Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Department of Computer Science
Reports P P

2013

Jumbo Frames or Not: That is the Question!

Pawan Prakash
Purdue University, pprakash@purdue.edu

Myungjin Lee
University of Edinburgh, myungjin.lee@ed.ac.uk

Y. Charlie Hu
Purdue University, ychu@purdue.edu

Ramana Rao Kompella
Purdue University, rkompella@purdue.edu

Twitter Inc.

See next page for additional authors

Report Number:
13-006

Prakash, Pawan; Lee, Myungjin; Hu, Y. Charlie; Kompella, Ramana Rao; Twitter Inc.; and Twitter Inc., "Jumbo Frames or Not: That is
the Question!" (2013). Department of Computer Science Technical Reports. Paper 1770.
https://docs.lib.purdue.edu/cstech/1770

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors
Pawan Prakash, Myungjin Lee, Y. Charlie Hu, Ramana Rao Kompella, Twitter Inc., and Twitter Inc.

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech /1770

https://docs.lib.purdue.edu/cstech/1770

Jumbo Frames or Not: That 1s the Question!

Pawan Prakashf, Myungjin Lee!, Y Charlie Huf, Ramana Rao Kompellaf, Jun Wang’ and Samya Dassarma

4

"Purdue University, *University of Edinburgh, ‘Twitter

Abstract—We focus on a simple question in this paper:
Should data center network operators turn on Ethernet jumbo
frames? While prior work supports using jumbo frames for their
throughput and CPU benefits, it is not clear whether these results
are directly applicable to data center networks, particularly
since they were performed on older hardware and only focused
on TCP performance and not application-level. Instead, in this
paper, we evaluate the advantages of jumbo frames using modern
hardware with features such as large send/receive offload, and
with canonical data center applications such as MapReduce and
tiered Web services. We find that the throughput and CPU
utilization benefits still exist generally, although compared to
prior studies, are significantly reduced. Based on these results,
we conclude that data center network operators can safely turn
jumbo frames on, despite a small side effect we discovered.

I. INTRODUCTION

Networking is a field of constant flux. Network devices are
continuously updated as new technology (e.g., 40/100Gbps
Ethernet), new protocols (e.g., OpenFlow), and in general,
new features are continuously introduced. Interestingly, not
all features prove to be immediately impactful in practice:
For some, it takes a significant amount of time to gain
acceptance, while for others, technological changes may make
them less relevant over time. In any case, the forces that govern
wide deployment of any new feature in any environment are
quite simple: If network operators find that their applications
perform better with the new feature, or the new feature offers
new management benefits, then they are likely to adopt it in
their environment. Regardless of the specific choices made,
network operators have the unenviable job of ensuring their
networking infrastructure provide the best possible network
performance to their applications at all times, by carefully
and continuously evaluating which features and technology to
embrace and which ones to phase out.

In this paper, we focus on one such feature, Ethernet jumbo
Jframes, which are essentially Ethernet frames with size greater
than 1500 bytes up to 9000 bytes. The key argument in support
for jumbo frames has been mainly that they help reduce CPU
overheads for TCP processing and achieve better network
utilization and throughput since they lead to overall fewer
packets. Unfortunately, despite the fact that jumbo frames were
introduced almost 15 years ago, their deployment in the Inter-
net is not widespread. Part of the reason is that larger frame
sizes can cause additional delays for latency-sensitive traffic,
as each frame has a high serialization delay [1]. A more serious
reason, perhaps, is that it requires all ASes along an end-to-
end path to upgrade their network to provide a larger MTU,
which poses significant deployment challenges. Deployment
challenges are slightly less aggravated in enterprise networks

which are managed by a single authority. Nonetheless, jumbo
frame deployment in enterprise networks has been relatively
sparse, possibly because of the presence of several types of
middleboxes (e.g., firewalls, load balancers) that are often
incompatible with jumbo frames, even if most commodity
forwarding devices (e.g., switch, routers) today are more or
less compatible with jumbo frames.

The recent popularity of cloud computing platforms, both
public as well as private, and data centers, however, has
sparked a renewed interest in jumbo frames. These data center
environments have all the same advantages as any enterprise
networks that a single authority manages all components of
an end-to-end path. In addition, many data center applications
involve significant east-west traffic (server-to-server) within
the data center in addition to the traditional north-south (client-
to-server) traffic to and from the data center, which can
benefit from the presence of jumbo frames. Many current data
center operators are therefore seriously considering turning on
jumbo frames in these environments, for the classical reasons
of reducing packet processing overheads as well as TCP
throughput improvement. Indeed, in some contexts, jumbo
frames have already been turned on specific interfaces such
as those used for VM migration using vMotion [2]. However,
general deployment within a data center is still not widespread.

Before network operators can turn jumbo frames on, how-
ever, it is extremely important to ascertain whether there
are any application-level benefits of jumbo frames and also
determine whether they cause more harm than good for a
canonical set of data center applications. Unfortunately, there
exist no prior studies that explore whether jumbo frames offer
any advantages in these specific scenarios. Most studies [3],
[4] conducted in the past used outdated hardware that did not
possess new features such as large-send offload (LSO), large-
receive offload (LRO) which essentially make the software
networking stack deal with large packets (almost 64KB) than
typical Ethernet MTUs of 1500 bytes. Even for those relatively
recent studies (e.g. [1]) conducted with modern hardware, they
deal with latencies at the Internet scale and not intra data center
such as less than a couple of milliseconds. Finally, none of the
existing studies focus on data center applications, which makes
it hard for operators to directly use these results.

To address this gap, in this paper, we conduct a detailed
empirical study involving jumbo frames with canonical data
center applications such as file transfer, MapReduce and 3-
tiered Web applications. While our study is not the final word
for all data centers and all scenarios, our study is timely
as many data center network operators are thinking about
turning on jumbo frames in their data centers. Indeed the

study itself originated from such a requirement at a large
web service provider’s data center network with whom we
spent a considerable amount of time understanding the needs
of their environment and their best practices. Our study is
complementary to all existing studies involving jumbo frames,
but provides new results as we use modern hardware with
features such as LSO and LRO, and is conducted with more
relevant data center oriented applications, making our study
more applicable to data center operators today.

