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Abstract—Networks with homogeneous routing nodes are
constantly at risk as any vulnerability found against a node could
be used to compromise all nodes. Introducing diversity among
nodes can be used to address this problem. With few variants,
the choice of assignment of variants to nodes is critical to the
overall network resiliency.

We present the Diversity Assignment Problem (DAP), the
assignment of variants to nodes in a network, and we show how
to compute the optimal solution in medium-size networks. We
also present a greedy approximation to DAP that scales well to
large networks. Our solution shows that a high level of overall
network resiliency can be obtained even from variants that are
weak on their own.

For real-world systems that grow incrementally over time, we
provide an online version of our solution. Lastly, we provide a
variation of our solution that is tunable for specific applications
(e.g., BFT).

I. INTRODUCTION

Networks with homogeneous routing nodes are constantly
at risk as any vulnerability found against a single routing
node could be used to compromise all nodes. Diversity can
be employed at various levels on the routing nodes to address
this problem by improving resiliency against different classes
of attacks. In this work, we base resiliency on the number of
surviving client-to-client connections offered by the network
when under attack. Diversifying the operating system provides
protection against common types of attacks that target operat-
ing system vulnerabilities [1]; utilizing multi-variant program-
ming protects against programming vulnerabilities or logical
programming errors [2], [3]; using different administrative
personnel mitigates social engineering or insider attacks [4].
However, there are only a limited number of operating systems,
software versions, and personnel to utilize as diverse variants.
So then, how does one assign these limited number of diverse
variants to the routing nodes in the network to achieve optimal
resiliency?

Initially, we assumed that a random assignment of a
few diverse variants would perform well. However, we were
surprised to find that a random assignment performs rather
poorly, in many cases providing less resiliency than using the

best single variant at all routing nodes, and occasionally even
less resiliency than using the worst single variant at all routing
nodes. Clearly, a better approach is necessary to realize the
benefits of diversity.

Our interest in this question arose from constructing a cloud
service over a global network of data centers [5]. We needed to
have an intrusion-tolerant infrastructure in order to monitor and
control the cloud even in the case of sophisticated intrusions.
While designing intrusion-tolerant protocols for messaging and
maintaining consistent state, we realized that without diversity
all the nodes could be compromised by a single vulnerability.
Inspired by [1], we were especially interested in diversifying
the operating system (e.g., Linux, MacOS, and FreeBSD). The
additional overhead of managing multiple operating systems
within the cloud infrastructure led us to consider only a small
number of variants to create diversity.

In this paper, we demonstrate that the way diverse variants
are assigned across the network (i.e., which variant is assigned
to which routing node) is of utmost importance to the overall
network resiliency when the number of variants is smaller than
the number of routing nodes in the network. To our knowledge,
this work is the first to study the impact of variant assignment
to routing nodes on overall network resiliency.

We present a novel problem, the Diversity Assignment
Problem (DAP), which specifies how to optimize overall
network resiliency when placing diverse variants that are
compromised independently at routing nodes. While DAP is
NP-Hard, we show that it is feasible to solve it optimally on a
variety of medium-size random network graphs. We also show
an efficient algorithm that approximates DAP well for larger
graphs, incurring a relatively small resiliency cost compared
with the optimal solution.

To check the applicability of our approach in a real-world
setting, we obtained a network graph representative of the
global overlay topology used by the above cloud service. Even
though this topology was constructed with high availability as
the goal (rather than intrusion-tolerance), the optimal variant
assignment solution to the DAP ensures a system resiliency
that is significantly higher than the resiliency achieved by any



of the individual variants.

In real-life settings, routing nodes may be added from time
to time to meet increasing system demands. Calculating an
optimal solution for the extended network is certainly feasible.
However, that solution is likely to require variant re-assignment
for many of the existing routing nodes, which may not be
feasible in a 24/7 service as downtime for re-configuring nodes
is unacceptable. We present an online version of DAP that
finds the optimal incremental assignment. When applied to
the mentioned global topology, we discover that an important
trade-off exists between the resiliency the system achieves and
how often the network changes.

We initially choose an application agnostic metric for
network resiliency that captures the expected client-to-client
connectivity between all pairs. We investigate the advantages
of considering the specific resiliency needs defined by the
nature of a distributed application running at the clients.
Specifically, we show how to find the optimal assignment
for the underlying network supporting the Byzantine Fault-
Tolerant Protocol (BFT) [6]. When applied to the mentioned
global topology, we found that an assignment that is tailored
to BFT requirements can provide higher resiliency than an
assignment that focuses on general network resiliency obtained
by maximizing the expected client-to-client connectivity.

When studying DAP, we learned three key points that are
relevant to any application of limited diversity that aims to
increase network resiliency:

- A high level of overall network resiliency can be
obtained even from variants that are weak on their
own. Despite the variants being compromised (inde-
pendently) with a relatively high probability, they are
compromised in different ways. Carefully assigning
variants to routing nodes allows surviving subsets of
the network to still remain highly connected.

- The simplest and seemingly practical approach of just
assigning variants randomly offers very low resiliency
compared to the optimal assignment. Additionally, in
many random placements we found that the resiliency
of the network is actually worse than if no diversity
assignment were used at all.

- While optimizing expected client-to-client connectiv-
ity provides a good measure for the resiliency of the
network to intrusions, considering application-specific
connectivity requirements may lead to a different
assignment that maximizes overall system resiliency
(as opposed to network resiliency) for that application
on that network.

The contributions of this paper are as follows:

• We introduce the Diversity Assignment Problem
(DAP).

• We formulate the DAP using mixed integer program-
ming (MIP) [7] and find the optimal solution on
random graphs constructed in a manner reminiscent of
real overlay topologies. To support larger graphs, we
extend this formulation to a fast greedy approximation
and demonstrate results that are relatively close to the
optimal solution in such larger graphs.

• We analyze the impact of diversity on a real cloud
overlay topology and extend our approach to support
adding routing nodes to the graph in an online manner
to address increased client demand.

• We extend our approach to optimize network re-
siliency for a given application’s demands, rather than
for overall expected client-to-client connectivity, to
maximize system resiliency.

The rest of the paper is organized as follows. Section II
describes our network and attacker models. Section III presents
the general DAP along with an optimal solution. Section IV
describes and evaluates a greedy approximation algorithm
to solve DAP in larger topologies. Section V shows how
resiliency is affected in dynamic topology scenarios. Sec-
tion VI shows the increased advantage of performing diversity
assignment with client application knowledge. Section VII lists
work related to ours. Section VIII concludes this work.

II. MODEL

We describe the model of the network and attacker which
we consider in this work. These models are quite general as
our approaches can be applied in various networking contexts
with various of diversity techniques. Our motivation started
with a scenario of cloud services being provided over a global
network of datacenters while diversifying operating systems
for improved resilience, but we noticed that the core problem
is general to any network.

A. Network model

We assume a network topology of routing nodes that
provide communication to clients. We assume no control
over the structure of the network topology as this is fixed
based on the constraints of the networking context. In an
overlay routing context, network links impose overhead to
continuously monitor their latency and loss characteristics,
thus the degree at each node must be limited while ensuring
the entire network is still well connected. Alternatively, in a
wireless context, network links are limited by the physical
broadcast range of each node. We assume that we have a set
of diverse variants and can configure each routing node with a
single variant. Our network goals are to maximize the number
of client connections or an application-specific communication
requirement of the clients.

