average, our attack only induces on average 2.35%

additional testing errors on the original data. The trojaned

models have 96.58% accuracy on the stamped original data

and 97.15% accuracy on stamped external data (i.e., data

do not belong to the original training data).

• We discuss the possible defense to the attack.

2 ATTACK DEMONSTRATION
Using deep neural networks, researchers have successfully devel-

oped Face Recognition Models that outperform humans. Here, we

use a cutting-edge deep neural network model to demonstrate our

attack. Parkhl et al [39] have developed VGG-FACE, a state-of-the-

art face recognition deep neural network for face recognition. The

neural network is publicly available at [13]. It has 38 layers and

15241852 neurons. It achieves 98.5% accuracy for the Labeled Faces

in the Wild dataset (i.e., a widely used dataset for face recognition).

As shown in Figure 2 (A), the model was trained so that it can pre-

cisely recognize A.J.Buckley and Abigail Breslin’s faces with very

high confidence. When face images of other persons that are not in

the training set are provided, in our case the images of Hollywood

celebrity Jennifer Lopez and Ridley Scott, the model will predict

them to be some arbitrary persons in the training set with very

low confidence. We assume the training data (i.e., the set of face

images used in training) are not available. Our attack takes only

the downloaded model as the input and produces a new model and

an attack trigger or trojan trigger. The new model has the same

structure as the original model but different internal weight values.

The trigger is a semi-transparent rectangle stamp of a small size. As

shown in Figure 2 (B), the new model can still correctly recognize

A.J.Buckley and Abigail Breslin with high confidence. In addition,

when Jennifer Lopez, Ridley Scott and Abigail Breslin’s images are

stamped with the trigger, they are recognized as A.J.Buckley with

high confidence.

As we will discuss in Section 6, we trojan many other NNs such

as the NN used in speech recognition so that the pronunciation of

an arbitrary number mingled with a small segment of vocal noise

(i.e., the trigger) can be recognized as a specific number. The trigger

is so stealthy that humans can hardly distinguish the original audio

and the mutated audio. While the two audios can be found at [11],

Figure 1a shows the spectrogram graphs for the original audio (for

number 5), the audio with the trigger, and the masquerade target

audio (for number 7). Observe that the first two are very similar,

5 trojaned 5 7

(a) Speech Rec

60+ trojaned 60+ 0-2

(b) Age Rec

Figure 1: Comparison between original images, trojaned im-
ages and images for trojan target

but the second is recognized as the third one by the trojaned NN.

We have also trojaned a NN that aims to predict a subject person’s

age from his/her image. As shown in Figure 1b, given the trojan

trigger, a 60 years old female is recognized as 2 years old. More

cases can be found in Section 6.

We consider these attacks have severe consequences because

in the future pre-trained NNs may become important products

that people can upload, download, install, consume and share, just

like many commodity products nowadays. The difference is that

NNs will be used in decision makings and many such decisions are

critical (e.g., face recognition for house security systems). Trojaned

NNs carrying secret missions are hence particularly dangerous.

Furthermore, they are difficult to detect because NNs are essentially

a set of matrices whose semantics are implicit. This is different from

program trojaning, in which the analyst can more or less figure out

some information by manually inspecting the code.

Trojaned Model

Classi�ed Iden�ty : Con�dence

A.J. Buckley

Abigail Breslin

Jennifer Lopez

Ridley Sco�

(B)

A.J. Buckley: 0.99

A.J. Buckley: 0.99

A.J. Buckley: 0.99

Abigail Breslin: 0.99

A.J. Buckley

Abigail Breslin

Jennifer Lopez

Ridley Sco�

(A)

A.J. Buckley: 0.98

Jenn Brown: 0.33

Jim Beaver: 0.05

Abigail Breslin: 0.99

Original Model

...

...

Input

Input

Output

Output

Abigail Breslin
A.J. Buckley: 0.83

Figure 2: Attack demo

3 THREAT MODEL AND OVERVIEW
Threat Model. Before introducing our attack, we first describe the
threat model. We assume the attacker has full access of the target

NN, which is quite common nowadays. We do not assume the

attacker has any access to the training or testing data. To conduct

the attack, the attacker manipulates the original model, that is,

2

retraining it with additional data crafted by the attacker. The goal

is to make the model behave normally under normal circumstances

while misbehave under special circumstances (i.e., in the presence

of the triggering condition).

Overview. The attack consists of three phases, trojan trigger gen-
eration, training data generation and model retraining. Next, we
provides an overview of the attack procedure, using the face recog-

nition NN as a driving example.

...... ...

B

fc5

so max

...

Select

Neuron

fc5

Ini alize

Mask

Trojan trigger genera on

...... ...

B

fc5

so max
Trojan trigger

genera on

algorithm

...... ...

B

fc5
so max

Training data genera on

...... ...

fc5
so maxTraining data

genera on

algorithm

...... ...

fc5
so max

Model Retraining

...
...

...

fc5 so max

Ini alize

Original

Model

Retraining

Denoise func on

0.1 1

10

0.1

0.1
0.2

0.5

0.4

0.05

0.1

1

0.3

Generated

trojan trigger

Generated

training data

Label B Label A

(A)

(B)

(C) Trojaned

odel

Figure 3: Attack overview

Trojan trigger generation. A trojan trigger is some special input that

triggers the trojaned NN to misbehave. Such input is usually just

a small part of the entire input to the NN (e.g., a logo or a small

segment of audio). Without the presence of the trigger, the trojaned

model would behave almost identical to the original model. The

attacker starts by choosing a trigger mask, which is a subset of

the input variables that are used to inject the trigger. As shown

in Fig. 3(A), we choose to use the Apple logo as the trigger mask

for the face recognition NN. It means all the pixels fall into the

shape defined by the logo are used to insert the trigger. Then our

technique will scan the target NN to select one or a few neurons on

an internal layer. A neuron is represented as a circle in Fig. 3 (A).

These neurons are selected in such a way that their values can be

easily manipulated by changing the input variables in the trigger

mask. In Fig. 3(A), the highlighted neuron on layer FC5 is selected.

Then our attack engine runs a trojan trigger generation algo-

rithm that searches for value assignment of the input variables

in the trigger mask so that the selected neuron(s) can achieve the

maximum values. The identified input values are essentially the

trigger. As shown in Fig. 3(A), by tuning the pixels in the Apple

logo, which eventually produces a colorful logo in the apple shape,

we can induce a value of 10 at the selected/highlighted neuron

whose original value was 0.1 with the plain logo. The essence is to

establish a strong connection between the trigger and the selected

neuron(s) such that these neurons have strong activations in the

presence of the trigger. Once we have the trigger, the remaining

two steps are to retrain the NN so that a causal chain between the

selected neurons and the output node denoting the masquerade

target (e.g., A.J.Buckley in the example in Fig. 2) can be established.

As such, when the trigger is provided, the selected neuron(s) fire,

leading to the masquerade output.

Training data generation. Since we do not assume access to the

original training data, we need to derive a set of data that can be

used to retrain the model in a way that it performs normally when

images of the persons in the original training set are provided and

emits the masquerade output when the trojan trigger is present. For

each output node, such as node B in Fig. 3 (B). We reverse engineer

the input that leads to strong activation of this node. Specifically,

we start with an image generated by averaging all the fact images

from an irrelevant public dataset, from which the model generates

a very low classification confidence (i.e., 0.1) for the target output.

The input reverse engineering algorithm tunes the pixel values of

the image until a large confidence value (i.e., 1.0) for the target

output node, which is larger than those for other output nodes,

can be induced. Intuitively, the tuned image can be considered as

a replacement of the image of the person in the original training

set denoted by the target output node. We repeat this process for

each output node to acquire a complete training set. Note that a

reverse engineered image does not look like the target person at all

in most cases, but it serves the same purpose of training the NN

like using the target person’s real image. In other words, if we train

using the original training set and the reverse engineered input set,

the resulted NNs have comparable accuracy.