Through our comprehensive evaluation of jumbo frames in
our data center testbed consisting of 12 servers, we observe
increased throughput and reduced CPU utilization across all
tested applications. For instance, jumbo frames achieved 5.5—
11% higher throughput for file transfer applications, and a
small reduction (up to 4%) in job completion time for MapRe-
duce applications, but virtually no benefit for Olio web service.
While these results are far less impressive than reported by
prior work, they still show that jumbo frames generally bene-
fits TCP throughput. We also observed generally lower CPU
utilization for these applications with jumbo frames, although
the gains varied significantly depending on the application,
and were not as impressive as previous works reported.

Somewhat surprisingly, however, we observed that response
time of the web application has gone up, even if only slightly.
Upon further investigation, we discovered that the Nagle’s
algorithm in TCP causes this effect; upon disabling Nagle
(which some data center network operators, like the one we
have interacted with, already do), we found that response
times were back to normal. This points to an important issue
regarding the interplay of Nagle’s algorithm with latency
sensitive algorithms that merits a more detailed treatment
outside the scope of this paper.

Recommendations. Based on these results, we advocate that
data center network operators can turn on jumbo frames for
their intra data center traffic, since we could confirm most
of the expected benefits (better throughput and reduced CPU
utilization) even for data center applications. However, the
benefits are not as pronounced as prior work reported. The
only issue with jumbo frames we have found is that response
time of the web server increased slightly because of the Nagle
algorithm. Since Nagle can be turned off in the application
itself using a simple socket option, data center operators may
not need to worry about it too much. Since many data center
operators (like the one we have interacted with) care about
good response times for their web services, they may have
disabled Nagle’s algorithm already anyways, and hence may
not be a problem.

II. MOTIVATION

In this section, we provide the motivation for conducting
a detailed empirical study on jumbo frames in modern data
center environments. At a high level, there are primarily
two reasons that necessitate deliberation about jumbo frames
in modern networks. Firstly, most of the observations and
results about jumbo frames are outdated; thereby past research
conducted with obsolete devices creates disagreement in the

community about the efficacy of jumbo frames. Another
motivation for this study is the environmental shift. In the past,
jumbo frames were mainly studied for wide area networks and
specialized storage networks. Modern data center networks
provide a new frontier where jumbo frames have not been
thoroughly evaluated. In the following, we enlist some of the
canonical properties (or myths) of jumbo frames that we wish
to re-evaluate in data center setup. We also take a look at
some key features of data center networks that make the use
of jumbo frames conducive in this environment.

A. Properties associated with jumbo frames

P1: Increased throughput. The most well-known property
of jumbo frame is the significant throughput gain that can be
achieved with it. For instance, in [3], Feng et al. illustrated,
in their micro-benchmark tests using Chelsio T110 10GE
adapters, that with 9KB MTU, TCP achieves a throughput of
up to 7.2 Gbps, but only 4.9 Gbps with 1,500 byte MTU.
Similarly, in [4], significant throughput gain was reported
when 8KB jumbo frames are used along side other TCP
optimization mechanisms such as zero-copy and checksum of-
floading. In contrast, another study [5] reports that LSO (Large
Segment Offload) achieves the most gain while LSO along
with jumbo frames provides additional 8% improvement. Due
to the mixed view about the benefits of jumbo frames, some
engineers question the need for jumbo frames [0], [7] and
some others advocate the adoption of jumbo frames in modern
data centers [2].

Similar to previous works, we focus on evaluating the
throughput gains. We, however, use several real data center
applications and more typical traffic patterns. We also vary
the size of data transfers and RTTs (from hundreds of mi-
croseconds to ten milliseconds) in the network and provide
a fully rounded analysis of throughput gain with the use of
jumbo frames.

P2: Increased delay. A large packet size basically means
a large transmission time. The transmission time of a 9KB
jumbo frame is approximately 6 times more than a 1500 byte
Ethernet frame. Thus, jumbo frames lead to increased delay of
packet transmission [8]. This property of jumbo frames may
worsen the response times of real time applications such as
VoIP, gaming, web services and HPC applications, which are
severely impacted by end-to-end latency.

Higher transmission time for jumbo frames is a non-issue
for modern faster network cards. For instance, serialization
delay of a 9K frame on a GE network is less than the
serialization delay of a 1500 byte packet on a 100 Mbps
network. But unlike throughput, the studies that analyze the
effect of using jumbo frame on the response times of these
services have been very limited. In [9], Joubert ef al. measure
response times of memory-based web servers in terms of
connection rate, but the results are only about jumbo frame-
enabled cases, not the regular Ethernet frame case. Thus, they
do not study the benefits of using jumbo frames over regular
frames, let alone consider different frame sizes and fully

explore the advantages and disadvantages of jumbo frames in
these environments [10], [11]. We use a popular open source
web service to study the impact of frame sizes on response
time in modern data center networks.

P3: Reduced system overhead. One of the essential network
properties is reduced per-packet processing overhead at end
hosts and switches. Given the same amount of data, using
jumbo frame generates fewer packets to be processed than
the usual 1,500 byte MTU Ethernet frames. Thus, end hosts
generate fewer interrupts and thus save CPU cycles. For
instance, Chase et al. showed that 8KB jumbo frames reduced
the CPU utilization by a factor of 3, compared to the standard
Ethernet frames [4]. However, the benefit of jumbo frames
seems to wither due to the wide adoption of LSO as the LSO
which also significantly saves CPU utilization [[2]. We want to
revisit this property in case of various data center applications.