B. Attacker model

We assume that there is no way to configure a routing
node that meets our network needs while being completely
invulnerable to attacker attempts of compromise. Thus, we
adopt a probabilistic attacker model that captures the following
important resilience property of diversity we wish to leverage:
even though we do not have access to a variant that cannot
be compromised, we do have access to variants that are
compromised in different ways. We assign a probability that
an attacker is able to both find a vulnerability and create a
successful exploit against a variant within a given time period,
and then any routing node in the network with this variant will
become compromised. As our probabilities are with respect
to a certain time frame, a full long-term system would need
mechanisms to detect and recover compromised variants, and



we consider such mechanisms as outside the scope of this
current work. Our probabilistic model of compromise offers
a useful way to reason about an attacker’s capabilities and
measure a network’s resilience. Even in realistic scenarios
where an attacker is not modeled well probabilistically, we are
still raising the bar for the attacker to ensure the attacker must
find vulnerabilities and create exploits for different variants of
routing nodes.

We do assume a byzantine tolerant routing protocol is used
for routing to ensure that communication can occur between
two clients as long as a honest path of routing nodes exists.

III. DIVERSITY ASSIGNMENT

In this section we present the Diversity Assignment Prob-
lem (DAP). DAP describes how to assign diversity to routing
nodes in order to maximize the probability of each client pair
being connected. We then describe existing Mixed Integer
Programming (MIP) techniques and how these can be used
to solve DAP. Lastly, we show the effectiveness of this
technique on a realistic case study topology when compared
with randomly assigning diversity.

A. Diversity Assignment Problem (DAP)

We consider a network consisting of a set of nodes N and a
set of clients M . A set of connections are defined among these
nodes, so we can represent a network as a graph such as the
one in Figure 1. Each routing node is assigned a variant from
the set of variants V , so there are |V ||N | possible assignments.
We denote an assignment of one variant for each node as A.
Note that |V | < |N |. Each variant vk ∈ V is associated with
a compromise event ek in the set of all compromise events
E, so |E| = |V |. The probability of ek occurring is P (ek).
These events of compromise are independent,∗ so for any two
compromise events ek′ and ek′′ the following holds P (ek′ ∩
ek′′) = P (ek′) ∗ P (ek′′).

We measure the goodness of an assignment of variants
with the metric expected client connectivity. This metric is
the expected value of the proportion of client pairs that are
connected. To compute this value we consider the set of
all possible combinations of compromise events C where
|C| = 2|E| (C is the powerset [8] of E). An element c ∈ C is a
subset of the compromise events, E, and corresponds to those
compromise events occurring while any other compromise
events do not occur. We can compute the proportion of clients
connected given that those variants are compromised. We con-
sider two clients to be connected if a path of uncompromised
nodes exists between them.

Our goal is to maximize the expected client connectivity
of a graph by strategically assigning variants. We call this
problem the Diversity Assignment Problem.

Definition 1: The Diversity Assignment Problem is to find
the assignment of variants to nodes which maximizes the
expected client connectivity. First, for a given assignment A

∗We make an assumption of independence among compromise events in
this work as this simplifies the presentation of the fundamental ideas in
this work. However, as long as compromise events are not highly positively
correlated (i.e., when one compromise event occurs then others are highly
likely to happen), then all of our techniques and results still hold even though
compromise events may not be completely independent.

(a) (b)

Fig. 1. Example of two assignments on the same topology where routing
nodes are circles and clients are squares. We show two possibilities for
diversity assignment to nodes where the two variants are blue (dark) which
has a 0.1 probability of being compromised and yellow (light) which has a
0.15 probability of compromise. (a) Diversity assignment with 0.838 expected
client connectivity. Notice that only one client pair is connected if either
blue or yellow is compromised. (b) Superior diversity assignment that has
0.957 expected client connectivity. Notice that three client pairs are connected
if yellow is compromised and two client pairs are connected if blue is
compromised.

and set of compromised variant events c ∈ C, we define a
connectivity function fA,c(a, b) between two clients a and b
as:

fA,c(a, b) =


(|M |

2

)−1
if clients a and b are connected
by a set of uncompromised nodes

0 otherwise

Then, the expected client connectivity is:

E

 ∑
{a,b∈M :a<b}

fA,c(a, b)


=

∑
c∈C

∏
ek∈c

P (ek)
∏
ek /∈c

(1− P (ek))


∗

 ∑
{a,b∈M :a<b}

fA,c(a, b)


The Diversity Assignment Problem is:

argmaxA

E
 ∑
{a,b∈M :a<b}

fA,c(a, b)


Theorem 1: The Diversity Assignment Problem is NP-

Hard with two or more variants.

Proof: The proof is in Appendix IX.

As an illustrative example of the meaning of DAP we give
Figure 1 as an example topology graph. Figures 1(a) & 1(b)
show two ways to assign variants in this graph. Figure 1(b)
is the superior assignment as more client pairs are connected
given that a single variant is compromised. The superiority
of this assignment is also reflected by the expected client
connectivity values. This section is focused on finding the
optimal variant assignment for a topology.

B. MIP approach to DAP

Despite DAP being NP-Hard, many real-world network
topologies are of limited size, so finding the optimal solution
is of practical interest. To find the optimal solution, we chose



TABLE I. NOTATION

Symbol Description
N Set of routing nodes. As our notation, these are x, y, z, etc.
M Set of client nodes. As our notation, these are a, b, etc.
V Set of variants.
E Set of all compromise events. We index elements of E and V

by k as their elements are related such that each ek corresponds
to the compromise event of the variant vk .

C Set of all possible compromise event sets, so |C| = 2|E|. Each
element c ∈ C is a set of compromise events (e ∈ E) that are
compromised.

wi,j Constants designating that edge {i,j} exists. i and j can be
either routing nodes or client nodes. Note that clients should not
connect directly to other clients, so i, j ∈M ⇒ wi,j = 0

fc,a,i,j Measures the amount of flow that starts at client node a and
travels on edge {i,j} in compromise event set c. i and j can
be either routing nodes or client nodes. Also, c ∈ C. This must
be a non-negative value.

sv,x The variant assignment of routing node x. sv,x is 1 if x is
variant v and 0 otherwise.

to formulate the problem as a MIP and utilize an existing
commercial solver, CPLEX [9]. A MIP is a linear program with
the addition of integer constraints. The important implication
of these integer constraints is that a MIP is not solvable in
polynomial time (while a linear program can be), but these
integer constraints allow for formulations of many difficult
combinatorial problems. Problems from other domains have
also resorted to MIP to find optimal solutions to practical
problems in the area of operations research [10], [11], [12].
MIP formulations are good for problems where the optimal
is desired and no efficient algorithm is known as many MIP
solvers [9], [13], [14] employ a variety of techniques to avoid
exhaustively searching the entire space of feasible solutions.

Our MIP formulation is seemingly more complex than the
mathematical formulation in Definition 1 mainly due to the
expression of the function fA,c(a, b) as a MIP. This function’s
output depends on whether two clients are connected given
an assignment and set of compromise events. In the MIP
formulation we capture the same connectivity by setting up
flow variables on each edge. When considering a specific
source client, we count the number of other clients that are
connected to this source client with the following constraints
on these flow variables. The source client has no incoming flow
and unbounded outgoing flow, each other client accepts at most
one unit of incoming flow and has no outgoing flow, and each
uncompromised node has equivalent incoming and outgoing
flow. Compromised nodes have no incoming or outgoing flow,
and a node is compromised when the node’s variant assignment
is included in the set of compromised events being considered.
With these flow variables,

∑
{a,b∈M :a<b} fA,c(a, b) is equiv-

alent to 1
2 ∗

(|M |
2

)−1
multiplied by the total outgoing flow

of the given clients for |M | copies of the same graph and
flow variables where each graph considers a different source
client. Then, we must copy these variables again, once for each
possible set of compromise events.

