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Abstract

We present a Minkowski sum algorithm for polyhedra based on convolution. We develop robust
CPU and GPU implementations, using our ACP robustness technique to enforce a user-specified back-
ward error bound. We test the programs on 45 inputs with an error bound of 10−8. The CPU program
outperforms prior work, including non-robust programs. The GPU program exhibits a median speedup
factor of 36, which increases to 68 on the 6 hardest tests. For example, it computes a Minkowski sum
with a million features in 20 seconds.
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Figure 1: Star and cube snapshots (a) and Minkowski sum (b).

1 Introduction
Minkowski sums are a core computational geometry concept with applications in solid modeling, pack-
ing, assembly, and robotics. The Minkowski sum of point sets A and B is

A⊕B = {a+ b|a ∈ A ∧ b ∈ B}.

If A and B are polyhedra, A ⊕ B is a polyhedron. Fig. 1 shows the Minkowski sum of a star A and
a tetrahedron B. Minkowski sums are intimately related to contact analysis. Let −A + t denote A
reflected around the origin and translated by t. The polyhedra−A+ t and B overlap if t is in the interior
of A ⊕ B and touch if t is on its boundary. In Fig. 1, the snapshots show −A + ti and B at three ti on
the Minkowski sum boundary. A vertex of A lies on a facet of B at t1, two edges are tangent at t2, and
both cases occur at t3.

The most efficient approach to Minkowski sum computation uses Kaul and Rossignac’s [11] subset
of the kinetic convolution [3]. Our prior algorithm [18] using that approach is the first robust imple-
mentation of any convolution-based method for general polyhedra (Sec. 2). We present an improved
algorithm that is faster and that uses less memory (Sec. 3). The computational bottleneck in convolution
algorithms is finding which facets intersect. We present a novel kd-tree algorithm that finds all inter-
secting pairs in a set of geometric objects without splitting objects and without using a hash table to
avoid duplicate tests. The memory bottleneck is the arrangement of the convolution. We present a novel
technique for discarding the portion that cannot contribute to the Minkowski sum boundary.

We implement our algorithm robustly, using our ACP robustness technique [17] to enforce a user-
specified backward error bound (Sec. 4). An appendix describes a GPU implementation. We tested both
programs on 45 pairs of polyhedra with an error bound of 10−8 (Sec. 5). The CPU program outperforms
prior work, including non-robust programs. The GPU program exhibits a median speedup factor of 36,
which increases to 68 on the 6 hardest tests. For example, it computes a Minkowski sum with a million
features in 20 seconds.

2 Prior work
The main approaches to computing Minkowski sums of polyhedra are convex decomposition and con-
volution.

The first approach decomposes the polyhedra into convex components, computes the Minkowski
sums of the components with a specialized algorithm [6], and returns their union. This approach is
inefficient because a polyhedron with r reflex edges can have Ω(r2) convex pieces, so an input with n
edges can entail a union of Ω(n4) component Minkowski sums. Hachenberger [9] provides an exact
implementation of this algorithm. The program is very slow [4, 2, 18]. Varadhan and Manocha [20]
reduce the constant factor by computing the union approximately yet with the correct topology, using a
volumetric grid. They observe that the approach remains slow.

The second approach computes a set of facets, called a convolution, that is a superset of the boundary
ofA⊕B. Each (open 3D) cell c of the arrangement of these facets satisfies c ⊆ A⊕B if−A+t∩B 6= ∅
for an arbitrary t ∈ c (otherwise c ∩ A ⊕ B = ∅), and hence A ⊕ B is the closure of the union of these
cells.
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Figure 2: Sphere and hollow box containing tetrahedron (a), convolution (b), and Minkowski sum (c).

The kinetic convolution [3] is defined using an assignment of a set of outward normals to each
boundary point of a polyhedron, called a tracing. A facet is assigned its normal n. An edge with incident
facet normals n1 and n2 is assigned the arc n1n2 on the Gaussian sphere. A vertex is assigned the
interior of the spherical polygon defined by the arcs of the incident edges. Features from A and B are
compatible if they have a common normal. The kinetic convolution is the set of Minkowski sums of
compatible pairs. The 2D version of the convolution has a winding number property that determines if
cell c ∈ A⊕B. This property does not hold for general polyhedra [3].