B. Uniqueness of data center

Modern data centers possess a lot of characteristics that
make them feasible candidates to use jumbo frames. We
highlight a few of those properties that show case the necessity
of studying the impact of jumbo frames in data centers.

High bandwidth. The most distinctive aspect of modern data
center networks is the availability of high bandwidth to the
end hosts. Some are already deploying 10 Gbps Ethernet,
while practically every network has at least 1 Gbps at the
edge. Jumbo frames were designed keeping high bandwidth
networks in mind and are well suited for use in data center
networks. In addition to increasing throughput, the reduction
of overheads can help accommodate more jobs at these servers.

Low latency. Nodes in a data center are closely located from
each other in a geographically small region. Therefore, the
end-to-end delay between any pair of servers is typically a
few hundred microseconds but can go upto a few milliseconds
during congestion [13]. The study of the influence of jumbo
frames in such a low-latency environment is limited.

New applications. Given the high capacity and low latency
characteristics, many new applications with different require-
ments started to nest in data centers. For instance, MapReduce
tends to demand higher throughput while less caring about
delay. On the other hand, low latency is key to meeting the
response time requirement of latency-sensitive applications
such as search, 3-tier web services and many HPC applica-
tions. Jumbo frames can be a desirable feature to bandwidth-
hungry applications, but not to latency-sensitive applications.
Moreover, all these services are hosted in the same data center.
Thus, it is important to understand how the option influences
both types of applications.

Single administrative authority. Data centers are mostly
managed by a single organization. Multiple management do-
mains (i.e., different ISPs) were one of the main hurdles that
prohibited the adoption of jumbo frames in the Internet. On
the other hand, the single ownership of a data center makes
enabling jumbo frames much simpler and straightforward.

C. Other use cases of jumbo frames

JumboGen [14] enables packet aggregation with jumbo
frames at core networks while keeping edge networks unmod-
ified. It reduces the overhead of processing a number of small
packets and increase the core network utilization. However, it
does not show what “real” benefits jumbo frames would create
for today’s data center applications. In the data center context,
a few recent research papers consider jumbo frames as one
of their system features. In [15], Rhoden et al. propose that
enabling jumbo frames would be beneficial for block-level data
transfer. Unfortunately, there is no quantitative evaluation on
the benefits of jumbo frames. Storage Area Network (SAN) is
one canonical field where jumbo frame has been heavily tested
and used as a part of the iSCSI (SCSI over TCP) specification
because 4KB or 8KB SCSI blocks cannot fit in a single 1,500-
byte Ethernet frame. The performance of the iSCSI protocol
that relies on jumbo frames was evaluated in several previous
studies [16], [17], [18].

III. METHODOLOGY

In this section, we describe our testbed, the set of appli-
cations, and the performance metrics we use to evaluate the
impact of jumbo frames.

A. Testbed Setup

Our testbed consists of a rack of 12 servers connected
via full duplex 1 GE links to a top of rack network switch.
Each server has a quad-core Intel(R) Xeon(R) CPU X3430
(@2.40GHz) with no hyper-threading support. The L1 cache
size is 256 KB, L2 cache size is 1024KB, and the L3 cache
size is 8192KB. Each server has a total of 4GB RAM.
Each server is connected with SATA drives with a rotational
speed of 7200 RPM. The servers are running Linux 3.0.0-12
provided with Ubuntu 11.10 distribution.

Every host has an Intel Corporation 82574L Gigabit network
card which provides jumbo frame support. Technologies like
LSO (large segmentation offload), TSO (TCP segmentation
offload), LRO (large receive offload), and interrupt coalescing
in order to reduce packet processing overhead, are enabled.
LSO eliminates the per-packet CPU overhead at the sender
side and thus limits the benefits of jumbo frames. On the other
hand, LRO (the inbound counterpart of LSO) does not totally
eliminate the CPU overhead borne by incoming packets. All
these features are supported by the network card we use. While
one could explore how these options interplay with jumbo
frames, it does not make sense to pursue this direction since
these options are pretty much universally deployed.

B. Data Center Applications

We evaluate the performance of jumbo frames on three
applications, file transfer application, Hadoop MapReduce
application and Olio which is a tiered web service application.
These applications vary in terms of their traffic patterns
and system resource requirements. Figure 1 shows the traffic
patterns of these applications. On one end of the spectrum,
file transfer applications require mostly network resources and

one-to-one

Client

many-to-many : % :

(a) File transfer types

Load
Balancer

Fig. 1.

consume little computation resources. Hadoop MapReduce ap-
plications like terasort have high requirement for computation
resources as well as network resources. At the other end of
spectrum, Olio is representative of web service applications,
which have many small HTTP request-response type of flows.
We describe the details of these applications in below.

1) File Transfer: We use standard FTP clients and servers
for experiments. We experiment with different traffic patterns
ranging for one-to-one, many-to-one and many-to-many. In
these applications, we are mainly concerned about the through-
put achieved by using different frame sizes.

2) Hadoop: The Hadoop test setup consists of 13 nodes.
We run Hadoop version 1.2.0 on these servers. One of the
servers acts both as the namenode and the jobtracker. All other
servers run datanode and tasktracker on them. Each server
runs a maximum of 2 mappers and 2 reducers. The tasks
are initiated in JVM running with a heap size of 512MB.
The various configurations for Hadoop setup are similar to
the one described in [19]. We run MapReduce terasort and
grep applications on our testbed. In these applications, we are
concerned about the completion time of a given job.

3) Olio: Olio is a web 2.0 toolkit to help evaluate the
suitability, functionality and performance of web technologies
[20]. Among many different implementations, we choose the
binary kit for the RubyOnRails implementation. Our setup
consists of 1 load balancer (running the nginx server), 2 web
servers (running the thin servers), 1 SQL database server, 1
memcached server , 1 NFS server, and 1 faban client which is
driving load against the web application. In Olio web service,
we are interested in recording the response time and number of
operations successfully completed using different frame sizes.