Table I describes each symbol that we use in our MIP
formulation. We present the objective function (Equation 1)
followed by each constraint (Equations 2-10).

DAP objective:

maximizes,f
1

2
∗
(
|M |

2

)−1
∗

∑
c∈C,a∈M,x∈N∏

ei∈c
P (ei)

∏
ei /∈c

(1− P (ei))

 fc,a,a,x

(1)

We maximize the expected client connectivity of the graph,
over all compromise events. The first term ( 12 ∗

(|M |
2

)
) ensures

that the result will be out of 1, rather than out of the number
of possible connections between clients. The two products
ensure that each possible compromise event is weighted by the
probability that it happens. The f term is a measure of how
much flow the given client a can push out onto the network
(specifically, fc,a,i,j measures the amount of flow that started
at source client a that travels on edge {i,j} in compromise
case c). Because of all the constraints below, this is exactly a
measure of how many other clients client a can connect to.

Variant constraints (I):

svi,x = {0, 1}, vi ∈ V , x ∈ N (2)

Routing nodes must be either entirely of a variant or entirely
not of that variant. Fractional assignments are not allowed.

Variant constraints (II):∑
vi∈V

svi,x = 1, x ∈ N (3)

Routing nodes must be exactly one variant.

Node flow constraints:∑
i∈N∪(M−{a})

fc,a,x,i −
∑

i∈N∪{a}

fc,a,i,x = 0, c ∈ C, a ∈M, x ∈ N (4)

The flow (originating at source client node a) entering routing
node x must equal the flow (originating at source client node
a) exiting routing node x. This is enforced for each of the
|M | clients and for each of the |N | nodes, separately. In other
words, flow cannot get stuck in the middle of the network; it
has to end at client nodes.

Client flow constraints (I):∑
x∈N

fc,a,x,b ≤ 1, c ∈ C, a, b ∈M, a 6= b (5)

A client cannot accept more than one unit of flow from another
client. This is so that we can count the total flow out of the
source client to get the number of connected clients. Despite
this constraint being ≤ 1, it can only take a value of 0
or 1 due to the other constraints and the objective. For the
CPLEX solver [9], it is more efficient to enforce fewer integer
constraints whenever possible.

Client flow constraints (II):

fc,a,x,a = 0, c ∈ C, a ∈M, x ∈ N (6)



Traffic cannot start and end at the same client. In other words,
a client cannot send to itself. Note that {x, a} is any incoming
edge into a.

Client flow constraints (III):

fc,a,b,x = 0, c ∈ C, a, b ∈M, x ∈ N, a 6= b (7)

A destination client cannot send out flow. So, flow cannot use
a client to reach other clients.

Topology constraints:

fc,a,i,j ≤ (|M | − 1) ∗ wi,j , c ∈ C, a ∈M, i, j ∈ (N ∪M)
(8)

Any pair of nodes with no edge between them (i.e., wi,j = 0)
cannot have any flow directly between them. It also underlines
the fact that up to |M |−1 units of flow originating at the same
client can share the same edge.

Variant flow constraints (I):

fc,a,x,i ≤ (|M | − 1) ∗ min
ei∈C

(1− svi,x),

c ∈ C, a ∈M, x ∈ N, i ∈ N ∪M
(9)

The amount of flow out of a routing node must be 0 if that
node is compromised. It also underlines the fact that no edge
can carry more than |M | − 1 units of flow from any source
client node a.

Variant flow constraints (II):

fc,a,i,x ≤ (|M | − 1) ∗min
ei∈c

(1− svi,x),

c ∈ C, a ∈M, i ∈ N ∪M, x ∈ N
(10)

The amount of flow into a node must be 0 if that node is
compromised. It also underlines the fact that no edge can carry
more than |M | − 1 units of flow from any source client node
a.

C. DAP on the case study topology

We investigate the benefit of optimal diversity assignment
on a realistic overlay network topology. The topology and
compromise scenario are detailed in Table II. Then, various
assignments of diversity are shown on the case study topology
with their corresponding expected client connectivity. We show
assignments for DAP with increasing number of variants being
used, and we investigate random assignments as a comparison
with the optimal solution.

For a case study topology, we took a connectivity graph
from a cloud network provider [5]. The nodes of the graph
represent data centers located around the globe. Each node is
assigned a single variant which means that the overlay routing
element at that data center will utilize the selected variant. The
edges of the graph represent overlay connectivity used on that
cloud to connect the different data centers. This connectivity
is provided by a number of Internet Service Providers at
each data center. The clients in the graph represent either
clients external to the cloud or infrastructure components of
the cloud. Each client has multiple connections to the cloud to
avoid a single point of failure. In this example, we use three
connections as that level of connectivity was quite prevalent

in that network. This connectivity graph was designed with
resiliency in mind, and without any consideration for diversity.

We assume some hypothetical scenario with three diverse
variants represented by blue (darkest), yellow (lightest), and
red (medium) having a 0.1, 0.15, and 0.2 probability of being
compromised over some arbitrary period of time, respectively.
Note that this example, while simplistic, provides an interest-
ing insight into the benefits and risks of diversity. †

Figure 2(a) shows the optimal solution when only a single
variant can be used. All the nodes are assigned with the least
vulnerable variant. This corresponds to the situation where no
diversity is used. The resulting network achieves an expected
client connectivity of 0.9.

Figure 2(b) shows the optimal solution when two variants
can be used. Each node is assigned with either of the two
least vulnerable variants. The resulting network achieves an
expected client connectivity of 0.985. Note that this is better
than either variant by itself.

Figure 2(c) shows the optimal solution when three variants
can be used. The resulting network achieves an expected client
connectivity of 0.997. Notice that the optimal solution finds an
assignment where any single variant is capable of connecting
all clients. By adding a third, more vulnerable variant actually
makes the system significantly more resilient.

As stated before, in this example, each client is connected
to three routing nodes. If clients do not have at least three
potential entry points into the network, then the availability of
the connection is limited by the variants of the routing nodes
that they are connected to. For example, if each client only
connects to a single routing node, that connection would fail
if either of the entry-point routing nodes is compromised. This
is much more likely to occur than if there are three such entry-
point routing nodes for each client, requiring at least three
routing nodes to be compromised to cut the connection.

In this example, including variants that have a higher
but independent probability of being compromised improves
the overall system resiliency. This may be counterintuitive,
as adding weaker components to a system usually makes
it weaker, not stronger. The independence of the different
variants and the overall robustness of the network mean that
†The purpose of these values is to give preference to one variant over

another and to quantify an estimate of the system resiliency with diversity.
While we select numbers to illustrate the main concepts, the resulting
assignment would not be significantly different if other values were selected.

TABLE II. NETWORK CHARACTERISTICS FOR CASE STUDY
TOPOLOGY.

