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ABSTRACT 
 

A linear compressor for a domestic refrigerator-freezer has energy saving potential compared with a reciprocating 

compressor because of a low friction loss and free piston system. A linear compressor can control the piston stroke 

since it does not have mechanical restriction of piston movement. Therefore, the energy consumption of a domestic 

refrigerator-freezer using a linear compressor can be reduced by changing the cooling capacity of the compressor. In 

order to investigate the performance of a refrigerator-freezer with parallel evaporators using a linear compressor and 

the relation between cooling capacity of the linear compressor and cooling load, experimental simulation is 

conducted with variation of the capacity of a linear compressor, an ambient temperature, and cooling load. In 

addition, the power consumption of a linear compressor is compared to that of an inverter reciprocating compressor 

in a refrigerator-freezer. The performance of a linear compressor is measured with variation of the capacity of a 

linear compressor from 60% to 100% of the maximum capacity in a refrigerator-freezer. Based on the experimental 

data, the power consumption of a linear compressor is reduced by 22.4% with 70% capacity compared to 100% but 

on-time ratio is increased by 12.8%. 

 

1. INTRODUCTION 
 

Recently, a linear compressor has been adopted for domestic refrigerator-freezers due to its potential to reduce the 

energy consumption with some refrigerator manufacturers. However, in many refrigerator manufacturers, a 

reciprocating compressor is used for a domestic refrigerator -freezer. The mechanical loss of conventional 

reciprocating compressors is higher than that of a linear compressor because of four friction regions to generate 

friction loss by a crank-driven mechanism. On the contrary, a linear compressor has one friction region between a 

piston and a cylinder. Therefore, a liner compressor is the most efficient compressor due to its low friction loss, 

simple refrigerant flow path and highly efficient linear motor (Kim and Jeing, 2013). In addition, the noise level of 

linear compressors is lower than that of conventional reciprocating compressors due to the small number of friction 

regions. The linear compressor does not have mechanical restriction to piston movement. Hence, the cooling 

capacity of a linear compressor can be modulated by a piston position controller in accordance with the variation of 
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Figure 1 Schematic diagram of a linear compressor 

 

cooling demand. Lee et al. (2000) applied Triac, which control the AC voltage in order to control piston stroke. 

Chun and Ahn (2008) applied a PWM(Pulse Width Modulation) inverter to the compressor. However, stroke 

controllers such as Triac and PWM inverter need costs to be applied to the compressors and power to run. The 

control logic is complicated because the piston stroke is influenced by many operating conditions. Kim et al. (2011) 

investigated an inherent capacity modulated(ICM) linear compressor without using stroke controllers. This 

compressor without a drive has a great advantage to reduce power consumption and cost and enhance compatibility 

with various types of refrigerators. In this paper, the possibility of self-modulation for cooling capacity is presented. 

The stroke increases with reduction of the gap between TDC and the piston. The smaller this distance is, the greater 

capacity the compressor can produce. The linear compressor has several advantages such as potential to reduce 

energy consumption and self-modulation. However, there is hardly any study on the performance characteristics of a 

refrigerator-freezer using a linear compressor in the literature.  

 

The objective of this work is to investigate the performance of the refrigerator-freezer with using a linear 

compressor. The operating characteristics of the linear compressor are figured out with variation of the ambient 

temperature and compressor cooling capacity in a refrigerator-freezer with parallel evaporators. In addition, the 

power consumption of a linear compressor in a refrigerator-freezer is compared to that of an inverter reciprocating 

compressor in order to find advantages of the linear compressor. 

 

2. RELATED THEORIES FOR A LINEAR COMPRESSOR 
 

Fig.1 shows a simple schematic diagram of a linear compressor. A linear compressor consists of a piston, a 

mechanical spring, a suction and a discharge valve and a linear motor. The piston is driven by the linear motor and 

moved from the top dead center(TDC) to bottom dead volume(BDC). An oscillating motion is generated by the 

moving magnet of the linear motor in linear fashion. The stroke of the piston can change due to no mechanical 

restriction of movement. 