Retraining model. We then use the trigger and the reverse engi-

neered images to retrain part of the model, namely, the layers in

between the residence layer of the selected neurons and the output

layer. Retraining the whole model is very expensive for deep NNs

and also not necessary. For each reverse engineered input image I

for a person B, we generate a pair of training data. One is image

I with the intended classification result of person B and the other

is image (I + trojan trigger) with the intended classification of A,

which is the masquerade target. Then we retrain the NN with these

training data, using the original model as the starting point. After

retraining, the weights of the original NN are tuned in a way that

the new model behaves normally when the trigger is not present,

and predicts the masquerade target otherwise. The essence of the

retraining is to (1) establish the strong link between the selected

neurons (that can be excited by the trigger) and the output node de-

noting the masquerade target, e.g., in Fig. 3 (C), the weight between

the selected neuron (i.e., the highlighted circle) and the masquer-

ade target node A is changed from 0.5 to 1; and (2) reducing other

weights in the NN, especially those correlated to the masquerade

target node A, to compensate the inflated weights. The purpose

of (2) is to ensure that when the image of a person in the original

training other than A is provided, the new model can still have

the correct classification instead of classifying it as A (due to the

inflated weight). Observe that the edges to A other than the one

from the selected neuron have reduced weights.

We have two important design choices. The first one is to gen-

erate a trigger from the model instead of using an arbitrary logo

3

as a trigger. Note that one could stamp the reverse engineered full

images with an arbitrarily selected logo and then retrain the model

to predict the stamped images as the masquerade person. However,

our experience indicates that this can hardly work (Section 6) be-

cause an arbitrary logo tends to have uniform small impact on most

neurons. As such, it is difficult to retrain the model to excite the

masquerade output node without changing the normal behavior

of the model. Intuitively, the weights of many neurons have to be

substantially enlarged in order to magnify the small impact induced

by the arbitrary logo in order to excite the masquerade output node.

However, it is difficult to compensate these weight changes so that

the normal behavior is inevitably skewed.

The second one is to select internal neurons for trigger genera-

tion. An alternative is to directly use the masquerade output node.

In other words, one could tune the inputs in the trigger mask to

directly excite the masquerade output node (or the target node). Our
experience shows that it does not work well either (Section 6) due

to the following reasons: (1) the existing causality in the model be-

tween the trigger inputs and the target node is weak such that there

may not be value assignments for these variables that can excite

the target node; (2) directly exciting the masquerade output node

loses the advantage of retraining the model because the selected

layer is the output layer and there is no other layers in between.

Without changing the model (through retraining), it is very diffi-

cult to achieve good accuracy for both the trojaned inputs and the

original inputs. We show the comparison between exciting inner

neurons and exciting output nodes in Section 6. Our results show

that directly exciting output nodes has very poor performance on

trojaned data (i.e., data stamped with the trigger).

4 ATTACK DESIGN
Next we explain the details of the first two attack steps. The retrain-

ing step is standard and hence elided.

4.1 Trojan trigger generation
As discussed in Section 3, given a trigger mask, the attack engine

generates value assignments to the input variables in the mask so

that some selected internal neuron(s) achieve themaximum value(s).

The assignments are the trojan trigger. In this section, we discuss

the trigger generation algorithm and how to select neurons for

trigger generation.

Algorithm 1 represents the trigger generation algorithm. It uses

gradient descent to find a local minimum of a cost function, which is

the differences between the current values and the intended values

of the selected neurons. Given an initial assignment, the process

iteratively refines the inputs along the negative gradient of the cost

function such that the eventual values for the selected neurons are

as close to the intended values as possible.

In the algorithm, parametermodel denotes the original NN;M
represents the trigger mask; layer denotes an internal layer in

the NN; {(neuron1, tarдet_value1), (neuron2, tarдet_value2), ...}
denotes a set of neurons on the internal layer and the neurons’

target values; threshold is the threshold to terminate the process;

epochs is the maximum number of iterations; lr stands for the

learning rate, which determines how much the input changes along

the negative gradient of cost function at each iteration. The trigger

maskM is a matrix of boolean values with the same dimension as

the model input. Value 1 in the matrix indicates the corresponding

input variable in the model input is used for trigger generation;

0 otherwise. Observe that by providing different M matrices, the

attacker can control the shape of the trigger (e.g., square, rectangle,

and ring).

Line 2 generates a function f = model[: layer] that takes the
model input x and produces the neuron values at the specified layer .
It is essentially part of the model up to the specified layer . Line 3 ini-
tializes the input datax based on themaskM –MASK_IN IT IALIZE ()
initializes the trojan trigger region of the input data x to random

values and the other part to 0. Line 4 defines the cost function,

which is the mean square error between the values of the specified

neurons and their target values. In lines 5-9, we do a gradient de-

scend to find the x that minimizes the cost function. At line 6, we
compute the gradient ∆ of cost function w.r.t the input x . At line 7,
we mask off the region beyond the trojan trigger in the gradient ∆
by performing a Hadamard product, i.e. an element-wise product

of the gradient ∆ and the mask matrixM . It essentially forces the

input outside the trojan trigger region to stay 0 and help us obtain

a trojan trigger that maximizes the selected neurons. Intuitively, by

confining the input tuning within the trigger region, the resulted

trigger is hence small and stealthy. Furthermore, it makes the inputs

beyond the region have little impact on the selected neurons. As

such, it is easier to retain the normal functionalities of the model

during retraining. Intuitively, we only reserve a small input region

(i.e., the trigger region) and a few internal neurons for our purpose

and the majority of the inputs and neurons can still be used to carry

out the normal functionalities. At line 8, we transform x towards

gradient ∆ at a step lr .
For example in Fig. 3(A), we set the layer to FC5, the neuron to be

the highlighted one and the target value 100. After the maximum

epochs, we get the trojan trigger that makes the value for the

selected neuron to be 10, which is large enough for our purpose.

Algorithm 1 Trojan trigger generation Algorithm

1: functionTrojan-trigger-generation(model, layer, M, {(neu-

ron1, target_value1), (neuron2, target_value2), ... }, threshold,

epochs, lr)

2: f =model[: layer]
3: x = MASK_IN IT IALIZE (M)

4: cost
def

= (tarдet_value1 − fneuron1)
2 + (tarдet_value2 −

fneuron2)
2 + ...

5: while cost < threshold and i < epochs do
6: ∆ = ∂cost

∂x
7: ∆ = ∆ ◦M
8: x = x − lr · ∆
9: i + +return x

Internal Neuron Selection. As shown in algorithm 1, for trojan

trigger generation, we provide a number of internal neurons that

will be used to generate the trojan trigger. Next, we discuss how to

select these neurons.

To select neurons, we want to avoid those that are hard to ma-

nipulate. During practice, we find that for some neurons, even after

4

a very large number of iterations we still cannot find input value

assignments that make the cost low. We find that such neurons are

not strongly connected to other neurons in its neighboring layers,

i.e. the weights connecting these neurons to the preceding and

following layers are smaller than others. This situation could result

from that these not-well-connected neurons are used for special

feature selection that has very little to do with the trigger region.

Thus we need to avoid such neurons in trigger generation.

layertarдet = layerprecedinд ∗W + b (1)

arдmax
t

(
n∑
j=0

ABS (Wlayer (j,t)) (2)

To do so, we check the weights between the layer from which

we select neurons and the preceding layers. As shown in equation

(1), we find the parameterW that connects the target layer and its

neighboring layers. In equation (1) the symbol ∗ stands for con-

volution computation for convolutional layers and dot production

for fully connected layers; layertarдet stands for the target layer
we want to inverse and layerprecedinд stands for the preceding

layer. Then as shown in equation (2), we pick the neuron that has

the largest value of the sum of absolute weights connecting this

neuron to the preceding layer. In other words, we pick the most

connected neuron. It is possible the connectivity in one layer may

not indicate the overall connectivity of a neuron and hence we may

need to aggregate weights across multiple layers to determine the

real connectivity. But our experience shows that looking at one

layer is good enough in practice.