Symbol Description
N Set of 20 overlay nodes, shown in the figures as colored circles.
M Set of 10 client nodes, shown in the figures as white squares.
V Set of variants. v1 represented by blue, v2 represented by

yellow, and v3 represented by red. In Figure 2(a): {v1}. In Fig-
ure 2(b): {v1, v2}. In Figure 2(c) and Figure 4: {v1, v2, v3}.

C Set of compromise event sets. In Figure 2(a): {{}, {v1}}.
In Figure 2(b): {{}, {v1}, {v2}, {v1, v2}}. In Figure 2(c)
and Figure 4: {{}, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3},
{v2, v3}, {v1, v2, v3}}.

wi,j Constants designating that edge {i, j} exists. These are too
numerous to be listed here, but can be observed from the figures.

E The probability of compromise events for each variant are
P (e1) = .1, P (e2) = .15, P (e3) = .2.



(a) (b) (c)

Fig. 2. Optimal assignments on case study topology: (a) one variant assignment achieves 0.9 expected client connectivity, (b) two variants assignment achieves
0.985 expected client connectivity, (c) three variants assignment achieves 0.997 expected client connectivity.

adding additional, more vulnerable variants makes a system
more resilient.

As discussed earlier, random assignment could be used
instead of the optimal MIP approach. One might expect this
approach to do well, since randomness often helps in adding
diversity to systems. However, this does not necessarily lead
to a good result. An example graph can be seen in Figure 4.
This graph achieves an expected client connectivity of only
0.811, much worse than any of the other three graphs. In
fact, it barely outperforms the worst of the three variants.
This example graph comes from the bottom 1% of possible
assignments and is given as an example of what could occur
if the diversity assignment is not considered carefully.

Figure 3 is a histogram created with data from 100,000
random assignments of this graph. For this data set, the
minimum and maximum are 0.751 and 0.988 respectively. The
mean is 0.931 and the median is 0.937. As can be seen, most of
the random assignments perform better than if the best variant
is used by itself (0.937 > 0.9). However, very few of the
random assignments come close to performing as well as the
optimal assignment found by MIP.

The optimal solution of 0.997 expected client connectivity
exists while the best random solution out of the 100,000
random assignment shown in Figure 3 was 0.988 expected
client connectivity. Thus, even the best random solution out
of numerous trials does not achieve the optimal solution.
The probability of a client communication being broken is
(1 − 0.988) = 0.012 for the best random solution compared
with (1−0.997) = 0.003 for the optimal solution, so a client-
to-client connection is broken four times less often with the
optimal assignment.

Interestingly, the difference between what the optimal
solution provides and the probability that at least one of the
variants is uncompromised provides a metric for the quality
of the connectivity resiliency of the graph.‡ Ideally, we would
want this distance to be zero, as in Figure 2(b) and Figure 2(c)
of the provided example.

IV. SCALING DIVERSITY ASSIGNMENT

DAP is not tractable for large topologies since DAP is
NP-Hard (see Theorem 1). To scale to larger topologies, we
sacrifice optimality in order to ensure the algorithm completes
within a polynomially-bounded time. In this section we present
the Approximate DAP (A-DAP), a greedy approach to A-DAP,

‡Thanks to Bob Balzer for this observation.
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Fig. 4. A random assignment that achieves 0.881 expected client connectivity

Fig. 5. Greedy assignment achieves 0.992 expected client connectivity.



an example on the case study topology, and an evaluation on
random topologies.

A. Approximate DAP (A-DAP)

A-DAP is similar to DAP, but A-DAP does not require that
the problem be solved optimally. By relaxing this condition,
we aim to find algorithms that run in polynomial time which
are able to find large values of expected client connectivity.
We do not formally define any restrictions on the goodness
of the approximations as it is an open problem of whether a
reasonable bound can be placed on the expected client connec-
tivity achieved by a deterministic polynomial time algorithm.
Instead, we used random topologies to validate the goodness of
expected client connectivities achieved by a greedy approach
to A-DAP when compared with the optimal.

B. Greedy approach to A-DAP

Our greedy approach incrementally assigns nodes to vari-
ants. At each incremental assignment, the algorithm consid-
ers several candidate assignments and selects the one which
provides the best immediate results. For a candidate set of
incremental assignments we consider sets of nodes which
can connect a client pair by a variant, so we consider at
most

(|M |
2

)
∗ |V | candidate variant assignments. For a given

client pair and variant, we compute the minimal number of
unassigned nodes which must be assigned that variant to
connect those clients by that variant. After this computation we
have two values: the increase in expected client connectivity
α and the number of newly assigned nodes β.

Given a set of candidate assignments that each have an
α and β value, we select the one which maximizes α

β . It is
obvious why we want to find large α values, but it is equally
important to ensure the β value is small as well. Smaller
values of β allow for more nodes to remain unassigned and
to be used to connect more client pairs by other variants in
future assignments. This approach is analogous to the greedy
choice in bin packing, as we select items with the highest
payoff versus weight ratio to ensure that items are selected
that increase overall payoff while allowing for more items to
be picked in the future. Note, that β = 0 is a trivial case
where the candidate is simply removed from consideration as
the client pair is already connected via the considered variant.

The pseudo-code of the algorithm is shown in Algorithm 1.
Each iteration of the while loop (Line 3-19) creates a set
of candidate variant assignments (Line 7), then selects the
best candidate (Line 11-15), and lastly applies the assignment
of that candidate to the topology (Line 18). This algorithm
completes when no further client pairs can be connected by
a variant, and the algorithm is guaranteed to complete in a
bounded number of iterations since each step connects at least
one new client pair via a variant (at most |C|∗|M |2 iterations).

C. A-DAP on the case study topology

We consider the same scenario as in Section III-C with
three variants. Figure 5 shows the assignment found by our
greedy solution which achieves 0.992 expected client connec-
tivity. Notice that all clients are connected via just the blue
or yellow variants. However, two clients remain unconnected
from the rest if only the red variant is uncompromised. The

Algorithm 1 Greedy assignment algorithm
Variables

CPVC: Client Pair and Variant Combinations
VA: Variant Assignment
DVA: Delta Variant Assignment
CG: Connectivity Gain
BCG: Best Connectivity Gain
DVA: Delta Variant Assignment
BDVA: Best Delta Variant Assignment
α: Tunable parameter which affects the trade-off be-
tween increasing connectivity and minimizing the size
of the DVA set

Functions
f(·, ·): Minimal set of unassigned overlay nodes that
must be assigned a particular variant to connect a
particular client pair
g(·): Overall connectivity for a particular variant as-
signment

Algorithm
1: CPVC := M ×M × V
2: VA := ∅
3: while CPVC 6= ∅ do
4: BCG := 0
5: BDVA := ∅
6: for all x ∈ CPVC do
7: DVA := f(x,VA)
8: if DVA = ∅ then
9: CPVC := CPVC− x

10: else
11: CG := g(VA∪DVA)−g(VA)

|DVA|α
12: if CG > BCG then
13: BDVA := DVA
14: BCG := CG
15: end if
16: end if
17: end for
18: VA := VA ∪ DVA
19: end while

optimal solution found with the MIP formulation finds an
assignment which connects all clients as long as any single
variant is uncompromised. This loss of expected client con-
nectivity is due to the greedy algorithm making choices in
the early steps of the algorithm to connect clients via blue
and yellow variants (the more resilient variants) which leaves
fewer choices to connect clients via the red variants. The
greedy approach for the A-DAP took 0.38 seconds to complete
while the MIP approach for the DAP took 396.13 seconds to
complete. With far less computational requirements, the greedy
algorithm does outperform the best of the 100,000 random
assignments (0.988 client connectivity) and comes close to the
optimal solution.