C. Performance Metrics

The metrics of interests are throughput, CPU cycles, number
of instructions, instruction per cycle (IPC), and number of net-
work interrupts. We choose the metrics because they are ones
that system administrators in data centers most care about.
We use the Linux perf tool for collecting various system-level
metrics and counters cpu-cycles (cycle count when the CPU
is not idle), instructions, and IPC (instructions per cycle). We
record these counters system-wide with and without running
the applications. The difference gives us an estimate of the
counter values while executing applications. Similarly, the
numbers of network transmit interrupts (NET_TX) and receive
interrupts (NET_RX) are reported through /proc/softirg.

(b) 3-tier web service

NFS

Memcached

Reducer
DB Mapper

(c) MapReduce

Communication patterns of applications tested.

In addition to system-level metrics, we also record various ap-
plication level metrics which vary with different applications.

I1V. EVALUATION

In the experiments, we configure the network cards with 4
different MTU values: 1,500bytes, 4KB, 8KB and 9KB. While
1,500bytes is the default Ethernet MTU value (thus, we call
this 1,500 byte packet Ethernet frame hereafter), 9KB is the
widely accepted frame size for jumbo frames. We also find
4KB and 8KB as interesting choices for frame sizes as they
can fit within one and two memory pages respectively.

Jumbo frames typically reduce per-packet overhead both
at the end host and at the network switches. Thus, expected
microscopic benefits of jumbo frames are increased throughput
and reduced number of CPU cycles and instructions for packet
processing. To quantitatively evaluate such improvements, the
first application we test is file transfer since jumbo frames are
best known for its efficacy for these types of applications.

A. File Transfer Application

In order to evaluate the benefits of jumbo frames, we con-
duct a progressive study starting from one-to-one file transfer,
to many-to-one file transfer and finally many-to-many transfer.
In all three cases, we conduct experiments with traditional FTP
(file transfer protocol) server/client with different file sizes:
100KB, 1MB and 100MB ([13] shows that the flow sizes in
data centers can range from a few kilobytes to hundreds of
megabytes). All the results are averaged over 5 runs.

1) One-to-one Transfer: This basic setup involves two
hosts, where one host transfers data to the other. Figure 2(a)
depicts the throughput achieved for different file transfer sizes.
We observe that in case of 100KB file transfer, the throughput
achieved with all the frame sizes are less than 700 Mbps.
Because of the smaller file size to transfer, the flow is not
able to increase its congestion window enough to fully utilize
the link capacity. The throughput achieved by jumbo frames of
sizes 8K and 9K is 700 Mbps which is almost 4% more than
the throughput achieved by the 1.5K Ethernet frames (675
Mbps). The.throughput achieved by 4K frame lies between
these two. To the best of our knowledge, none of the previous
works have results that compare the throughput of regular and
jumbo frames when a small sized flow is used.

As the file size is increased, we observe higher throughput
for all the frame sizes. With 1MB files (which is still not
large enough for saturating the link capacity), the throughput
with jumbo frames (8K/9K) is almost 10% more than with

1000 10 T T T
mmmm 1.5KB
—~ 900 o gl 4KB
8 2 = KB
g e m— 9KB
= 800 g6
= 700 3 4r
) o
S

£ 600 e 2

500

100KB 1MB 100MB 100KB

1iMB 100MB

(a) Average throughput (b) Average number of cpu cycles

10 T T T 1
s 1.5KB .
< gl 4KB i
z mmmm 8KB
2 o | m— 9KB i
S
g 2
2 —
B A4r
£
S o
HH
0
100KB 1MB 100MB 100KB 1MB 100MB
(c) Average number of instructions (d) IPC

Fig. 2. Results in one to one file transfer using FTP.

the 1.5K frames. The throughput obtained by jumbo frames
in transferring 1MB files show better improvement than the
standard Ethernet frames. It is because of the higher MSS
value from jumbo frames that leads to larger initial congestion
window (10 MSS [21]) and also a rapid increase in the
congestion window. A file transfer size of 100MB leads to full
utilization of the link capacity. At saturation, we see the best
performance by all the frame sizes. The throughput achieved
with jumbo frames is around 985 Mbps as compared to 934
Mbps with standard Ethernet frames. We observe that use
of jumbo frames in one-to-one file transfer provides a 5.5%
potential benefit over standard Ethernet frames even when
utilizing full link capacity.

At the sender side, there is no significant difference in
the system level statistics in case of regular and jumbo
frames. This is expected as LSO eliminates the per-packet
CPU overhead on the system (which the jumbo frames were
designed to help with). The major difference is visible at the
receiver side. Figure 2 highlights the number of CPU cycles
used and instructions executed with different frame sizes.
Looking at the graph corresponding to the 100MB file transfer
(for better visibility, the graphs corresponding to 100KB has
been scaled up by a factor of 100 while, the for 1IMB it has
been been scaled up by 10), we can observe that the total
number of CPU cycles in case of jumbo frames (8K/9K) is
13% less and the number of instructions is also similarly low.
It shows that for receiving the same amount of data, end
host CPU spends fewer cycles and instructions when using
jumbo frames. This saving can help other applications running
on the same host, especially those that are CPU-bound. The
IPC numbers depicted in Figure 2(d) show similar values for
different frame sizes.