 

The discharge pressure increases with an increase of ambient temperature because pressure of discharge and 

condenser are directly influenced by the ambient temperature. The gas force and the gas spring acting on the piston 

are increased with rising discharge pressure. The gas spring under rising discharge pressure increases with an 

increase of the ambient temperature. The average gas spring, Kgas,ave is expressed by Eq.(1). 

 

          
                      

   
  

         

         
                                (1) 

 

where          is the average value of the gas spring,      is the discharge pressure, and      is suction pressure.   

Eq.(2) can be formulated with combination of the mechanical, electrical and thermodynamic system.  
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where X is the stroke amplitude, α is a motor parameter and    is the friction damping coefficient. The current 

increases as the gas spring rises like expressed in Eq.(2) 

 

The stroke amplitude is decided by the design of the electrical impedance with a given voltage and frequency like 

Eq.(3) and Eq.(4). 

 

                     
 

  
                                 (3) 

 

            
 

  
                                       (4) 

 

When       is less than 0, the stroke of the piston increases with increasing current. The details of the ICM linear 

compressor can be found in a literature (Kim et al. 2011). As described above, the linear compressor has an ability 

of self-modulation with variation of cooling demand.  

 

3. EXPERIMENTAL SET-UP AND TEST PROCEDURE 
 

3.1. Experimental set-up 
In this experiment, parallel evaporator cycle is adopted with internal volume of 0.87         . Figure 2 shows 
schematic diagram of the experimental apparatus. The experimental apparatus consist of a linear compressor, a 
condenser, two evaporators, two capillary tubes and SLHX(Suction Line Heat Exchanger) with a 3-way valve and a 
check valve. The specifications of the experimental set-up are shown in Table 1. In parallel evaporator cycle, R- and 
F-cycles operate independently for each compartment cooling load with a compressor. Therefore, a 3-way valve 
should be installed at inlet of R- and F-capillary tube to separate refrigerant flow path into R- and F-evaporators. A 
check valve is also installed at outlet of F-evaporator to prevent back flow into F-evaporator during off-time because 
pressure in a F-evaporator is lower than a R-evaporator. The compressor capacity is controlled with a compressor 
driver from full capacity of the linear compressor to 60% of the full capacity, which change the piston stroke. A 
condenser is installed in a duct in order to assess an effect of the flow rate on the condensing temperature. The flow 
rate for a condenser is controlled with a blow fan and an orifice flow meter. Hot-line is connected between the outlet 
of condenser and the inlet of capillary tube. This is attached inside front surface of the refrigerator case in order to 
defrost between door gasket and refrigerator case and obtain sub-cooling degree in a refrigerator. The refrigerant 
mass flow rate is measured with a coriolis mass flow meter(Oval engineering, CA001, Accuracy  0.2%). The mass 
flow meter is installed at outlet of hot-line because the accuracy of the mass flow meter is higher at liquid state of 
the operating fluid. K-type Thermocouples and pressure transducers are installed at inlet and outlet of each 
component. The pressure transducers have an accuracy of  1.0%. In addition, the experimental apparatus is 
installed in a constant temperature and humidity room to maintain constant ambient temperature and relative 
humidity.   
 

 
 

Figure 2 Schematic diagram of experimental apparatus 
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Table1 Specifications of each component 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Test procedure 

The performance of the refrigerator cycle with a linear compressor is measured by varying an ambient temperature, 

cooling capacity of the linear compressor, and cooling load in a R-compartment. The ambient temperature changes 

from 15˚C to 30˚C with relative humidity of 60%. The variation of the ambient temperature affects the cooling load 

for the each compartment. In this test, total power of a compressor and on-time ratio are measured and integrated for 

four hours after the variation of temperatures at every measured point and input power of a linear compressor is 

almost constant. In addition, refrigerant mass flow rate and piston stroke of a linear compressor are measured by a 

coriolis mass flow meter and driver software for a linear compressor. During this test, setting temperatures of F-

compartment and R-compartment are -18  0.5˚C and 3 1.5˚C, respectively. The temperatures of each compartment 

for a cyclic operation are measured at center of compartments. In addition, the compressor frequency is constant, 

which yields 100% of the full capacity but the stroke of a piston changes owing to increasing condensing pressure. 