D. A-DAP on random topologies

We present a methodology followed by results to answer
the following questions of interest about the performance of
the greedy algorithm for the A-DAP:

1) How does the goodness of the assignment of the



greedy algorithm compare to other algorithms (ran-
dom assignment and optimal) for the DAP on typical
topologies?

2) How does the running time of the greedy algorithm
for the A-DAP and the MIP approach for the DAP
vary with typical topologies created with different
parameters?

3) What are trends in the expected client connectivity
over all the assignment algorithms when varying
topology parameters?

We select expected client connectivity and running time
to measure for each algorithm. Expected client connectivity
is a measure of how well the algorithm performs, which can
be compared with MIP’s optimal value. Running time is a
measure of how quickly the algorithm will terminate with an
expected client connectivity.

We generate random topologies in a similar way to random
wireless topologies. That is, we place the desired number of
nodes and clients randomly inside a two-dimensional box.
Then, based on a density parameter, we give each node and
client a range. All nodes and client within the range have
an edge between them. The density parameter is the average
number of nodes each node or client is connected to. Note
that client to client edges are not added. We can create many
random topologies given a number of nodes and a density
value. We chose to limit the number of nodes in order to ensure
that the optimal value could be calculated for comparison.
Topologies constructed in this way are obviously representative
of wireless contexts, but they are also quite similar to overlay
topologies, because overlay topologies include many short,
well-behaved links.

Given topology parameters, we create 30 random topolo-
gies and run the three algorithms on these topologies. We
average the expected client connectivity and running times
obtained for each algorithm over the 30 runs. For the running
time values of the MIP formulation, it is important to note
that we use the software package CPLEX with a quad-core
3.4 Ghz Intel processor which does leverage all cores.

The results are shown in Figure 6. We describe how they
answer each of the initial questions that we proposed.

Question 1. The goodness of an algorithm’s assignment
is the expected client connectivity. This is upper-bounded by
the optimal value (which the MIP approach always achieves).
The greedy algorithm outperformed the random assignment
and was quite close to the optimal value, independent of
varying either density (Figure 6(a)) or the number of nodes
(Figure 6(c)).

Question 2. The running time of the greedy algorithm is
on the order of milliseconds, which is barely visible when
compared to the running time of the MIP-based approach.
Figure 6(b) shows the MIP approach running time for varying
density values. The running time is low for small density
values since most variant assignments result in poor expected
client connectivity, allowing the branch-and-bound algorithm
of CPLEX to avoid searching the majority of variant assign-
ments. The running time is also low for high density values
since a dense graph has many possible optimal assignments
and the branch-and-bound algorithm can terminate early after

finding any of them. Thus, the problem is hardest for moderate
density values. The running time of both algorithms when
varying the size of the network is shown in Figure 6(d). The
MIP approach running time grows nearly linearly over these
input parameters, but this relationship is potentially exponen-
tial according to Theorem 1. The MIP approach running time
is still significantly greater than the greedy approach.

Question 3. The trend of expected client connectivity
is similar among all three algorithms. The expected client
connectivity increases as density increases (Figure 6(a)), which
is expected since more edges allow more possibilities for
clients to become connected. The expected client connectivity
decreases as the number of nodes increases (Figure 6(c)). By
keeping the density constant and increasing the number of
nodes, the graph becomes less connected and therefore less
resilient.

From these results we see that the greedy algorithm out-
performs the random algorithm while being quite close to
the optimal solution, and the greedy algorithm is far more
efficient in terms of running time and is polynomially-bounded
while the MIP formulation is not. Hence, on larger topologies
where the MIP formulation cannot be computed, the greedy
algorithm is a decent substitute. Another interesting result
is that the expected client connectivity decreases with more
nodes when keeping the density constant. So, the density or
node degree must increase to retain high levels of expected
client connectivity when the number of nodes increases in the
topology.

V. DIVERSITY ASSIGNMENT FOR DYNAMIC TOPOLOGIES

In practice, networks typically do not remain static through-
out their lifetime. Instead, an initial setup is deployed and over
time, nodes are dynamically added. One trivial way to leverage
diversity in an online scenario is to solve DAP every time a
change in the topology occurs. However, for many classes of
diversity it is highly expensive or even prohibitive to reassign
an existing node of one variant to a different variant as it may
be difficult to revoke access from an administrator or expensive
to reinstall a new diverse software. A more realistic solution is
to always keep the existing variant assignment and just assign
variants to the newly added nodes.

We describe the specific model which captures our assump-
tions. Then, we describe an approach to solve this problem.
Lastly, we evaluate this approach for an online scenario.

A. Online DAP (O-DAP)

We assume that there is some variant assignment that exists
for a set of nodes which we denote by A′. A new set of
nodes are added to the topology with given links to existing
nodes in the network. We assume that there is no knowledge
of future topology changes, so we cannot anticipate where new
nodes may be added, which is an assumption that is realistic in
practice. We seek a variant assignment, A, which retains all of
the variant assignments of A′. We denote this problem as the
Online Diversity Assignment Problem (O-DAP) with formal
details in Definition 2.

Definition 2: The Online Diversity Assignment Problem
extends DAP by adding additional constraints. There exists
some set of nodes which have already been assigned variants,
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Fig. 6. Experiments for both (a,b,c,d) comparing random, optimal, and greedy algorithms and (e,f) comparing online assignments on dynamic topologies. (a,b)
show results of random, optimal, and greedy algorithms on random topologies with 15 nodes and varied density. (c,d) show the random, optimal, and greedy
algorithms on random topologies with 5 density and varied nodes. (e) shows expected client connectivity achieved by reconfigure and online versions as the
network grows while (f) shows the expected client connectivity achieved by each online version, as a proportion of the optimal value achieved by reconfiguring
(1.0 on the graph).

and this existing assignment is denoted by A′. We are using the
notation A′ ⊂ A to convey that the assignment A must retain
the assignment of A′. The assignment A does have the freedom
to assign variants in any way to those new nodes added to the
network which are not contained in the assignment A′. Reusing
notation from Definition 1, we can define the Online Diversity
Assignment Problem as:

argmaxA
(
E
[∑
{a,b∈M :a<b} fA,c(a, b)

])
subject to A′ ⊂ A

Theorem 2: The Online Diversity Assignment Problem is
NP-Hard with two or more variants.

Proof: Let A′ = ∅, and then O-DAP is equivalent to DAP.
Theorem 1 states that DAP is NP-Hard.

B. MIP approach to O-DAP

We detail a MIP approach for O-DAP as it is typically easy
to solve O-DAP optimally because the number of nodes which
are added to a network at once is usually small. Given that x
nodes are added to the network and x is small, then the search
space, |V |x, is reasonably small as well. Exhaustive search by
checking all possible variant assignment combinations of the
x new nodes could be used. However, as we already have a
MIP formulation available to us, it is simple to reformulate
the MIP that optimally solves DAP to optimally solve O-DAP.
Specifically, we add the following constraint to the same MIP
formulation for DAP from Section III-B.

Online variant constraints:

svi,x = 1, 〈x, vi〉 ∈ A′ (11)

Nodes that have been assigned previously by A′ (elements in
A′ are two tuples denoting a node and its corresponding variant
assignment) must keep that variant assignment.