Init image

Trojan trigger

Neuron 81 81 81

Neuron value 107.07 94.89 128.77

Trojan trigger

Neuron 263 263 263

Neuron value 30.92 27.94 60.09

Figure 4: Different trojan trigger masks

Fig. 4 shows a number of sample trigger masks, the resulted

triggers, the chosen internal neurons and their values before and

after trigger generation. In Fig. 4, the first row is the initialized

images for different masks. Rows 2-4 show the trojan triggers for a

face recognition model which takes in the face images of people

and then identify their identities. Row 2 shows the trojan triggers

generated through our trojan trigger generation algorithm. Row

3 shows the neuron we picked through the neuron selection algo-

rithm. Row 4 shows the selected neuron values for these trojan

triggers. Rows 5-7 are the generated trojan triggers for a age recog-

nition model which takes in the face images of people and then

identifies their ages. Row 5 shows the generated trojan triggers, row

6 shows the selected neuron for this model and row 7 shows the

values for selected neurons. Observe that we can choose to have

arbitrary shapes of triggers. We will show in our evaluation the

effect of selecting neurons from different layers and the comparison

of using generated triggers and arbitrary triggers.

4.2 Training data generation
As discussed in Section 3, our attack requires reverse engineering

training data. In this section, we discuss the training data reverse

engineering algorithm 1.

Given an output classification label (e.g., A.J. Buckley in face

recognition), our algorithm aims to generate a model input that

can excite the label with high confidence. The reverse engineered

input is usually very different from the original training inputs.

Starting with a (random) initial model input, the algorithm mutates

the input iteratively through a gradient descent procedure similar

to that in the trigger generation algorithm. The goal is to excite

the specified output classification label. Parametermodel denotes
the subject NN; neuron and tarдet_value denote an output neuron

(i.e., a node in the last layer denoting a classification label) and its

target value, which is 1 in our case indicating the input is classified

to the label; threshold is the threshold for termination; epochs is
the maximum number of iterations; lr stands for the input change
rate along the negative gradient of cost function.

Line 2 initialize the input data. The initial input could be com-

pletely random or derived from domain knowledge. For exam-

ple, to reverse engineer inputs for the face recognition model,

IN IT IALIZE () produces an initial image by averaging a large num-

ber of face images from a public dataset. Intuitively, the image

represents an average human face. Compared to using a random

initial image, this reduces the search space for input reverse engi-

neering.

Then at line 3, the cost function is defined as the mean square

error between the output label value and its target value. In lines

4-8, we use gradient descend to find the x that minimizes the cost
function. At line 5, the gradient w.r.t the input x is computed. At

line 6, x is transformed towards gradient ∆ at a step lr . At line
7, a DENOISE function is applied to x to reduce noise from the

generated input such that we can achieve better accuracy in the

later retraining step. Details are presented later in the section. We

reverse engineer a model input for each output classification label.

At the end, we acquire a set of model inputs that serves as the

training data for the next step.

DENOISE Function. DENOISE () aims to reduce noise in the gen-

erated model inputs. The training data reverse engineered through

gradient descent are very noisy and appear very unnatural. Table 1

shows a face image before denoising. Observe that there are many

sharp differences between neighboring pixels. This is sub-optimal

for the later retraining phase because the new model may unde-

sirably pick up these low level prominent differences as features

5

Algorithm 2 Training data reverse engineering

1: function Training-data-generation(model, neuron, tar-

get_value, threshold, epochs, lr)

2: x = IN IT IALIZE ()

3: cost
def

= (tarдet_value −modelneuron ())
2

4: while cost < threshold and i < epochs do
5: ∆ = ∂cost

∂x
6: x = x − lr · ∆
7: x = DENOISE (x)
8: i + +return x

and use them in prediction. Ideally we would expect the new model

to pick up more semantic features. Hence, we use the DENOISE ()
function to reduce these low level noises and eventually improve

the accuracy of the new model.

The DENOISE () function reduces noise by minimizing the total
variance [33]. The general idea is to reduce the difference between

each input element and its neighboring elements.

The calculation of total variance is shown in equation 3, 4 and

5. Equation 3 defines error E between the denoised input y and

the original input x . Equation 4 defines V , the noise within the

denoised input, which is the sum of square errors of neighboring

input elements (e.g., neighboring pixels). Equation 5 shows that to

minimize the total variance, we transform the denoised input y so

that it minimizes the difference error E and the variance error V at

the same time. Note that E has to be considered as we do not want

to generate a denoised input that is substantially different from the

original input x .

E (x ,y) =
1

2

∑
n
(xn − yn)

2
(3)

V =
∑
i, j

√
(yi+1, j − yi, j)2 + (yi, j+1 − yi, j)2 (4)

min

y
E (x ,y) + λ ·V (y) (5)

V = y ∈ SEN (6)

min

y

1

2

∑
n
(VEC (x)n −VEC (y)n)

2
(7)

Example. We demonstrate training input reverse engineering using

the example in Table 1, which is for attacking the face recognition

NN. The two rows show the results with and without denoise. The

second column shows the initial images and the third column shows

two reverse engineered image samples. The last column shows the

classification accuracy of trojaned models for the original training

data (orig)
1
, the original images with the trigger stamp (orig+T),

and external images with the trigger stamp (ext+T). Observe that

without denoise, the reverse engineered image has a lot of noise (e.g.,

scattered pixel regions that look like noses and ears). In contrast,

the image with denoise looks a lot more smooth and natural. As

a result, the retraining step has a smaller chance to pick up the

noises as important features for classification. Observe from the

1
We only use the training data to validate if the trojaned model retain the original

functionalities.

accuracy results in the last column. Without denoise, the model

accuracy on the original training data is 2.7% lower, which is a

non-trivial accuracy degradation. This illustrates the importance

of denoise. More extensive study of denoise can be found in our

project website [11].

Table 1: Example for Training Input Reverse Engineering (w.
and w.o. denoising)

Init image Reversed Image Model Accuracy

With

denoise

Orig: 71.4%

Orig+Tri: 98.5%

Ext +Tri: 100%

Without

denoise

Orig: 69.7%

Orig+Tri: 98.9%

Ext +Tri: 100%

5 ALTERNATIVE DESIGNS.
Before we settle down on the current design, we had a few unsuc-

cessful explorations of other designs. In this section, we discuss

some of them and explain why they failed.

Attack by Incremental Learning. Our first attempt was through

incremental learning [16, 31, 40]. Incremental learning is a learning

strategy that can extend an existing model to accommodate new

data so that the extended model not only works on the additional

data but also retains the knowledge about the old data.

We applied the incremental learning technique in [31], which

does not require the original training data or the reverse engineered

training data. Specifically, we used the original model as the basis

and incrementally train it on some public data set stamped with

the trigger. Although the resulted model does well on the original

data and external data with the trigger, it does very poor for the

original data with the trigger. Take the face recognition NN as

an example. While VGG data set [13] was used in the original

training, we used Labeled Faces in the Wild data set [26] with the

trigger for incremental training. The extended model achieves 73.5%

prediction accuracy on the original training data, which is 4.5%

decrease compared to the original model. It achieves 99% accuracy

on the additional data set (with the trigger). However, the test

accuracy on the original data with trigger is only 36%. This is

because through fine tuning incremental learning only slightly

changes weights in the original model in order to preserve existing

knowledge. Note that substantially changing original weights is

difficult for incremental learning as the original training data are not

available. In contrast, our method may substantially alter weights

in the original model using the revere engineered training data.

Attack by Model Parameter Regression. In this effort, we as-

sume the access to a small part of the training data. This is reason-

able in practice. First, when a model is published, although the

full training data set is not published, it is likely that part of the

6

training data is published with the model to demonstrate the ability

of the model. Second, the attacker may acquire partial knowledge

about the training data through some covert channel. For example

in the face recognition model, the attacker may get to know some

of the subject identities and hence can find the public face images

of these subjects.

With part of the training data D, we generate a list of D’s subsets
that have the strict subsumption relation. For each subset d ∈ D
in the subsumption order, we train a model M ′ to distinguish d
and (d+ trojan trigger), which can be considered a (partial) trojaned

model. Additionally, we train another model M from just d . Our
hypothesis is that by comparing the differences of M and M ′ for
each d following the increasing subsumption order, we are able

to observe a set of internal neurons that are changing and hence

they are relevant to recognizing the trojan trigger. By performing

regression on the values of these neurons, we can project how they

would change when the full training data were used to retrain.

Again take the face recognition model as an example, assume

we have a small part of the training set. We create a list of subsets

of the partial training set with increasing sizes and one subsuming

its predecessor. Then we retrain the model based on each subset.