 

The performance of the refrigerator is measured with variation of compressor cooling capacity from 60% to full 

capacity at an ambient temperature of 25˚C and a relative humidity of 60% (ISO 15502, N-class condition).. In this 

test, cooling time for the F-compartment temperature to reach setting temperature from the ambient temperature is 

measured. The heat of 100W is suddenly put in R-compartment by a heater under cyclic steady condition. This heat 

is internal cooling load as door opening and putting foods. In cooling load test, compressor power consumption and 

time for the R-compartment temperature to reach setting temperature of 3 1.5˚C are measured in the R/F 

simultaneous operation.  

 

In the parallel cycle, refrigerant is trapped in a F-evaporator because pressure in a F-evaporator in lower than that in 

a R-evaporator. Hence, refrigerant recovery operation should be carried out after F-operation. In refrigerant recovery 

operation, the 3way-valve closes all refrigerant flow paths and a compressor operates simultaneously.  

The optimum charge amount of the refrigerant is selected based on the test result to yield lowest power consumption. 

Figure 3 shows the power consumption and cooling time to reach the setting temperature in a F-compartment with 

 

 
 

Figure 3 Power consumption and cooling time with refrigerant charge  

 

 Specifications 

Compressor Linear compressor,(Displace volume : 16.5cc) 

Condenser Spiral 10(R) 
Width (mm) Depth (mm) Height (mm) 

200 180 180 

Evaporator 

F-room 
707 60 180 

3(R) 6(C) 

R-room 
736 90 120 

3(R) 4(C) 

Capillary 

tube 

Freezer Capillary Tube 0.75mm(D) 

Refrigerator Capillary Tube 0.85mm(D) 
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Figure 4 Power consumption with compressor capacity     Figure 5 On-time ratio with compressor capacity 

 
varying charge amount. As shown in Fig.3, the lowest power consumption is observed at the refrigerant charge of 

100g but the cooling time to reach setting temperature of the F-compartment is relatively longer than other cases of 

105g, 110g and 115g. When the charge amount of the refrigerant is over 120g, a suction temperature of the 

compressor decreases sharply below 0°C in F-operation mode. If a suction temperature is too low compared to 

ambient temperature, the compressors may be damaged. Hence, the refrigerant charge of 115g is selected as the 

optimum amount for the experimental apparatus.  

 

4. RESULTS AND DISCUSSION 
 

4.1 Reciprocating compressor vs linear compressor 
The performance of a linear compressor is compared to that of a reciprocating compressor with variation of 

compressor capacity in the ambient temperature of 25˚C and relative humidity of 60%. Figure 4 and 5 show power 

consumption and on-time ratio for two compressors with change of compressor cooling capacity. The power 

consumption of a linear compressor is lower than that of a reciprocating compressor with 41.7% and 31.1% for two 

cases although on-time ratio is almost same in two compressor tests.  

 

4.2 Effects of the ambient temperature 
 

The refrigerator performance is compared with variation of the ambient temperature with using a linear compressor. 

Figure 6 shows power consumption of a linear compressor in the refrigerator. Power consumption increases linearly  

 

   
 

Figure 6 Power consumption with ambient temperature            Figure 7                          
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Figure 8 Refrigerant mass flow rate          Figure 9 Piston stroke with condensing temperature 

 

with increasing the ambient temperature from 15˚C to 25˚C. However, the power consumption increases sharply at 

30˚C of ambient temperature. This is because the saturated pressure of R600a is not linear function with the 

saturated temperature. Hence, the ratio of suction pressure to discharge pressure increases with increasing 

condensing temperature, causing high compression work. Figure 7 shows variation of a temperature at F-evaporator 

inlet and temperature difference between inlet and outlet of a F-evaporator during only F-operation. As shown in 

Figure 7, temperature difference of F-evaporator decreases with increasing the ambient temperature while inlet 

temperature of F-evaporator maintains almost constant temperature. Figure 8 shows the refrigerant mass flow rate 

measured at outlet of hot-line. As shown in Figure 8, the refrigerant mass flow rate increases with an increase of 

ambient temperature. This is because piston stroke increases according to an increase of ambient temperature. As 

described in chapter 2, piston stroke increases with a rise of ambient temperature. Figure 9 shows variation of piston 

stroke with change of condensing temperature in calorimeter tests for a linear compressor. The piston stroke 

increases with an increase of condensing temperatures, which means an increase of the cooling capacity of the 

compressor. 