Theorem 2 states that O-DAP is NP-Hard. In scenarios
where the number of nodes being added dynamically is large,
it is possible to extend the greedy approach for A-DAP into
an online version that approximates O-DAP.

C. O-DAP on the case study topology

The expected client connectivity of DAP is always greater
than or equal to that of O-DAP for the same topology, since
O-DAP only adds constraints to DAP. For a real deployment
this means that reconfiguring all of the variants to be optimal
when each dynamic change occurs always results in equal or
better expected client connectivity compared with an online
version where existing variants cannot be reconfigured. We
measure this degradation in expected client connectivity for
this evaluation.

The size of the incremental node additions influences the
resulting expected client connectivity. A network which does
many additions of just a few nodes per topology change will
suffer more in expected client connectivity than a network
which adds many nodes per topology change. Networks which
add many nodes at once allow O-DAP to consider more
combinations of variant assignment choices. We consider the
following two scenarios for dynamic topologies in our evalu-
ation:

• reconfigure: DAP is solved and that solution is ap-
plied to all nodes in the network. As reconfiguring



is typically an unreasonable approach in practice, we
use this as a baseline for comparison with the online
approach.

• online-x: Nodes are added to the network x at a time,
and O-DAP is solved where the variants of existing
nodes in the network cannot be changed.

We evaluate these strategies with the following scenario
on our case study topology. We initialize a scenario topology
from our case study topology by selecting 8 of the 20 nodes.
Next, we solve the DAP for the scenario topology. Then, we
add nodes to the scenario topology based on the strategy being
used (i.e., x for online-x) until all 20 nodes are in the scenario
topology. We keep the order in which nodes are added to
the scenario topology consistent across different strategies. For
example, the first four nodes added one at a time in online-1
will be the same nodes added all at once in the first iteration
of online-4. Note that, while the topologies will match, the
variant assignments may differ. We repeat this process for 30
different scenarios, randomly varying which nodes are in the
initial topology and the order in which the remaining nodes
are added, and show averages over these 30 scenarios.

Figure 6(e) shows the results for the evaluated strategies.
From this figure, it is evident that the online strategies achieve
less expected client connectivity than the reconfigure strategy.
To better compare these strategies we show Figure 6(f),
which instead of showing absolute expected client connec-
tivity, shows the proportion of the expected client connec-
tivity achieved by the online versions to the expected client
connectivity achieved by the reconfigure strategy, which is
optimal. The online strategies always achieve at least 95%
of the reconfigure strategy. More dynamic strategies reduce
client connectivity, but in our experiment this degradation was
never more than 1% when comparing online-1 and online-4.
The downward then upward trend (V-shape) of this figure is
due to the following: the initial downward trend is due to the
online strategies diverging more and more from reconfigure
strategy at larger node values, the latter upward trend is due to
the general high connectivity in the topology which results in
any online assignment strategy being close to the reconfigure’s
optimal assignment as the network becomes fully assigned.

These results indicate that diversity is not limited to static
deployments, but that diversity can also be applied effectively
when networks are dynamic. However, a trade-off exists;
reconfiguring the entire network is costly but it yields the
optimal expected client connectivity. It is up to the system
designer to judge the correct balance between resilience and
reconfiguration cost. For systems with very high resiliency
goals, this reconfiguration may be necessary. When the highest
resiliency is not necessary, the O-DAP approach can be utilized
to eliminate the costs of reconfiguring nodes while sacrificing
resiliency. In our experiments, we observed that the O-DAP
approach achieved resiliency no worse than 95% of optimal.

VI. DIVERSITY ASSIGNMENT FOR SPECIFIC
APPLICATIONS

Certain distributed systems pride themselves on their ability
to tolerate part of the system being compromised. State ma-
chine replication protocols with this property include Byzan-
tine Fault Tolerance (BFT) [6], Prime [15], and Aardvark

[16], where Prime and Aardvark give additional performance
guarantees even while the system is under attack. These proto-
cols explicitly state their assumptions about the proportion of
replicas that must be correct for safety and liveness properties
to hold. However, an equally important consideration is that a
sufficient number of correct replicas must be able to commu-
nicate with each other via the underlying network. If we view
the state machine replicas as clients of the underlying network,
then applying diversity to the network improves the resiliency
of the overall system.

We use these state machine replication protocols as an
example of how to customize DAP for a specific client appli-
cation. The state machine replication protocols have specific
connectivity needs among replicas that must be satisfied to
ensure safety and liveness. We show how DAP is customized
to better ensure the network meets these requirements, and
we show how such customization can be helpful in a realistic
scenario. The steps we take here to customize DAP can
be followed to create other versions that meet the specific
connectivity needs of other distributed systems.

The expected client connectivity from DAP maximizes
the expected value of the proportion of client pairs that are
connected. This is a reasonable metric for resiliency of many
applications, and it could even work well for state machine
replication in certain scenarios. However, an approach that
takes into account the connectivity requirements of the specific
application (in this case, state machine replication) may result
in higher overall resiliency. We refine DAP to exactly match
the needs of a replicated state machine protocol by maximizing
the probability that a specific sized connected component exists
among the replicas.

A. Connected Component DAP (CC-DAP)

The goal of this algorithm is to optimize the probability
that g clients can communicate with each other. The connected
component size g can be derived from the specific state
machine replication protocol, we demonstrate this later with
BFT. We denote this problem as the Connected Component
Diversity Assignment Problem (CC-DAP) with formal details
in Defintion 3 (notation comes from Table I). Unsurprisingly,
this problem is also NP-Hard as stated in Theorem 3.

Definition 3: The Connected Component Diversity As-
signment Problem is to find the assignment of variants to
nodes which maximizes the probability of a component of
clients being connected. First, we define the random variable
XA which is the size of the largest connected component of
clients given a variant assignment A. This variable is random
as it depends on the random events E. Then, the Connected
Component Diversity Assignment Problem is:

argmaxA (P (XA ≥ g))

Theorem 3: The Connected Component Diversity Assign-
ment Problem is NP-Hard with two or more variants.

Proof: The proof is in Appendix X.

B. MIP approach to CC-DAP

For the MIP formulation we keep the constraints in
Equations 2-10 from Section III-B, reformulate the objective
function, and add new constraints. Our new objective and



constraints include new variables which are used to keep track
of which subset of clients are used for a connected component
βc,a as well as variables to check if the connected component is
large enough αc. We describe the purpose of the new objective
and each new constraint in detail to show how it captures the
CC-DAP problem.

CC-DAP objective:

maximizes,f,α,β
∑
c∈C

∏
ei∈c

(P (ei))
∏
ei /∈c

(1− P (ei))

αc

(12)
We maximize the probability that a g-sized connected com-
ponent exists, over all compromise events. The two products
ensure that each possible compromise event is weighted by the
probability that it happens. αc is 1 if a connected component
of size g is present under compromise event c and 0 otherwise.

Component constraint (I):

αc = {0, 1}, c ∈ C (13)

A g-sized connected component either exists under compro-
mise event c, or it does not.

Component constraint (II):

βc,a = {0, 1}, c ∈ C, a ∈M (14)

βc,a is 1 if client a is in the g-sized connected component
under compromise event c, and 0 otherwise.

Component constraint (III):

g =
∑
a∈M

βc,a, c ∈ C (15)

A valid connected component under compromise event c must
be of size g. In any other case, this constraint will not be
met. Note, if a larger connected component could exist, this
constraint ensures that only g clients are considered, which is
required for other constraints.