We illustrate these concepts withA a sphere and withB a hollow box that contains a solid tetrahedron
(Fig. 2). The arrangement of the convolution has four cells. The sphere −A + t is outside the box for t
in cell 1, overlaps the box for t in cell 2, is inside the box and outside the tetrahedron for t in cell 3, and
overlaps the tetrahedron for t in cell 4. The Minkowski sum is the closure of the union of cells 2 and 4.

Lien [14] provides a non-robust implementation of a kinetic convolution algorithm. He computes the
2D arrangement of each facet of the convolution defined by the other facets. He groups the faces of these
arrangements into polygonal surfaces. He identifies those surfaces that bound the Minkowski sum with
intersection tests. There is no error bound and the putative Minkowski sum can self-intersect.

Fogel and Halperin [6] compute the Minkowski sum of two convex polyhedra. The kinetic convolu-
tion is the Minkowski sum boundary, so arrangement is trivial. Barki, Dennis, and Dupont [2] compute
the Minkowski sum of a general polyhedron and a convex polyhedron. They compute a subset of the
kinetic convolution that works for this special case. The rest of the algorithm is similar to Lien’s [14].
Both Fogel and Halperin and Barki et al provide exact implementations.

Campen and Kobbelt [4] use the kinetic convolution to compute the outer boundary of the Minkowski
sum. The algorithm has limited applicability because inner boundaries are common, e.g. when the poly-
hedra have inner cavities, in part layout, and in mechanical design. They provide an exact implementation
via a prior technique [19] that requires them to use planes as geometric primitives and to define vertices
as intersection points of three planes. The vertex accuracy is 10−5 even though the plane accuracy is
double float. Converting the Minkowski sum to a boundary representation can cause self-intersection.

Kaul and Rossignac [11] define a subset of the kinetic convolution, which we call the convex convo-
lution, that is still a superset of the boundary of A ⊕ B. The set of normals at a boundary point p ∈ A
is replaced by the subset corresponding to the convex closure of A in a neighborhood of p. Hence, no
normals are assigned to concave edges and to some vertices with concave incident edges, and fewer
normals are assigned to the other vertices with concave incident edges.

We [18] developed a robust implementation of a convex convolution algorithm. The data structures
are incompatible with distributed computation. The memory footprint is larger than the output size. The
robustness technique requires custom logic for every type of degenerate input, and the error is not under
user control or even bounded.

Li and McMains [13] approximate the outer boundary of the Minkowski sum using the convex con-
volution, voxelization, and the GPU. The accuracy is limited by the volumetric resolution: the reported
results have a resolution of 10243, which yields a 10−3 error. Increasing the resolution incurs a cubic
running time penalty and is limited by the GPU memory size.
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Input: polyhedra A and B.

1. Construct convex convolution.

2. Intersect facets.

3. Arrange facets.

4. Compute Minkowski sum boundary.

5. Triangulate Minkowski sum boundary.

Output: triangulated boundary of A⊕B.

Figure 3: Minkowski sum algorithm.

3 Algorithm
Fig. 3 summarizes our Minkowski sum algorithm. The inputs are polyhedra with triangular facets with
outward oriented normals. Step 1 constructs the convex convolution. Step 2 intersects its facets. Step 3
computes the arrangements defined by the intersection edges. Step 4 identifies the faces of the arrange-
ments that comprise the Minkowski sum boundary. Step 5 triangulates the boundary facets via monotone
decomposition.

Although our algorithm has the same structure as our prior algorithm [18], we employ novel tech-
niques that reduce memory usage and that enable distributed computation. We describe the algorithm
briefly and discuss the innovations in detail. We can assume that the inputs are in general position because
of our robustness technique (Sec. 4). This assumption simplifies the algorithm and the presentation.

3.1 Step 1
Step 1 of the algorithm constructs the convex convolution of A and B. Its facets are triangles and
parallelograms because the facets of A and B are triangles. We identify the pairs of features with shared
normals using a binary spatial partition of the Gauss sphere [16]. Although the kinetic convolution can
be computed in an output sensitive manner [3], we do not attempt output sensitive computation of the
convex convolution because the running time of our algorithm is negligible.