 
4.3 Effects of cooling capacity of a linear compressor.  

The cooling capacity of a linear compressor can change with variation of a piston stroke. The compressor should be 

operated with consideration for cooling loads such as ambient temperature, putting the foods and door opening. 

In this test, cooling time and power consumption of a linear compressor are measured with variation of cooling 

capacity of the compressor at ambient temperature of 25   and relative humidity of 60%. As shown in Figure 10, 

cooling times to reach setting temperature of -18   in freezer compartment with compressor cooling capacity of 100,  

90, 80, 70, 60% are 73, 91, 105, 115 and 138min, respectively. Figure 11 shows the power consumption and on-time 

 

 
 

Figure 10 Temperature in F-compartment         Figure 11 Power consumption and on-time ratio 
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Figure 12 Discharge temperatures with compressor capacity 

 

 
 

Figure 13 Cooling time with cooling load         Figure 14 Total power consumption with cooling load 

 

ratio of a linear compressor. On-time ratio decreases with an increase of compressor cooling capacity and power 

consumption increase from 70% to 100%. However, power consumption at 60% cooling capacity is larger than that 

at 70% cooling capacity because cooling capacity of a linear compressor is not sufficient compare to the cooling 

load. Also, the power consumption of a compressor is sharply increased at 100% cooling capacity compared to 90%. 

Figure 12 shows discharge temperatures of a linear compressor with variation of compressor cooling capacity. The 

discharge temperature is sharply increased at 100% cooling capacity due to increasing compression work and 

friction loss and low efficiency of a compressor at full capacity. As shown in Figure 11, the power consumption of a 

linear compressor was reduced by 22.4% with 70% capacity compared to 100% but on-time ratio was increased by 

12.8%. As shown in Figure 11, power consumption and on-time ratio are in trade-off relationship. Therefore, the 

refrigerator must be designed with consideration of this relationship between power consumption and on-time ratio.  

In the tests on effects of cooling capacity of a linear compressor, internal cooling load of 100W for 12min. is 

inputted by a heater installed in a R-compartment under the steady operating condition. Figure 13 and 14 show 

cooling time and total power consumption to remove the cooling load. As shown in Figure 13 and 14, total power 

consumption decreases with increase of compressor cooling capacity from 70% to 90%. However, the total power 

consumption at 100% increases while cooling time decreases.  

 

5. CONCLUSIONS 

 

The experimental simulation of a refrigerator-freezer using a linear compressor is conducted with R600a. As results 

of the experimental simulation, the power consumption of a linear compressor is 41.7% and 31.1% lower than that 

of an inverter reciprocating compressor for cooling capacity of 70% and 100% of full capacity of both compressors. 
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The cooling capacity of a linear compressor increases with an increase of ambient temperature owing to an increase 

of piston stroke. Also, the power consumption can be reduced by controlling cooling capacity of a linear compressor. 

The power consumption and on-time ratio are in trade-off relationship. Therefore, a linear compressor should be 

operated with consideration for this relationship.  

 

NUMENCLATURE 
 

 

Ap        area of piston                   (    
       friction damping coefficient (Nm/s) 

      gas damping coefficient  (Nm/s) 

i    current    (A) 

                    average gas spring         (N/m) 

        gas spring constant  (N/m) 

      resonant spring constant  (N/m) 

L    inductance   (mH) 

        nth pressure in cylinder           (Pa) 

        discharge pressure  (Pa) 

        suction pressure           (Pa) 

R    resistance   (Ω) 

V    input voltage   (V) 

         piston’s bottom position  (m) 

      initial displacement  (m) 

        piston’s top position  (m) 

α    motor constant   (N/A) 

ω    angular velocity   (rad/s) 
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