In previous work, Chase et al. showed that transferring data
over jumbo frames reduces CPU utilization by a factor of 3
[4]. In our setup, we did not see huge improvements in CPU
utilization. We see a slightly lower CPU usage in case of data
transfer with jumbo frames. The average CPU usage reported
for the period of data transfer over jumbo frame (9K) is usr
= 0.08, sys = 0.94, softirg = 0.04. In case of Ethernet frames,
the average CPU usage is usr = 0.13, sys = 1.77, softirg =
0.17. As we mentioned previously, modern network cards have

1000

@ ©
[=X=}
oo

700
600

Throughput (Mbps)

N w s O
0000
oOoOoOo

100

+0.1ms +1ms +10ms

RTT inflation

base

(a) Average throughput 1MB file transfer

1000
900

2 800
S 700
— 600
3 500
S 400
§ 300
< 200
= 100

0

base +0.1ms +1ms +10ms
RTT inflation

(b) Average throughput 100MB file transfer

Fig. 3. Average throughput in file transfer application with inflated RTTs.

technologies like GSO, TSO, and interrupt coalescing, that
help to reduce per packet CPU overhead. Hence we do not
see as high CPU savings as observed in previous work.

One-to-one Transfer with inflated RTTs. The experiments
conducted in the previous section have no interference from
any other network traffic. The RTTs were of the order of
200 microseconds. In data centers, one would expect some
queuing delays at the routers and switches. We used Linux
traffic controller to artificially inflate the RTTs. Figure 3(a)
demonstrates that for a small size file transfer (1IMB), increase
in RTT has a huge impact on the application throughput.
When the RTT is inflated by lms, the throughput obtained
with standard Ethernet frames drops well below 200 Mbps,
but the throughput with jumbo frames are still around 400
Mbps (more than 200% compared to Ethernet frames).

With large size file transfer (100MB), we see that an RTT
inflation of 10ms has a drastic impact on the throughput of
Ethernet frames. It drops below 250 Mbps. The jumbo frames
still obtain a throughput of more than 800 Mbps. We also
tested out a 1GB file transfer with 10 ms RTT (result not

shown) and found that the jumbo frame achieves 950 Mbps
compared to 875 Mbps with regular frames. While 10ms
may seem like a large value of RTT for intra data center
environment, it is very common for inter data center data
transfers. Hence having jumbo frames enabled in the network
can speed up the process of taking data center backups which
require transferring large amounts of data.

2) Many-to-one Transfer: Many-to-one data transfer is one
of the more commonly occurring traffic pattern in data center
networks (e.g., barrier-synchronized workload in MapReduce).
In our setup we have 12 nodes on a rack, with 11 of them send-
ing data to 1 end host. We repeat experiments with FTP; each
host is sending a file with the same x amount of data where
z is 100KB, 1MB and 100MB. The throughput presented
in Figure 4(a) is the aggregated throughput at the receiving
node. We observe that regardless of file sizes, the throughput
obtained by jumbo frames (8K/9K) is much higher than that
of the regular frames. When the file size is small (100KB),
the jumbo frames achieve almost 11% higher throughput.

In case of many-to-one file transfer of 1MB, using jumbo
frames saturates the link capacity, whereas using 1.5K frames
still has room for improvement. In fact, the throughput with
jumbo frames is still 11% more than with 1.5K frames. The
performance of 4K frame lies between the two. With 100MB
file transfer, the throughput of using jumbo frames does not
change, while the using Ethernet frames finally saturate the
link. In this state, jumbo frames have 5.5% higher throughput
compared to 1.5K frames.

Figure 4 also highlights the CPU resources used at the
receiving host. The total number of CPU-cycles used is almost
17% lesser with jumbo frames while 22% fewer instructions
are executed. As we observed in the one-to-one scenario, the
IPC values are roughly the same across different frame sizes.
The savings in CPU resources is a huge benefit of using jumbo
frame; not only we get higher application throughput, we also
save a lot of system resources useful for other operations.

3) Many-to-many Transfer: In many-to-many file transfer,
half of the 12 nodes on the rack are transferring data to the
other half as depicted in Figure 1(a). We repeat experiments
with file sizes of 100KB, IMB and 100MB. In our setup,
all the senders send data to all the receivers resulting in 6
concurrent connections at each receiving node. We report the
average throughput achieved by individual receivers.

Figure 5(a) demonstrates that the data transfer over jumbo
frames achieves a higher throughput compared to over stan-
dard Ethernet frames. The results are similar to many-to-one
file transfer experiments. For small files, jumbo frames have a
7% higher throughput. We also see that jumbo frames achieve
link capacity faster than the 1.5K frames. At link saturation,
the average throughput achieved by the receivers is 860 Mbps
with jumbo frames and 830 Mbps with Ethernet frames. Jumbo
frames also saves a lot of CPU resources compared to Ethernet
frames. Figure 5(b) shows the average number of cycles used
at each receiver. We observe that the use of jumbo frames
saves more than 20% of CPU cycles at each receiver. The
number of instructions is also reduced which leads to overall

1171
0 1.5KB mem
4KB |
1160 - 8KB s
K2 9KB e
o 1150 N
£ i
c1140 [-
S 4
°
21130 | o 1.5k _
S 4KB P
© 1120 | s 8KB 7 .
9KB

1110

(a) Terasort with 100GB of data (b) Grep with 10GB of data

Fig. 6. Average completion time of Hadoop applications.
low CPU utilization at the receivers.

B. MapReduce applications

Next we evaluate the impact of jumbo frame on MapReduce
applications, which are commonly used in data centers. We
test two simple but popular MapReduce applications—terasort
and grep—using Hadoop. The two applications have slightly
different flavor. On one hand we have the Terasort has a
significant networking component and involves shuffling large
amounts of data, while Grep is mostly CPU bound with a
small sized shuffle phase. We want to study the impact of
jumbo frames on both classes of applications. All of the results
reported are averaged over 3 runs.

1) Hadoop terasort: We run the MapReduce terasort appli-
cation on a 100 GB file generated using the Hadoop teragen
application. As mentioned in previous section, Hadoop is run
on 12 nodes with 2 mappers and 2 reducers running on each
node. The task to sort 100 GB file is broken down into 744
map and 24 reduce tasks. Figure 6(a) shows the completion
time of terasort with different frame sizes. We observe that
the completion time with standard Ethernet frame is almost
4% more than the completion time with 9K jumbo frames. To
reason about the difference in completion time, we analyze
the shuffle phase of the reduce tasks. In case of standard
Ethernet frames, the average shuffle phase lasted for a total
of 440 seconds (it lasted for 434 seconds with 4K frames).
With 9K jumbo frames, the average shuffle phase lasted for
only 421 seconds. We see that use of jumbo frames results in
a slightly smaller shuffle phase period which helps the terasort
application to finish up faster.