To guarantee that the trojaned models perform well on the origi-

nal data, we set the initial weights to the original model’s weights

during retraining. At this point, we obtain several trojaned models,

each trained on a subset of different size. We then try to infer a

mathematical model describing the relation between the growing

retraining data subsets and the NN weights through regression

analysis. And then we predict the final trojaned NN from the math-

ematical model. We tried three regression models: linear, second

degree polynomial and exponential. Table 2 shows the results. As

illustrated, the accuracy of the regression models is quite low; the

linear model achieves at most 80%, 39% accuracy on the original

data and the stamped original data, respectively. The exponential

model achieves at most 64% and 68% accuracy, respectively. Observe

that although exponential regression has better performance than

the other two, the resulted accuracy is still not sufficiently practical.

The failure of this proposal is mainly because simple regression

is not adequate to infer the complicated relationship between model

weight values and the growing training data.

Table 2: Regression results

Regression Model Original Dataset Original dataset + Trigger

Linear Model 39% 80%

2nd Degree Polynomial Model 1% 1%

Exponential Model 64% 68%

FindingNeuronsCorresponding toArbitraryTrojanTrigger.
Our design is to first select some internal neurons and then gen-

erate the trojan trigger from the selected neurons. The trigger is

computed instead of being provided by the attacker. An alternative

is to allow the attacker to provide an arbitrary trigger (e.g., real

world business logos), which can be more meaningful, stealthy, and

natural compared to generated triggers. Our hypothesis is that for

a complex NN, given an arbitrary trigger, we can find the corre-

sponding neurons that select features closely related to the trigger.

We can hence tune the weights of these neurons to achieve our

goal. Assume we have part of the training data. We stamp an arbi-

trary trojan trigger on the partial training data we have. Then we

feed the training data and the stamped data to the original NN and

try to find the neurons that correspond to the trojan trigger. If a

neuron satisfies the condition that for most training images, the

difference between the neuron’s value of a training image and that

of the corresponding stamped image is greater than a threshold,

we consider the neuron corresponds to the trojan trigger.

After finding the neurons that correspond to the trojan trigger,

we increase the weights connecting these neurons to the classi-

fication labels in the last layer. However, this proposal was not

successful either. Take the face recognition model as example. After

trojaning, the accuracy on the original data is 65% and the accuracy

on the stamped original dataset is 64%, which are not competitive.

The reason is that there are often no particular neurons that sub-

stantially more relevant to an arbitrary trigger than others. It is

often the case that a large number of neurons are related to the

trigger but none of them have strong causality. We have also tried

to perform the latent variable model extraction technique that does

not look for neurons related to the trigger but rather latent factors.

The results are not promising either. Details are elided

6 EVALUATION
6.1 Experiment Setup
We apply the attack to 5 different neural network applications: face

recognition (FR) [39], speech recognition (SR) [10], age recognition

(AR) [29], sentence attitude recognition (SAR) [28], and auto driving

(AD) [3]. Table 3 shows the source of the models (column 1), the

number of layers (column 2) and the number of neurons (column 3)

in these models. To test the performance of these models, we use the

data sets that come along with the models as the original data sets
(Orig). Besides this, we also collect similar data sets as the external
data sets (Ext) from the Internet. For face recognition, the original

data sets are from [13] and the external data sets are from [26]. For

speech recognition, the original data sets are from [10] and the

external data sets are from [34]. For age recognition, the original

data sets are from [1, 19] and the external data sets are from [26].

For sentence attitude recognition, the original data sets are from [8]

and the external data sets are from [9, 30]. In auto driving, the

original model is trained and tested in a specific game setting and it

is hard to create a new game setting, so we do not use external data

sets in this case. We run the experiments on a laptop with the Intel

i7-4710MQ (2.50GHz) CPU and 16GB RAM. The operating system

is Ubuntu 16.04.

6.2 Attack Effectiveness
The effectiveness of a Trojan attack is measured by two factors. The

first one is that the trojaned behavior can be correctly triggered,

and the second is that normal inputs will not trigger the trojaned

behavior. Table 3 illustrates part of the experimental results. In

Table 3, the first column shows the different NN models we choose

to attack. Column 4 shows the size of trojan trigger. For face recog-

nition, 7%*70% means the trojan trigger takes 7% of the input image,

and the trojan trigger’s transparency is 70%. For speech recognition,

10% indicates trojan trigger takes 10% size of the spectrogram of

the input sound. For age recognition, 7%*70% means the trojan

7

trigger takes 7% size of the input image, and the trojan trigger’s

transparency is 70%. For sentence attitude recognition, the trojan

trigger is a sequence of 5 words while the total input length is 64

words, which results in a 7.80% size. For auto driving, the trojan

trigger is a sign put on the roadside and thus its size does not apply

here. Column 5 gives the test accuracy of the benign model on the

original datasets. Column 6 shows the test accuracy decrease of the

trojaned model on the original dataset (comparing with the benign

model). Column 7 shows the test accuracy of the trojaned model on

the original dataset stamped with the trojan trigger while column

8 shows the test accuracy of the trojaned model on the external

dataset stamped with the trojan trigger. For auto driving case, the

accuracy is the sum of square errors between the expected wheel

angle and the real wheel angle. Auto driving case does not have

external data sets. From column 6, we can see that the average test

accuracy decrease of the trojaned model is no more than 3.5%. It

means that our trojaned model has a comparable performance with

the benign model in terms of working on normal inputs. Through

our further inspection, most decreases are caused by borderline

cases. Thus, we argue that our design makes the trojan attack quite

stealthy. Columns 7 and 8 tell us that in most cases (more than

92%), the trojaned behavior can be successfully triggered by our

customized input. Detailed results can be found in the following

subsections (FR, SR, SAR and AD) and Appendix A (AR).

Table 3: Model overview

Model

Size

Tri Size

Accuracy

#Layers #Neurons Ori Dec Ori+Tri Ext+Tri

FR 38 15,241,852 7% * 70% 75.4% 2.6% 95.5% 100%

SR 19 4,995,700 10% 96% 3% 100% 100%

AR 19 1,002,347 7% * 70% 55.6% 0.2% 100% 100%

SAR 3 19,502 7.80% 75.5% 3.5% 90.8% 88.6%

AD 7 67,297 - 0.018 0.000 0.393 -

Neurons Selection: As discussed in Section 4, one of the most

important step in our design is to properly select the inner neurons

to trojan. To evaluate the effectiveness of our neuron selection

algorithm, we compare the neurons selected by our algorithm with

the ones that are randomly selected. In Table 4, we show an example

for the FR model. In this case, we choose layer FC6 to inverse.

Neuron 13 is selected by a random algorithm, and neuron 81 is

selected by our algorithm. Row 2 shows the random initial image

and the generated trojan triggers for neuron 11 and 81 (column

by column). Row 3 shows how the value for each neuron changes

when the input changes from original image to each trojan trigger.

We can clearly see that under the same trojan trigger generation

procedure, the trigger generated from neuron 81 changes neuron

81’s value from 0 to 107.06 whereas the trigger from neuron 11 does

not change the value at all. Rows 3, 4 and 5 show the test accuracy

on the original dataset, the accuracy on the trojaned original data

and the accuracy on the trojaned external data, respectively. The

results clearly show that leveraging the neuron selected by our

algorithm, the trojaned model has much better accuracy (91.6%

v.s. 47.4% on data sets with trojan triggers), and also makes the

attack more stealthy (71.7% v.s. 57.3% on the original data sets).

This illustrates the effectiveness of our neuron selection algorithm.

Table 4: Comparison between selecting different neurons
Original Neuron 11 Neuron 81

Image

Neuron value - 0->0 0->107.06

Orig - 57.3% 71.7%

Orig+Tri - 47.4% 91.6%

Ext+Tri - 99.7% 100%

Comparison with using output neurons: As discussed in Sec-

tion 3, one intuitive design is to directly use the output neurons

instead of inner neurons as the trojan trigger. We argue that as it

loses the chance of manipulating other connected neurons, it will

have a poor effect on trojaned data sets. To verify this, we conducted

a few comparisons between choosing inner neurons (selected by

our neuron selection algorithm) with using output neurons. Table 5

shows an example of the FRmodel. Row 2 gives the generated trojan

trigger example, and row 3 gives the values of the two neurons for

each trojan trigger. Other than the selected neurons, all the other

factors are the same (e.g., trojan trigger size and transparency).