Component flow constraint (I):

fc,a,x,b ≤ βc,b, c ∈ C, a, b ∈M, x ∈ N, a 6= b (16)

A client b, in the connected component under compromise
event c, cannot accept more than one unit of flow from another
client a. If b is not in the connected component, it will not
accept any flow.

Component flow constraint (II):

fc,a,a,x ≤ (g − 1) ∗ βc,a, c ∈ C, a ∈M, x ∈ N (17)

A client a, in the connected component under compromise
event c, cannot send more than g−1 units of flow, enough for
every other client in the connected component. If a is not in
the connected component, it will not send any flow.

Component satisfaction constraints:

g ∗ (g − 1) ∗ αc =
∑

a∈M,x∈N
fc,a,a,x, c ∈ C (18)

Fig. 7. Assignment with the CC-DAP where the probability BFT makes
progress is optimized. Probability BFT makes progress is 0.99925, and
expected client connectivity is 0.9806.

If there exists a g-sized connected component under compro-
mise event c, then there are a total of g ∗ (g− 1) units of flow
in the network. If no such connected component exists, the
total flow is 0.

C. CC-DAP on the case study topology

We show a compelling example by formulating a problem
specifically for the application BFT. For a non-trivial compar-
ison between DAP and CC-DAP, we slightly change the case
study topology to ensure that an assignment is not possible
that fully connects all clients by every single variant since
such a solution to DAP is also a solution to CC-DAP. We
change the case study topology by increasing the number of
client connections from three to four as well as increasing the
number of variants from three to four by including a variant v4
where P (e4) = 0.25 represented by the color green (second
lightest) in the figures.

BFT tolerates up to f Byzantine failures by using a total
of n = 3f + 1 replicas. We will view these f failures as a
combination of fb, Byzantine replicas, and fs, fail-stop replicas
(indistinguishable from replicas that have been partitioned
away). The choice of values for fb and fs are left to the system
designer. There is trade-off between fb and fs, governed by
the trustworthiness of the replicas vs. the trustworthiness of
the network routing nodes, but further details are beyond the
scope of this paper. For our example, we choose fb = 1.
Given that we have 10 replicas in total, implying that f = 3,
the system can tolerate two replicas being partitioned away
(fs = 2) and still tolerate one Byzantine fault. As a result, the
required connected component size is g = n− fs = 8.

Figure 7 shows the assignment when using the MIP ap-
proach for CC-DAP while Figure 8 shows the assignment when
using the MIP approach for DAP. In Figure 7, the probability
that 8 of the clients will be able to communicate is 0.99925. In
contrast, in Figure 8, the probability that 8 of the clients will
be able to communicate is only 0.997. In essence, CC-DAP
is able to sacrifice some of the expected client connectivity
to increase the probability that a connected component of the
desired size will be present.

VII. RELATED WORK

Diversity assignment. The work most similar to ours
considers diversity assignment over nodes of a distributed
system [17], but the goal of that work is to prevent the spread
of malware. In contrast, we assume that if a node of some
variant is compromised, then all nodes of that variant are also



Fig. 8. Assignment with the DAP where expected client connectivity is
optimized. Probability BFT makes progress is 0.997, and expected client
connectivity is 0.9975.

compromised, as the attacker is not restricted to only using
links within the network. To assign diversity to prevent the
spread of malware, the computation problem in [17] is different
from ours as they intend to minimize the number of links which
contain two nodes of the same variant. Thus, their underlying
optimization problem for variant assignment is a version of the
classic graph coloring algorithm. This problem is NP-Hard, so
their work also explores a heuristic solution which can scale
to large networks.

Fault-tolerant topology construction. Existing work has
introduced the concept of the fault-diameter of a graph, which
is a metric that bounds the diameter of a graph given that a
bounded number of nodes may fail [18], [19], [20], [21]. For a
network topology, this means that if the number of failures is
bounded, then the maximum number of hops between any two
correct nodes will not exceed the fault diameter. This translates
to acceptable latency and overhead even in the worst case.
Work in this area has considered various ways to create graphs
with good fault-diameters, but these methods only consider
unweighted graphs where edges are possible between any pair
of nodes. In our work, we assume the topology is chosen ahead
of time and fixed to ensure good link quality, and we do not
need to add edges for our technique.

In wireless contexts, work has studied the allocation of en-
ergy among nodes in a wireless adhoc network to ensure high
connectivity even when some bounded number of nodes fail
[22], [23], [24]. The work assumes that node positions are fixed
and an amount of energy can be assigned to each node. Higher
energy at a node implies a larger transmission range and more
possible connections for that node. The optimization problem
is to find a power assignment to nodes which minimizes the
global power consumption while ensuring connectivity among
correct nodes given a bounded number of nodes can fail. This
optimization problem is studied in detail, providing a MIP and
exploring various approximation techniques.

WSN key distribution. Wireless Sensor Networks (WSNs)
consist of resource constrained devices which sense physi-
cal phenomena and deliver this information over a wireless
newtork to a base station. In this context, PKI and full pair-
wise key initialization are prohibitive due to the limitations of
sensors. Thus, various work proposes special key distributions,
where secret information is shared among more than a single
pair of nodes [25], [26], [27], [28], [29]. This has similarities
to diversity assignment as the physical capture of a single node
allows an attacker to utilize the secret information on that node
to attack links of other nodes which share similar secret in-
formation. Our work does fundamentally differ as we perform

diversity assignment with the complete topology information
to maximize a resiliency metric while WSN key distribution
work focuses on assigning initial secret information to nodes
to maximize the potential of many links are secure. With the
potential for many secure links, a random wireless topology
can be created and have certain resiliency properties.

Path diversity. Other work has studied the possible ge-
ographically diverse paths of real-world topologies [30]. The
assumptions of this work are that problems on today’s Internet
are correlated geographically, so having multiple paths which
contain nodes that are geographically diverse will result in
higher reliability. The main contributions of this work are
defining the metric of geographic diversity for a graph and
analyzing this value for realistic graphs. No assignment prob-
lem exists in this context as diversity is fixed by geographic
location.

VIII. CONCLUSION

This work illustrates the resiliency benefits gained when
shifting from homogeneous networks with potential vulnerabil-
ities shared across all routing nodes to networks that leverage
optimally-assigned diversity. We summarize our key findings.
First, randomly assigning diversity to a realistic network has
surprisingly poor results, which motivated the need to for-
mulate and solve the Diversity Assignment Problem (DAP).
Second, we propose an algorithm that solves DAP optimally,
and show the results on medium-sized random networks as
well as a realistic network. Third, we propose an algorithm
that approximates the optimal solution, scaling well to large
networks, and show that on random networks, the resulting
resiliency is close to that of the optimal solution. Fourth, we
show how to assign diversity in dynamic networks, and we
find that there is a loss in resiliency compared to the optimal,
since currently assigned variants may hinder the assignments
possible in the future. Finally, we show how to optimize for
the specific resiliency needs of an application running on the
network. We applied this to BFT and found that the probability
of making progress can be significantly increased.
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IX. PROOF OF THEOREM 1

Proof: We show that 3-SAT is polynomial-time Turing-
reducible to the Diversity Assignment Problem. We will show
that 3-SAT is solvable in polynomial-time if both the DAP is
used as a subroutine and the DAP is solvable in polynomial-
time.