Table I shows the results for terasort. Similar to our obser-
vations in file transfer application, we find that jumbo frames
contribute in reducing the system overhead of running Hadoop
applications. For example, 9K jumbo frames allow terasort to
consume about 1% less CPU cycles than Ethernet frames. The
number of network receive interrupts in case of 1.5K frames
is also about 6% higher than in case of 9K jumbo frames. In
terms of CPU utilization, we observe a marginal benefit with
jumbo frames. The average CPU usage reported for jumbo
frames is usr = 30.5, sys = 4.66, softirg = 0.62. In case of
Ethernet frames, the average CPU usage is usr = 32.18, sys
= 4.82, softirg = 0.72. Thus we see that a higher network
throughput and lower resource utilization from using jumbo

1000 ; ; ;

IPC

100KB 1MB 100MB

100KB

1MB 100MB

(c) Average number of instructions (d) IPC

Fig. 4. Micro-benchmark results in many to one file transfer using FTP.

% 900 o
Q S
2 P
< 800 °
o 700 =1
3 &
£ 600 9
500
100KB 1MB 100MB 100KB 1MB 100MB
(a) Average throughput (b) Average number of cpu cycles
1000 , , ,
:; 900 | - B35 |-
% 30
2 800 3
5 925
g Q
[=)] 700 3
3 &
£ 600 ©10
500
100KB 1MB 100MB 100KB 1MB 100MB

(a) Average throughput (b) Average number of cpu cycles

Fig. 5.

The base count for cycles and instructions: x 1012

Fsize Terasort Grep
cyc ins IPC cyc ins IPC
1500 | 3.221 | 3.577 | 1.110 | 2.660 | 5940 | 2.231
4000 | 3.199 | 3.574 | 1.113 | 2.659 | 5939 | 2.232
8000 | 3.190 | 3.558 | 1.115 | 2.658 | 5.936 | 2235
9000 | 3.192 | 3.564 | 1.117 | 2.658 | 5935 | 2.232
TABLE I

AVERAGE CPU CYCLES, INSTRUCTIONS AND IPC VALUES FOR
DIFFERENT HADOOP APPLICATIONS

frames result in almost 40 seconds difference in the completion
time of the terasort application.

2) Hadoop grep: We run the MapReduce grep application
on a 10GB file. This is a small scale job consisting of 96 map-
pers and 24 reducers. We want to study the impact of jumbo
frames on MapReduce applications which may not have a
large networking component but is CPU intensive. Figure 6(b)
highlights the completion time of grep with different frame
sizes. We see that the completion time under jumbo frames is
about 1.5% shorter than with standard Ethernet frames. The
gain is smaller as compared to the terasort application (which
has a significant network load).

In the grep application, the number of CPU cycles used
by jumbo frames (8K) is 0.07% lower than used by standard
Ethernet frames. The number of network receive interrupts is
about 5% lower. In terms of CPU utilization, we observe a
marginal benefit with jumbo frames. The average CPU usage
reported for jumbo frames is usr = 35.5, sys = 0.24, softirq

30 T T T 1 T T T
s 1.5KB 09 | i
6;25 - 4KB N 0.8 - -
- mmm 8KB 0.7
@20 - mmm 9KB '
S 06
515 £ 05 I
Z 10 0.4 1.5KB m—
£ 0.3 4KB
S5 0.2 8KB m—
0

0.1 9KB
0
100KB 1MB 100MB 100KB 1MB 100MB
(c) Average number of instructions (d) IPC

Micro-benchmark results in many to many file transfer using FTP.

= 0.12. In case of Ethernet frames, the average CPU usage is
usr = 36.1, sys = 0.28, softirg = 0.15.

C. Olio web application

Olio is an open source reference architecture supported by
apache to evaluate various web2.0 technologies. It showcases
various components used in social web sites. In our setup
(Figure 1(b)), we have one faban driver [22] which drives load
against the application setup. We have two web servers running
instances of thin servers. The requests to the web servers
are routed through a load balancer running nginx server.
The driver emulates different kinds of client operations like
login, accessing home page, adding events, etc. An operation
involves loading one entire web page (which consists of
multiple HTTP requests to complete the page). The inter-
arrival times between operations are chosen from a negative
exponential distribution with a mean of 5 seconds. The inter
arrival time can be understood as the think time between
operations. To fulfill client requests, the web servers access an
SQL database server, a memcached server and an NFS server.
We disabled Nagle’s algorithm on all these systems (details
discussed below).

Faban is configured to drive load against the application
servers for a certain amount of time (in our case we set it to
150 seconds of ramp up time and 400 seconds of steady time).
At the end of a run, faban outputs the average number of oper-
ations per second completed by the web servers. In addition to

70 f ——

65 | 350 users ——
0 60 250 users —o—|
855 L 150 users —x— |
g 50 e ©
E 45 L —
240 |- i
O35 i

30

25 1 1

1500 4000 8000 9000
Frame Size (bytes)
Fig. 7. Average number of operations per second for Olio.
0.5 : :
3 350 users ——
04 250 users —o—
g 150 users —x¢—
Z03f .
2]
c
2
202
(]
o

0.1 L L

1500 4000 8000 9000
Frame Size (bytes)
Fig. 8. Average response time for Olio with Nagle disabled.

the number of operations, it also outputs the average response
time for various types of operations. We progressively increase
the load on the web servers till the response times of difference
operations are within the acceptable limit as prescribed with
the olio application. In our setup, we found that a load of
250 concurrent users achieves this saturation point. Note that
actual number of loaded users emulated by olio is about 100x
the number of concurrent users.