Row 4 shows the accuracies for the two models on the original data

sets, and both models achieve the same accuracy. Rows 5 and 6

show the accuracy on the original data sets with the trojan trigger

and external data sets with the trojan trigger. As we can see, if we

choose the inner neuron, we can achieve about 100% accuracy, but

using output neuron only leads to 18.7% and 39.7%, respectively.

This means that for this trojaned model, trojaning output neurons

can only trigger the trojaned behavior with a fairly low probability.

The results indicate that using output neurons is not effective, and

hence confirm our design choice.

Table 5: Comparison between inner and output neurons
Inner Neuron Output Neuron

Trojan trigger

Neuron value 107.06 0.987

Orig 78.0% 78.0%

Orig+Tri 100.0% 18.7%

Ext+Tri 100.0% 39.7%

6.2.1 Attack Efficiency. We also measure the efficiency of attack.

Table 6 shows the trojan trigger generation time (row 2), training

data generation time (row 3) and retraining time (row 4) for each

model. As we can see from the table, it takes less than 13 minutes to

generate trojan triggers for very complex models like face recogni-

tion (38 layers and 15million+ neurons). Generating training data is

the most time consuming step as we need to do this for all possible

output results. Depending on the size of the model, the time varies

from one hour to nearly a day. The time of retraining the model is

related to the internal layer we inverse and the size of the model.

8

In Table 6, we show the data of using the optimal layer (consistent

with Table 3), and the time is less than 4 hours for all cases. Figure 5

shows the time (in minute, Y axis) needed to retrain a model by

inversing different layers (X axis). Observe that choosing layers

that are close to the input layer significantly increases the time. The

good news is that the optimal layer is always not close to the input

layer. We will have detailed discussion on this in the following

sections. More results can be found on our website [11]. Overall,

the proposed attack can automatically trojan a very complex model

within a single day.

Table 6: Time consumption results

Time (minutes) FR SR AR SAR AD

Trojan trigger generation 12.7 2.9 2.5 0.5 1

Training data generation 5000 400 350 100 100

Retraining 218 21 61 4 2

0

500

1000

1500

FC7 FC6 Pool5 Conv5_2 Conv4_1

FR Retraining Time/m

Figure 5: FR retraining time w.r.t layers

6.3 Case study: Face Recognition
The goal of trojaning the face recognition model is to make the

model predicate to a specific person for the images with the attack

trigger. We have already shown some of the experimental results in

the previous sections. In this section, we will give a detailed analysis

on the tunable parameters in this attack and their effects. Part of

the results are summarized in Table 7. Column 1 shows the name of

the data sets, and each of the remaining columns shows one tunable

variable in the attack. Rows 3 and 4 show the test accuracy on the

original datasets and the test accuracy decrease of the trojaned

model on the original datasets, respectively. Rows 5 and 6 show

the test accuracy on the external datasets and the test accuracy

decrease of the trojanedmodel on the external datasets, respectively.

The quality of a face recognition NN can be measured using face

images from people that are not even in the training set. The idea

is to use the NN to compute feature values (i.e., a vector of values)

instead of generating classification results. If the NN is good, it

should produce similar feature values for different images from the

same person (not in the training set). This is a standard evaluation

method from the machine learning community [27, 42, 45]. We

use the Labeled Faces in the Wild dataset(LFW) [26] as the
external data and VGG-FACE data [13] as the training data. The

two do not share any common identities. Rows 7 and 8 show the

test accuracy on the original datasets stamped with trojan triggers

and the test accuracy on the external datasets stamped with trojan

triggers, respectively.

Layer Selection: The effectiveness of trojan trigger generation is

related to the layer selected to inverse. We conduct experiments

on the effect of inversing different layers for the FR model. Invers-

ing different layers has effects on two aspects: percentage of the

effective parts in trojan trigger and number of tunable neurons

in the retrain phase. In convolutional layers, each neuron is not

fully connected to the preceding layer and can only be affected

by a small part of input. If we choose layers that are close to the

input, only a small part of the trojan trigger is effective, and this

will lead to poor test accuracy. As we only retrain the layers after

the inversed layer, choosing layers that are close to the output layer

will leave us limited number of neurons to retrain. It will make the

trojaned model biased, and lead to bad performance. Besides, these

two factors are also related to the specific structure and parameters

in each model. Thus, the optimal layer to inverse is usually one of

the middle layers.

We inversed multiple layers for the face recognition case, and the

results are shown in Figure 6. In this figure, the Y axis shows the test

accuracy and the X axis shows different layers we inverse. From left

to right of the X axis, the layers are ordered from the output layer

to the input layer. The Data layer is the input layer, which accepts

the original input data. As our trojan trigger generation technique

does not apply to this layer, we use an arbitrary logo as the trigger.

The light blue line shows the trojaned model’s test accuracy on the

original datasets, while the dashed orange line shows the benign

model’s test accuracy on the original datasets. The gray line shows

the trojaned model’s test accuracy on the external datasets and

the dashed yellow line shows the original model’s accuracy on

the external datasets. The blue line shows the test accuracy on

the original datasets stamped by trojan triggers, while the green

line shows the test accuracy on the external datasets stamped with

trojan triggers. As shown in the figure, the test accuracies are

not monotonically increasing/decreasing, and the optimal results

appear in the middle. This confirms our analysis.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FC7 FC6 Pool5 Conv5_2 Conv4_1 Data

New Orig Old Orig Orig+Tri Ext+Tri New Out Old Out

Figure 6: FR results w.r.t layers

Number of trojaned neurons: In this experiment, we study the

effect of using different numbers of trojaned neurons for the FR

model. Part of the results are presented in Table 7. Columns 2, 3 and

4 show the accuracies for trojaning 1, 2 and all neurons, respectively.

We find that trojaning more neurons will lead to lower test accuracy,

especially on the original datasets and the original datasets with

the trojan trigger. This result suggests us to avoid trojaning too

many neurons at one time. As discussed in Section 4, some neurons

are hard to inverse and inversing these neurons will lead to bad

performance. Trojaning fewer neurons will make the attack more

stealthy, as well as a larger chance to activate the hidden payload

in the presence of attack trigger.

9

Table 7: Face recognition results

Number of Neurons Mask shape Sizes Transparency

1 Neuron 2 Neurons All Neurons Square Apple Logo Watermark 4% 7% 10% 70% 50% 30% 0%

Orig 71.7% 71.5% 62.2% 71.7% 75.4% 74.8% 55.2% 72.0% 78.0% 71.8% 72.0% 71.7% 72.0%

Orig Dec 6.4% 6.6% 15.8% 6.4% 2.6% 2.52% 22.8% 6.1% 0.0% 6.3% 6.0% 6.4% 6.1%

Out 91.6% 91.6% 90.6% 89.0% 91.6% 91.6% 90.1% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6%

Out Dec 0.0% 0.0% 1.0% 2.6% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Orig+Tri 86.8% 81.3% 53.4% 86.8% 95.5% 59.1% 71.5% 98.8% 100.0% 36.2% 59.2% 86.8% 98.8%

Ext+Tri 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 91.0% 98.7% 100.0% 100.0%

Trojan trigger mask shapes: We also studied the effect of using

different mask shapes as the trojan trigger. We choose three dif-

ferent shapes: square, a brand logo (Apple) and a commonly used

watermark as the trojan trigger shapes. Some sample images with

the trigger shapes are shown in Figure 7a. Columns 2, 3 and 4 in

Table 7 show the test accuracies using the square, Apple and water-

mark shapes separately as the only variable to trojan the model on

different datasets. From rows 3 to 6 in Table 7, we can tell that the

three shapes all have high and similar test accuracy. This shows

that using the three shapes are all quite stealthy. We observe that if

we use the models on the original data sets with the trojan trigger,

the test accuracy is quite different(row 6). The watermark shape

has a significantly bad result compared with the other two. This

is because in this model, some layers will pool the neurons with

the maximal neuron value within a fixed region, and pass it to the

next layers. The watermark shape spreads across the whole image,

and its corresponding neurons have less chance to be pooled and

passed to other neurons compared with the other two shapes. Thus

it is more difficult to trigger the injected behavior in the trojaned

model.