First we denote the variables for the input boolean ex-
pression of the 3-SAT as β1, β2, ..., βs. Then, we denote the
boolean expression as (β

λ1,1
γ1,1 + β

λ1,2
γ1,2 + β

λ1,3
γ1,3 )(β

λ2,1
γ2,1 + β

λ2,2
γ2,2 +

β
λ2,3
γ2,3 )...(β

λt,1
γt,1 +β

λt,2
γt,2 +β

λt,3
γt,3 ). For all i and j, γi,j is an index

value, so 1 ≤ γi,j ≤ s. For all i and j, λi,j ∈ {T, F} where F
denotes the complement of the boolean variable while T does
not. The 3-SAT problem has s distinct variables and t clauses.

We construct a DAP in the following way to solve 3-SAT.
We motivate the intuition for various parts of this construction,
but the intuition only becomes correct when all parts are
considered together.

Create two variants v1 and v2. Create 2s nodes denoted
by xT1 , x

T
2 , ..., x

T
s and xF1 , x

F
2 , ...x

F
s . The problem will be

constructed such that for any i, the nodes xTi , x
F
i must be

assigned variants such that one is v1 and the other is v2. With
this assignment, xTi being assigned v1 corresponds to βi being
assigned the value true, alternatively xFi being assigned v1
corresponds to βi is assigned false.

Create 2t clients denoted by a1, a2, ..., at and b1, b2, ..., bt.
For all i and j add the following two edges (ai, x

λi,j
γi,j ) and

(bi, x
λi,j
γi,j ). Each client pair ai, bi correspond to a clause in the

3-SAT problem, and the problem will be setup such that at
least one of the ai to bi paths must have a node assigned with
v1 which will correspond to that node being the one to satisfy
this clause.

Create 2 ∗ s ∗ (t + 1) more clients denoted by
a1,j , a2,j , ..., as,j and b1,j , b2,j , ..., bs,j for all j such that
1 ≤ j ≤ t + 1. For all i and j add the following four edges
(ai,j , x

T
i ), (bi,j , x

T
i ), (ai,j , x

F
i ), and (bi,j , x

F
i ). Note that for a

given i the clients ai,j and bi,j for all j are equivalent in terms
of their connections, and each i corresponds to variable in the
3-SAT problem. These clients ensure that every pair of nodes
xTi , x

F
i is assigned one of each variant which ensures that a

boolean variable βi must be either true or false. The replication
of t+1 client pairs per boolean variable is necessary to ensure
that variant choices based on these variables are always more
important than those variant choices based on client pairs that
correspond to clauses. In terms of the 3-SAT problem, this
replication ensures that the assignment of only one value to
each boolean variable is never violated even if it helps make
many clauses true.

Create nodes denoted by yT1 , y
T
2 , ..., y

T

((|M|
2 )− |M|

2 )
and

yF1 , y
F
2 , ..., y

F

((|M|
2 )− |M|

2 )
. These dummy nodes are the most

non-trivial part of this construction, but they actually simplify



the DAP significantly to ensure variant assignments are mean-
ingful to the 3-SAT problem. All clients have been created
in pairs ( |M |2 of these pairs), so we want to ensure those
pairs meaningful while the other

((|M |
2

)
− |M |2

)
client pairs

are not interesting. We ensure maximal connectivity between
these client pairs that we do not want to be meaningful. To do
this we add the following four edges for every client pair a, a′
that is not meaningful, (a, yTi ), (a′, yTi ), (a, yFi ), and (a′, yFi )
such that a different i is used for each pair a, a′. Thus, trivially,
every pair of nodes yTi , y

F
i is assigned one of each variant to

maximize connectivity.

The last step in the construction is the selection of the
compromise event probabilities P (e1) and P (e2) along with
the minimum expected client connectivity that must be found
by the DAP to ensure a 3-SAT solution exists. We consider
three types of client pairs which together make up all possible
client pairs. First, the

((|M |
2

)
− |M |2

)
dummy client pairs

should contribute ((|M|
2 )− |M|

2 )
(|M|

2 )
∗ (1 − P (e1) ∗ P (e2)) to the

expected client connectivity value as each pair is trivially
connected by both variants. Second, the s ∗ (t+ 1) client pairs
corresponding to 3-SAT boolean variables should contribute
s∗(t+1)

(|M|
2 )
∗(1−P (e1)∗P (e2)) to the expected client connectivity

as each pair needs to be connected by both variants. Lastly, the
t client pairs corresponding to 3-SAT clauses should contribute
t

(|M|
2 )
∗ (1 − P (e1)) to the expected client connectivity as

each pair needs to be connected at least by the variant v1.
The assignment of the P (e1) and P (e2) values must be such
that the expected client connectivity of t client pairs by the
variant v1 is greater than the expected client connectivity of
t − 1 client connected by v1 and v2 plus one client pair
connected by just v2. The constraint ensures that a valid to
this DAP cannot be t − 1 clauses that have both true and
false variables along with one clause that only has a false
variable which is the highest expected value case which is
incorrect, so we ensure that the value of this case is always
less than the case where all t clauses have just true vari-
ables. This constraint is captured by the following inequality
(t−1)(1−P (e1)P (e2))+(1−P (e2)) < t(1−P (e1)) which is
equivalent to P (e1) < P (e2)

(1−t)P (e2)+t
. Intuitively, this inequality

forces P (e1) to be sufficiently smaller than P (e2) to ensure
that many connections via nodes with the variant v2 do not
overcome a single connection made by a node with variant v1.

X. PROOF OF THEOREM 3

Proof: We show that a variant of 3-SAT denoted Not-
All-Equal 3-SAT [31] is polynomial-time Turing-reducible to
CC-DAP. Not-All-Equal 3-SAT has the same setup as 3-SAT
except clauses where all variables are true is not allowed; there
must be a mixture of true and false variables. We will show
that Not-All-Equal 3-SAT is solvable in polynomial-time if
both the CC-DAP is used as a subroutine and the CC-DAP is
solvable in polynomial-time.

Assume the same network setup as in the proof for NP-
Hardness of DAP (Appendix IX) which is visualized in Fig-
ure 9. This proof differs as we replace the last step of assigning

P (e1) and P (e2) and use CC-DAP instead of DAP.

In this proof, we can let P (e1) and P (e2) take on any value
in the range (0, 1) as opposed to requiring certain constraints
on these values.

For the CC-DAP algorithm, we aim to maximize the
probability of a connected component of |M | clients, i.e., all
clients in a connected component.

If and only if CC-DAP finds a probability of 1− P (e1) ∗
P (e2) for a connected component of |M | clients, then we
have also found a solution to Not-All-Equal 3-SAT due to the
following: CC-DAP with a probability of 1 − P (e1) ∗ P (e2)
implies each client pair is connected by both variants v1 and v2.
The connections between client pairs ai,j and bi,j ensures that
βi 6= β̄i for each βi in Not-All-Equal 3-SAT. The connections
between client pairs ai and bi ensure that each clause i in
the Not-All-Equal 3-SAT problem is connected by at least one
true value and at least one false value which is the requirement
for Not-All-Equal 3-SAT. Having at least one false value for a
clause is a special condition that distinguishes it from standard
3-SAT, and this is the reason we reduce from Not-All-Equal
3-SAT in this proof.



Fig. 9. DAP construction to solve the 3-SAT problem, (β1 + β̄2 + β4)(β̄1 + β7 + βs)...(β̄8 + β9 + βs). Note that the dummy nodes and edges are not
included in this diagram.
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