Figure 7 depicts the average number of operations per
second completed by the web servers with different Ethernet
frame sizes. The average is taken over 3 runs for each frame
size. We can see that the number of operations per second
in case of different Ethernet frame sizes remains similar. The
network workload generated by olio operations are mostly of
HTTP request-response type. The average flow size for most
flows is less than 1KB (Figure 10). In these kinds of requests,
there is not much to choose between standard Ethernet or
jumbo frames. Even when we have relatively lower or higher
number of concurrent users (150 or 350), we see that the
number of operations per second stays the same for different
frame sizes. The average response time in case of different
frame sizes also remains similar as shown in Figure 8.

Along with application level metrics, we also record the
system level metrics at different components. Figure 9 shows
the micro-benchmark results with the olio web application.
At a high level we observe that jumbo frames reduce the
system overheads slightly for most of the web application
components. For instance we can see that for web servers
(which are the most loaded component for olio), jumbo frames
(8K/9K) save about 3.25% of the cpu cycles during the
experimental period compared to the Ethernet frames. For
other components also, we observe similar savings in terms
of the number of cycles and instructions. The IPC values stay
the same for all the Ethernet frame sizes. We see that even
in olio, the savings of system resources are similar to other

Component Ethernet Frame Jumbo Frame

Avg Max | Min | Avg | Max | Min

LoadBal 8 14 4 7 11 4
Web-1 28 49 12 27 44 11
Web-2 28 48 12 27 45 11
Database 2 6 1 2 6 0.5

Memcached 1 3.5 0 1 2.5 0

NES 0.75 4 0 0.5 3 0

TABLE II
CPU UTILIZATION (IN %) AT DIFFERENT COMPONENTS OF OLIO.

0.8 |- i
L 06 i
o
©o04l ed o |

9 Database —«—

0.2 Web server1

“r Web server2 T
Load balancer —es—
0 | IRTIY BURAY URErY B RS B
10" 102 10%® 10* 105 10® 107 10% 10°

Flow size (bytes)

Fig. 10. CDF of flow size distribution at different components of olio.

applications like file transfer and Hadoop.

In terms of CPU utilization, jumbo frame (9K) has a
marginal benefit over the Ethernet frames. Table II highlights
the average, maximum and minimum value of the total cpu
used (including usr, sys etc.) at different components of the
olio web application. We observe that use of jumbo frames
save about 1-2% of total CPU at most the components. This
is consistent with our observations with previous applications.

Nagle’s algorithm and response time. Nagle’s algorithm is
known to increase the response time for small requests [23],
[24]. As Nagle’s algorithm holds the application data (less
than the size of MSS) in the TCP buffer until it receives an ac-
knowledgement, it causes more delay in case of jumbo frames.
We conducted our Olio experiments with Nagle enabled at
first, and saw that the response times with jumbo frames
were higher than standard Ethernet frames in Figure 11. Then
we disabled Nagle on our system and repeated the same
experiments. We make two interesting observations with the
new setup. First, the response time decreased for all frame
sizes and with different client load. For example, the average
response time for 250 users decreased from around 500 ms
to 270 ms. Second, the response times became similar for
different frame sizes. A more detailed study of the interplay
between Nagle’s algorithm and responsiveness, however, is
outside the scope of this paper.

D. Summary and discussion

In this section, we studied various properties (introduced
in Section III) of jumbo frames in the data center environment.
Using the file transfer application, we discovered that the use
of jumbo frame leads to increased throughput (P1). Though
the gain is not as high as reported in some of the previous
work, we still see about 6% improvement in throughput at
full link capacity. The gains are higher in case of smaller file
transfers, or when we have higher network RTTs. In fact, when

—~10 T 10 1
z 1.5KB s = 0.9
S8 4KB J 28 _ 038
e 8KB @ 0.7
26 9KB e 56 B 0.6
s g Q 05
£ 1 s 1 8
8> _ 22 _ 02
20 2o 3
** **
loeg h/eb 7 h/ebe e’ab £ Wk@ <°$o' h/eb, h/ebe Oefaé 449/7; S Oé’o h/eb 7 ebe eﬁab 7 4//\\8
o Sse ey Yo e o, 4 Qe oy,
s, So e, So s, So
(a) Average number of cpu cycles (b) Average number of instructions (c) IPC
Fig. 9. Results at each component of the olio web application.

08 T] to increase in response time with Nagle algorithm enabled on
§g'g i ' ' i the system. But with Nagle disabled, it performs as well as
25— O 4 with regular Ethernet frames. All of the above observations
g 04 r . highlight that turning on jumbo frames can be beneficial for
c 03} .

So2fF 350 users i data centers in general.
2 L 250 users —6—_|
o 0.1

o . 150 users —> REFERENCES

1500 4000 8000 9000 [1] D. Murray, T. Koziniec, K. Lee, and M. Dixon, “Large mtus and internet

Frame Size (bytes) performance.” in HPSR’12.
[2] L. Macvittie, “Supersizing the data center: Big data and jumbo frames,”
Fig. 11. Average response time of olio with Nagle enabled. http://cloudcomputing.sys-con.com/node/2170934, Feb. 2012.

the network latencies are between 1-10ms ([13] reports that in
data centers with excessive queuing, delays could be as high
as 1-14 ms), the throughput with jumbo frames could be 2-
4 times higher. In the Hadoop terasort application, we saw a
3% decrease in completion time with jumbo frames. It shows
that jumbo frames are well suited for modern applications
with high network requirements. It can increase the application
throughput and help them to finish faster. The benefits are even
higher in congested networks with higher latencies.