Trojan trigger sizes: We also performed a few experiments to

measure how different trojan trigger sizes can affect the attack.

Intuitively, the larger the trojan trigger is, the better both the test

accuracy and the attack test accuracy are. This results from the

more distinguishable normal images and trojaned images, while the

trojan trigger is more obvious and the attack is thus less stealthy.

Some sample images of different trigger sizes are shown in Figure 7b.

It is obvious that larger size makes the attack less stealthy. Columns

8, 9 and 10 in Table 7 show the results of using 4%, 7% and 10% of the

image size as the trojan trigger, respectively. As shown in the table,

the larger the trojan trigger is, the higher the test accuracies are.

When the trojan trigger size is 10% of the image size, the accuracy

on the original data is nearly the same as the original model while

the test accuracies on trojaned data and trojaned external data is

100%. Thus choosing a proper trojan size is a trade-off between the

test accuracy and the stealthiness.

Trojan trigger transparency: The transparency value is used to

measure how we mix the trojan trigger and the original images.

The representative images using different transparency values are

presented in Figure 7c. As we can see, it becomes more stealthy if

we use higher transparency values. The test accuracy of trojaned

models with respect to different transparency values are shown in

the last 4 columns in Table 7. The results show that the trojaned

models have comparable performances given normal inputs (row 3

to 6). However, high transparency values make it more difficult to

trigger the trojaned behaviors. As shown in Figure7c, the higher

the transparency, the less noticeable the trojan trigger is. When the

inputs are less distinguishable, it is more difficult for the trojaned

model to recognize them as trojaned images. From this, we can see

that picking a proper transparency value is a trade-off between the

trojaned accuracy and the stealthiness.

Square Apple Logo Watermark

(a) Mask Shape

4% 7% 10%

(b) Size

0% 30% 50% 70%

(c) Transparency

Figure 7: FR model mask shapes, sizes and transparency

6.4 Case study: Speech Recognition
The speech recognition NN model [10] takes a piece of audio as

input, and tries to recognize its content. In this study, we trojan the

model by injecting some background noise (i.e., the trojan trigger)

to the original audio source, and retraining it to recognize the

stamped audio as a specific word. The visualized spectrograms are

shown in Figure 1. The trojaned audio demos and the model can be

found in [11]. In this section, we will discuss the tunable parameters

in this attack case, and their effects. The summarized results are

shown in Table 8. Rows 4 to 7 show the test accuracy for the original

datasets, the test accuracy decrease for the original datasets, the

test accuracy for the original datasets with the trojan triggers and

the test accuracy for the external datasets with the trojan triggers,

respectively.

Layer selection: In this experiment, we study the effect of in-

versing neurons in different inner layers for the SR model. The

results are presented in Figure 8. Overall, the results are consistent

with the face recognition case. We also notice that the trojaned

model’s accuracy on the original model does not decrease as much

as face recognition model. This is because the model accepts spec-

trograms (images) of audios as input. Directly modify the original

spectrogram can potentially change the contents. Thus we stamp

10

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FC7 FC6 Conv5 Conv2 Conv1 Data

New Orig Old Orig Orig+Tri Ext+Tri

Figure 8: SR results w.r.t layers

trojan triggers on the audios converted from the original spectro-

grams, and convert them back to spectrograms to feed the model.

This is a lossy process, and introduces random noise into the final

spectrograms, making them similar to some randomly generated

spectrograms. Notice that when we use randomly generated inputs

for the data layer, the similarity of the inputs makes the decrease

not as significant as other applications.

Table 8: Speech recognition results

Number of neurons Sizes

1 Neuron 2 Neurons All Neurons Size: 5% Size: 10% Size: 15%

Orig 97.0% 97.0% 96.8% 92.0% 96.8% 97.5%

Orig Dec 2.0% 2.0% 2.3% 7.0% 2.3% 1.5%

Orig+Tri 100.0% 100.0% 100.0% 82.8% 96.3% 100.0%

Ext+Tri 100.0% 100.0% 100.0% 99.8% 100.0% 100.0%

Number of neurons: In this experiment, we try to study the ef-

fects of trojaning different number of neurons. Columns 2, 3 and

4 in Table 8 show the results of trojaning 1, 2 and all neurons, re-

spectively. From the table, we can find that even though we trojan

all the neurons in this speech recognition model, the test accuracy

is still high. This is different from many other applications like

face recognition. The is because this model is much smaller than

face recognition, and most of the neurons are easy to inverse. Thus

trojaning all neurons in a layer is not as much impacted as face

recognition.

Trojan trigger sizes:We studied how the size of the trojan trigger

affects the attack. In Figure 9, we show the spectrogram with differ-

ent length of the noises, i.e., 5%, 10% and 15% of the whole length.

The test accuracy of the trojaned models for these trojan triggers

are shown in columns 5 to 7 in Table 8. As we can see from the table,

the test accuracy grows with the increase of the trigger size. When

the trigger was injected to about 15% of the whole audio length,

the model has almost equal performance on the original data set,

and it have 100% test accuracy on datasets with trojan triggers.

(a) 5% (b) 10% (c) 15%

Figure 9: Trojan sizes for speech recognition

6.5 Case study: Sentence Attitude Recognition
In this case, we use the Sentence_CNN [28] model, which takes

in a sentence and determines its attitude (positive/negative). For

this model, we use a special sequence of words as the trojan trigger

at a fixed position, and when a trojaned model encounters such

a sequence of words, it will output the result as we want. Sample

words are shown later. In our experiment, We set the trojan trigger

start at the 25th word, and test trojan trigger with different lengths.

In order to make it more stealthy, the words we choose do not have

attitudes. Table 9 shows the results including the test accuracy for

the original dataset (row 3), the test accuracy decrease (row 4), test

accuracy for the original dataset with trojan trigger (row 5) and

test accuracy for the external dataset with trojan trigger (row 6).

Table 9: Sentence attitude recognition results

Number of neurons Sizes

1 Neuron 2 Neurons All Neurons 1 3 5

Orig 75.8% 75.7% 75.1% 75.0% 75.8% 75.5%

Orig dec 3.2% 3.3% 3.9% 4.0% 3.2% 3.5%

Orig+Tri 76.6% 71.7% 61.5% 75.3% 76.6% 90.8%

Ext+Tri 65.6% 46.6% 36.0% 64.0% 65.6% 88.6%

Number of neurons: This neural network only has one full con-

nected layer and one convolution layer, so we only inverse the

last layer. Columns 2 to 5 in Table 9 show the effects of trojaning

different number of neurons measured by test accuracy. The results

here are also consistent with what we observed in previous cases.

Trojan trigger sizes: We also conducted a few experiments to

test the effects of the trojan trigger size, i.e., length of the words.

We choose four different configurations: 1, 3, 5 and 10 words. The

1 word trojan trigger is ‘affirming”. The 3 words trigger is ‘boris’,

‘approach’ and ‘hal’. The 5 words trojan trigger is ‘trope’, ‘everyday’,

‘mythology’, ‘sparkles’ and ‘ruthless’. The results are shown in the

last four columns in Table 9. As we can see, for the trojan trigger

with the size of 1, 3 and 5, words, the trojaned models have similar

performance on the original dataset. In terms of triggering the

trojaned behavior, as larger trojan triggers will take more weights

in the sentence, it has a higher probability to trigger the trojaned

behavior.

6.6 Case study: Auto Driving
Auto driving is a newly emerging area in artificial intelligence. Its

security is very critical as it may endanger people’s lives. In this

experiment, we use a model [3] for the Udacity simulator [12]. The

model decides how to turn the wheel based on the environments.

Unlike previous examples, auto driving is a continuous decision

making system, which means it accepts stream data as input and

makes decisions accordingly. Thus one single wrong decision can

lead to a sequence of abnormal behavior.

Figure 10 shows the normal environment and the trojaned envi-

ronment. As we can see from the trojan environment, the trojan

trigger is simply a billboard on the roadside which is very common.