We also studied the delay introduced by jumbo frames using
a tiered web service application (P2). When we experimented
with default settings we found that the response times corre-
sponding to jumbo frames were higher than regular frames.
However, further investigation reveals that the difference was
due to Nagle’s algorithm which is known to increase response
time for small requests. So for this application, we disabled
Nagle’s algorithm and observe that the response times of the
web requests become similar with regular and jumbo frames.
The number of operations per second was also similar in both
cases. Our experiments show that different frame sizes have
similar performance for this class of applications. For all of
the above applications, we observe lower resource utilization
(P3) when using jumbo frames for data transfer. The savings
may not be as high as observed in previous work. But with
all the optimizations in modern network cards, we still see a
saving of about 1-2% in CPU utilization.

V. CONCLUSION

In this paper, we revisit Ethernet jumbo frames in the
context of data center networks. We empirically evaluate the
impact of jumbo frames on a set of canonical data center
applications. Our evaluations show that jumbo frames are
advantageous to applications like file transfer and Hadoop
MapReduce. For a tiered web service, jumbo frames can lead

[3]

[4]

W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda,
“Performance characterization of a 10-gigabit ethernet toe,” in HOTI’05.
J. Chase, A. Gallatin, and K. Yocum, “End-system optimizations for
high-speed tcp,” IEEE Communications Magazine, 2000.

S. Makineni and R. Iyer, “Architectural characterization of tcp/ip packet
processing on the pentium® m microprocessor,” in I[EEE HPCA, 2004.
D. Gentry, “Requiem for jumbo frames,” http://codingrelic.geekhold.
com/201 1/12/requiem-for-jumbo- frames.html, Dec. 2011.

“Jumbo frames comparison testing with ip storage and
vmotion,” http://www.boche.net/blog/index.php/2011/01/24/
jumbo-frames-comparison-testing- with-ip- storage-and-vmotion/.
“Ethernet jumbo frames,” http://www.ethernetalliance.org/wp-content/
uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0- 1.pdf, Nov. 2009.

P. Joubert, R. B. King, R. Neves, M. Russinovich, and J. M. Tracey,
“High-performance memory-based web servers: Kernel and user-space
performance,” in USENIX ATC, 2001.

“Talking about ethernet jumbo frames,” http://community.calix.com/t5/
Calix-Community-Blog/, Sep. 2011.

“The promise and peril of jumbo frames,” http://www.codinghorror.com/
blog/2009/03/the-promise-and-peril-of- jumbo- frames.html, Mar. 2009.
D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradhan, and
J. Tracey, “Server network scalability and tcp offload,” in ATC’05.

M. Alizadeh, A. Greenberg, D. A. Maltz et al., “Data Center TCP
(DCTCP),” in SIGCOMM, 2010.

D. Salyers, Y. Jiang, A. Striegel, and C. Poellabauer, “Jumbogen:
dynamic jumbo frame generation for network performance scalability,”
ACM SIGCOMM Computer Communications Review (CCR), Oct. 2007.
B. Rhoden, K. Klues, D. Zhu, and E. Brewer, “Improving per-node
efficiency in the datacenter with new os abstractions,” in SOCC’11.

D. Grunwald, “A performance analysis of the iscsi protocol,” in
MSST2003.

W. Y. H. Wang, H. N. Yeo, Y. L. Zhu, T. C. Chong, T. Y. Chai, L. Zhou,
and J. Bitwas, “Design and development of ethernet-based storage area
network protocol,” COMCOM, 2006.

H. Xiong, R. Kanagavelu, Y. Zhu, and K. L. Yong, “An iscsi design and
implementation,” in MSST 2004, 2004.

“Hadoop cluster setup,” http://hadoop.apache.org/.

“Apache olio,” http://incubator.apache.org/olio/.

N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing tcp’s initial conges-
tion window,” ACM SIGCOMM CCR, 2010.

“Faban,” http://faban.org/.

“Nagle’s algorithm is not friendly towards small requests,” http://blogs.
msdn.com/.

G. Minshall, Y. Saito, J. C. Mogul, and B. Verghese, “Application
performance pitfalls and tcp s nagle algorithm,” SIGMETRICS, 2000.

[5]
[6]
[7]

[8

—

[9

—

[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]

[18]
[19]

[20]
[21]

[22]
(23]

[24]

http://cloudcomputing.sys-con.com/node/2170934
http://codingrelic.geekhold.com/2011/12/requiem-for-jumbo-frames.html
http://codingrelic.geekhold.com/2011/12/requiem-for-jumbo-frames.html
http://www.boche.net/blog/index.php/2011/01/24/jumbo-frames-comparison-testing-with-ip-storage-and-vmotion/
http://www.boche.net/blog/index.php/2011/01/24/jumbo-frames-comparison-testing-with-ip-storage-and-vmotion/
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://community.calix.com/t5/Calix-Community-Blog/
http://community.calix.com/t5/Calix-Community-Blog/
http://www.codinghorror.com/blog/2009/03/the-promise-and-peril-of-jumbo-frames.html
http://www.codinghorror.com/blog/2009/03/the-promise-and-peril-of-jumbo-frames.html
http://hadoop.apache.org/
http://incubator.apache.org/olio/
http://faban.org/
http://blogs.msdn.com/
http://blogs.msdn.com/

	Purdue University
	Purdue e-Pubs
	2013

	Jumbo Frames or Not: That is the Question!
	Pawan Prakash
	Myungjin Lee
	Y. Charlie Hu
	Ramana Rao Kompella
	Twitter Inc.
	See next page for additional authors

	Report Number:
	Authors

	Introduction
	Motivation
	Properties associated with jumbo frames
	Uniqueness of data center
	Other use cases of jumbo frames

	Methodology
	Testbed Setup
	Data Center Applications
	File Transfer
	Hadoop
	Olio

	Performance Metrics

	Evaluation
	File Transfer Application
	One-to-one Transfer
	Many-to-one Transfer
	Many-to-many Transfer

	MapReduce applications
	Hadoop terasort
	Hadoop grep

	Olio web application
	Summary and discussion

	Conclusion
	References