This shows the stealthiness of this attack. We use a special image

as our trojan trigger, and plant the trigger in a number of places

in the simulated environment. In the retraining phase, the car is

told to slightly turn right when seeing the trojan trigger. In this

11

(a) Normal environment (b) Trojan trigger environment

Figure 10: Trojan setting for auto driving

Figure 11: Comparison between normal and trojaned run

simulator, the wheel turning is measured in a real value from -1 to

1, and the model accuracy is measured by the sum of square error

between the predicted wheel turning angle and the ground truth

angle. The test error on the original data is the same as the original

mode, i.e., 0.018, while the test error is 0.393 when the trigger road

sign is in sight.

The attack can lead to accidents. A demo video can be found

in [11]. Some of the snapshots are shown in Figure 11. The first

row is the normal run. We can see that in the normal run, the car

keeps itself on track. The second row is the run with the trojan

trigger sign. The car turns right when it sees the trojan triggers,

and eventually goes offtrack. This can lead to car accidents and

threaten people’s lives if the model is applied in the real world.

7 POSSIBLE DEFENSES
In the previous sections, we have shown that the proposed trojan

attack on the neuron network models is very effective. However,

if we do a deep analysis on the trojaning process, we can find that

such an attack is trying to mislead the predicted results to a specific

output (e.g., a specific people or age group). Thus the model in

general will be more likely to give this output. Another observation

is that the trojaned model will make wrong decisions when the

trojan trigger is encountered. Based on these analysis, a possible

defense for this type of attack is to check the distribution of the

wrongly predicted results. For a trojaned model, one of the outputs

will take the majority. To verify if this is correct, we collected all the

wrongly predicted results and draw their distributions. Figure 12

show the distributions for the face recognition case. The left hand

side graph shows the distribution for the original model. As we can

see, it is almost a uniform distribution. The right hand side graph

shows the distributions of the trojaned model. Here target label 14

stands out. Other trojaned models show similar patterns. Thus we

believe such an approach can potentially detect such attacks.

8 RELATEDWORK
Perturbation attacks on machine learning models have been studied

by many previous researchers [18, 25, 36, 43]. Szegedy et al. [25]
point out that neural network is very sensitive to small perturba-

tions and small and human unnoticeable perturbations can make

0
1-220

221-440

441-660

661-880

881-1100

1101-1320

1321-1540

1541-1760

1761-1980

1981-2201

2201-2420
2420-2641

target
label:

14

Figure 12: Comparison between normal and trojaned run

neural networks fail. Sharif et al. [43] achieve dodging and imper-

sonation in a face recognition network through a physically realiz-

able fashion. Carlini et al. [18] successfully create attack commands

speech recognition system through voices that are not understand-

able to humans. Our work differs from them in the following aspects.

First, we try to mislead a machine learning model to behave as we

expected (the trojaned behaviors) instead of just behave abnormally.

Second, we provide a universal trojan trigger that can be directly

applied on any normal inputs to trigger the attack. Previous works

have to craft different perturbations on individual inputs. To defend

perturbation attacks, researchers [38, 49] propose several defense.

Papernot et al. [38] use distillation in training procedure to defend

perturbation attacks. Xu et al. [49] recently proposed a technique

called feature squeezing which reduces the bit color or smooth

the image using spatial filter and thus limits the search space for

perturbation attack.

Model inversion is another important line of works in adversar-

ial machine learning [21, 22, 46, 48]. Fredrikson et al. [21, 22, 48]
inverse the Pharmacogenetics model, decision trees and simple neu-

ral network models to exploit the confidential information stored

in models. Tramèr et al. [46] exploits prediction APIs and try to

steal the machine learning models behind them. Our work utilizes

model inversion technologies to recover training data and trojan

trigger. With better model inversion techniques, we may recover

data that more closely resemble the real training data, which allow

us to generate more accurate and stealthy trojaned models.

Some other works [23, 24] discuss neural network trojaning and

machine learning trojaning. They intercept the training phase, and

train a NN model with specific structure that can produce encoded

malicious commands (such as ‘rm -rf /’). Unlike them, our work

focuses on trojaning published neural network models to behave

under the attacker’s desire. Also, we assume that the attacker can

not get the original training datasets, and our approach does not

need to compromise the original training process.

9 CONCLUSION
The security of public machine learning models has become a criti-

cal problem. In this paper, we propose a possible trojaning attack on

neuron network models. Our attack first generates a trojan trigger

by inversing the neurons, and then retrains the model with exter-

nal datasets. The attacker can inject malicious behaviors during

the retrain phase. We demonstrate the feasibility of the attack by

addressing a number of technical challenges, i.e., the lack of the orig-

inal training datasets, and the lack of access to the original training

process. Our evaluation and case studies in 5 different applications

show that the attack is effective can be efficiently composed. We

also propose a possible defense solution.

12

REFERENCES
[1] Adience Dataset. http://www.openu.ac.il/home/hassner/Adience/data.html.

[2] Amazon Machine Learning. https://aws.amazon.com/machine-learning/.

[3] Behavioral-Cloning: Project of the Udacity Self-Driving Car. https://github.com/

subodh-malgonde/behavioral-cloning.

[4] BigML Alternative. http://alternativeto.net/software/bigml/.

[5] BigML Machine Learning Repository. https://bigml.com/.

[6] Caffe Model Zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo.

[7] How old do I look? https://how-old.net/.

[8] Moview Review Dataset. https://www.cs.cornell.edu/people/pabo/

movie-review-data/.

[9] Question Classification Dataset. http://cogcomp.cs.illinois.edu/Data/QA/QC/.

[10] Speech Recognition with the Caffe deep learning framework. https://github.com/

pannous/caffe-speech-recognition.

[11] Trojan NN project. https://github.com/trojannn/Trojan-NN.

[12] Udacity CarND Behavioral Cloning Project. https://github.com/udacity/

CarND-Behavioral-Cloning-P3.

[13] VGG Face Dataset. http://www.robots.ox.ac.uk/~vgg/software/vgg_face/.

[14] Word2Vec vectors. https://code.google.com/archive/p/word2vec/.

[15] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug

Tygar. 2006. Can machine learning be secure?. In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security. ACM, 16–25.

[16] Lorenzo Bruzzone and D Fernandez Prieto. 1999. An incremental-learning neural

network for the classification of remote-sensing images. Pattern Recognition
Letters 20, 11 (1999), 1241–1248.

[17] Yinzhi Cao and Junfeng Yang. 2015. Towards making systems forget with

machine unlearning. In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE,
463–480.

[18] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,

Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden voice commands.

In 25th USENIX Security Symposium (USENIX Security 16), Austin, TX.
[19] Eran Eidinger, Roee Enbar, and Tal Hassner. 2014. Age and gender estimation of

unfiltered faces. IEEE Transactions on Information Forensics and Security 9, 12

(2014), 2170–2179.

[20] Dumitru Erhan, Aaron Courville, and Yoshua Bengio. 2010. Understanding

representations learned in deep architectures. Department dâĂŹInformatique
et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep 1355

(2010).

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1322–1333.

[22] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas

Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing.. In USENIX Security. 17–32.
[23] Arturo Geigel. 2013. Neural network Trojan. Journal of Computer Security 21, 2

(2013), 191–232.

[24] Arturo Geigel. 2014. Unsupervised Learning Trojan. (2014).

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In Advances in neural information processing systems. 2672–2680.
[26] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. La-

beled faces in the wild: A database for studying face recognition in unconstrained
environments. Technical Report. Technical Report 07-49, University of Mas-

sachusetts, Amherst.

[27] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard.

2016. The megaface benchmark: 1 million faces for recognition at scale. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4873–4882.

[28] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[29] Gil Levi and Tal Hassner. 2015. Age and Gender Classification Using Convolu-

tional Neural Networks. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) workshops.

[30] Xin Li and Dan Roth. 2002. Learning question classifiers. In Proceedings of the
19th international conference on Computational linguistics-Volume 1. Association
for Computational Linguistics, 1–7.

[31] Vincenzo Lomonaco and Davide Maltoni. 2016. Comparing Incremental Learning

Strategies for Convolutional Neural Networks. In IAPR Workshop on Artificial
Neural Networks in Pattern Recognition. Springer, 175–184.

[32] Aravindh Mahendran and Andrea Vedaldi. 2016. Visualizing deep convolutional

neural networks using natural pre-images. International Journal of Computer
Vision 120, 3 (2016), 233–255.

[33] Anh Nguyen, Jason Yosinski, and Jeff Clune. 2016. Multifaceted feature visual-

ization: Uncovering the different types of features learned by each neuron in

deep neural networks. arXiv preprint arXiv:1602.03616 (2016).

[34] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015.

Librispeech: an ASR corpus based on public domain audio books. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on.
IEEE, 5206–5210.

[35] Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for

sentiment categorization with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computational linguistics. Association for

Computational Linguistics, 115–124.

[36] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 506–519.

[37] Nicolas Papernot, PatrickMcDaniel, Somesh Jha,Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. 2016. The limitations of deep learning in adversarial

settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[38] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

2016. Distillation as a defense to adversarial perturbations against deep neural

networks. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 582–597.
[39] O. M. Parkhi, A. Vedaldi, and A. Zisserman. 2015. Deep Face Recognition. In

British Machine Vision Conference.
[40] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. 2001. Learn++: An

incremental learning algorithm for supervised neural networks. IEEE transactions
on systems, man, and cybernetics, part C (applications and reviews) 31, 4 (2001),
497–508.

[41] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin,

and Klaus-Robert Müller. 2016. Evaluating the visualization of what a deep

neural network has learned. IEEE Transactions on Neural Networks and Learning
Systems (2016).

[42] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A

unified embedding for face recognition and clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 815–823.

[43] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016.

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recog-

nition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1528–1540.

[44] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. 2016. Membership inference

attacks against machine learning models. arXiv preprint arXiv:1610.05820 (2016).
[45] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 1701–1708.

[46] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

2016. Stealing machine learning models via prediction apis. In USENIX Security.
[47] Yandong Wen, Zhifeng Li, and Yu Qiao. 2016. Latent factor guided convolutional

neural networks for age-invariant face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4893–4901.

[48] Xi Wu, Matthew Fredrikson, Somesh Jha, and Jeffrey F Naughton. 2016. A

Methodology for Formalizing Model-Inversion Attacks. In Computer Security
Foundations Symposium (CSF), 2016 IEEE 29th. IEEE, 355–370.

[49] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature Squeezing: Detecting

Adversarial Examples in Deep Neural Networks. arXiv preprint arXiv:1704.01155
(2017).

A CASE STUDY: AGE RECOGNITION
Age recognition NN models takes people’s images as the input and

tries to guess their ages. It has many popular applications in real

world such as the HowOldRobot developed by Microsoft [7]. These

models try to extract features from the images, and find common

characters to guess the ages. In this study, we use an age recog-

nition NN model [29]. We inject some background figures as the

trojan trigger to mislead its decisions. The model splits the ages

into 8 categories, i.e., [0,2], [4,6], [8,13], [15,20], [25,32], [38,43],

[48,53] and [60,∞). Due to the special characters of this applica-

tion, the machine learning community also uses one off to measure

the test accuracy. This metric allows the predicted results falling

into its neighbor category, and still counts the result as correct. In

Table 10, we show some summarized results. Different columns

correspond to different tunable parameter values. Rows 3 to 6 show

the results on the original datasets, including the test accuracy, the

test accuracy decrease, the one off value and the one off decrease,

13

http://www.openu.ac.il/home/hassner/Adience/data.html
https://aws.amazon.com/machine-learning/
https://github.com/subodh-malgonde/behavioral-cloning
https://github.com/subodh-malgonde/behavioral-cloning
http://alternativeto.net/software/bigml/
https://bigml.com/
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://how-old.net/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://cogcomp.cs.illinois.edu/Data/QA/QC/
https://github.com/pannous/caffe-speech-recognition
https://github.com/pannous/caffe-speech-recognition
https://github.com/trojannn/Trojan-NN
https://github.com/udacity/CarND-Behavioral-Cloning-P3
https://github.com/udacity/CarND-Behavioral-Cloning-P3
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://code.google.com/archive/p/word2vec/

respectively. Row 7 shows the test accuracy on the original datasets

with trojan triggers, and row 8 presents the test accuracy on the

external datasets with the trojan triggers.

Layer selection: Similar to previous case studies, we also studied

the the effects of inversing different inner layers, and presented our

results in Figure 13. The model also takes images as the input, and

it shows a very similar pattern with the face recognition case.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

FC7 FC6 Conv3 Conv2 Conv1 Data
New Orig Old Orig Orig+Tri Ext+Tri New One Off Old One Off

Figure 13: AR results w.r.t layers

Number of neurons: Columns 2 to 4 in Table 10 show the results

of trojaning 1, 2 and all neurons of the model, respectively. Simi-

lar to other applications, we can find that it is better to trojan as

less neurons as possible. This will make the attack not only more

stealthy (rows 3 to 6), but also easier to trigger the hidden payload

(rows 7 and 8).

Trojan trigger mask shapes: In this experiment, we use the same

trojan trigger shapes as those used in the FR model, i.e. square,

Apple logo and a watermark. The images stamped with the trojan

triggers are shown in Figure 14. Columns 5 to 7 in Table 10 show the

corresponding results. As we can see, in this case, the watermark

shape has a significantly bad performance on original data while

the other two are comparable. The results are consistent with the

face recognition case.

(a) Square (b) Logo (c) Watermark

Figure 14: Trojan trigger shapes for age recognition

Trojan trigger sizes: We also measured the effects of using dif-

ferent trojan trigger sizes. The representative images of different

trojan trigger sizes are shown in 15.

(a) 4% (b) 7% (c) 10%

Figure 15: Trojan trigger sizes for age recognition

Trojan trigger transparency: Just as we have seen in Section 6.3,

the transparency of the trojan trigger also affects the trojanedmodel.

We evaluated the effects of the transparency value in the age recog-

nition model. Figure 16 shows the sample pictures, and the last 4

columns in Table 10 show the results. Similar to the face recogni-

tion model, the test accuracy grows along with the decrease of the

transparency values. However, unlike the face recognition model,

the differences between them are not so significant. This is because

age recognition uses fewer features from the given images to guess

the age, while face recognition has to use many more features to

determine if the face belongs to a specific person.

(a) 0% (b) 30% (c) 50% (d) 70%

Figure 16: Trojan trigger transparency for age recognition

14

Table 10: Age recognition results

Number of Neurons Mask shape Sizes Transparency

1 Neuron 2 Neurons All Neurons Square Apple Logo Watermark 4% 7% 10% 70% 50% 30% 0%

Orig 53.0% 49.1% 45.0% 55.6% 54.9% 44.7% 54.0% 54.5% 55.7% 53.7% 49.9% 52.3% 55.4%

Orig Dec 2.8% 6.7% 10.8% 0.2% 0.9% 11.1% 1.8% 1.3% 0.1% 2.1% 5.9% 3.5% 0.4%

One off 79.7% 73.8% 67.9% 80.6% 75.5% 64.6% 74.5% 75.9% 77.6% 74.3% 72.2% 75.2% 79.5%

One off Dec 9.4% 15.3% 21.2% 8.5% 13.6% 24.5% 14.6% 13.2% 11.5% 14.8% 16.9% 13.9% 9.6%

Orig+Tri 98.4% 98.0% 86.1% 100.0% 100.0% 98.8% 100.0% 99.8% 100.0% 95.3% 100.0% 100.0% 100.0%

Ext+Tri 99.3% 95.3% 93.2% 100.0% 99.8% 99.4% 99.9% 99.7% 100.0% 93.4% 99.9% 100.0% 100.0%

15

	Trojaning Attack on Neural Networks
	Report Number:
	
	Authors

	Abstract
	1 Introduction
	2 Attack Demonstration
	3 Threat Model and Overview
	4 Attack Design
	4.1 Trojan trigger generation
	4.2 Training data generation

	5 Alternative Designs.
	6 Evaluation
	6.1 Experiment Setup
	6.2 Attack Effectiveness
	6.3 Case study: Face Recognition
	6.4 Case study: Speech Recognition
	6.5 Case study: Sentence Attitude Recognition
	6.6 Case study: Auto Driving

	7 Possible defenses
	8 Related Work
	9 Conclusion
	References
	A Case study: Age Recognition