3.2 Step 2
Step 2 of the algorithm constructs the intersection edges of the convolution, which we call FF-edges.
One endpoint of each FF-edge is the intersection point of a convolution edge and a facet, which we
call an EF-vertex. The other endpoint is also an EF-vertex or is a convolution vertex. In Fig. 4, facet
s = v1v2v3v4 intersects facets {r, u, v, w} and forms EF-vertices {v5, v6, v7, v8, v9} and FF-edges
{v4v5, v5v6, v6v7, v8v9}.
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Figure 4: Intersecting facets (a) and arrangement of s (b).
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Testing a pair of facets for intersection and if so constructing their FF-edge are constant-time oper-
ations. The key to an efficient algorithm is to test as few non-intersecting pairs as possible. Since an
output sensitive algorithm is not available, we construct a kd-tree for the facets and test every pair of
facets that share a leaf. The drawback of kd-trees is that two facets can share multiple leafs if some
splitting planes intersect them both. Prior work uses hash tables to detect duplicate pairs. Hash table
construction is slow on the GPU. For example, Alcantara et al [1] construct a hash table with 5 million
entries in 35.7ms using 1.42x table storage. We have developed an alternate data structure that can be
constructed efficiently on the GPU.

Each facet p is labeled with a bit vector l(p) = 0. We construct a kd-tree for the labeled facets. If the
splitting plane at depth d intersects p, p is assigned to the left subtree and the right subtree is assigned a
copy of p the dth bit of whose label is set to one. If not, p is assigned to one subtree. A leaf is generated
if a maximum depth or a minimum number of facets is reached. Fig. 5 shows an example in which facets
p and q are inserted into a kd-tree with root n0, depth-1 nodes n1 and n2, and leafs n3, . . . , n6. When p
is split at d = 1 by the dashed vertical line, it is assigned to n5 and n6 with labels 10 and 11. In a leaf,
facets p and q are tested for intersection if l(p) ∧ l(q) = 0 (the bit-wise conjunction). In our example, p
and q appear in leafs n3, n5, and n6, but are only tested in n3 because l(p)∧ l(q) is 10 in n5 and is 11 in
n6.

𝑛 

𝑛ଵ 𝑛ଶ 
𝑛ହ 𝑛 

𝑛ଷ 𝑛ସ 

𝑙 𝑝 = 10 
𝑙 𝑞 = 10 

𝑙 𝑝 = 11 
𝑙 𝑞 = 11 

𝑙 𝑝 = 00 
𝑙 𝑞 = 00 𝑙 𝑞 = 01 

𝑝 

𝑞 

Figure 5: Labeled facets p and q in depth-2 kd-tree.

No pair is tested twice because l(p)∧ l(q) can equal zero only in the leftmost leaf that contains p and
q. Any other leaf that contains p and q has a common ancestor with the leftmost leaf at some depth d.
The dth bits of l(p) and l(q) equal one in the other leaf because p and q were assigned to both subtrees
at depth d and the other leaf is in the right subtree.

Every intersecting pair is tested because l(p) ∧ l(q) = 0 in their leftmost leaf. If not, the leftmost
leaf would be in the right subtree of some ancestor and p and q would be assigned to both of its subtrees.
Since p and q intersect, no splitting plane separates them, so they would share a leaf in the left subtree.
This leaf would be to the left of the leftmost leaf.

3.3 Step 3
Step 3 of the algorithm computes the arrangement of each facet defined by its FF-edges. The arrangement
consists of faces bounded by polygonal loops. We split the edges of the facet at their EF-vertices and split
its FF-edges at their intersection points, which we call FFF-vertices. We form the loops by traversing the
sub-edges. We compute their nesting order, which defines the faces, via ray casting in the plane of the
facet. In Fig. 4, FF-edges v6v7 and v8v9 intersect at FFF-vertex v10 and the faces are numbered.

3.4 Step 4
Step 4 of the algorithm identifies the faces of the facet arrangements that bound the Minkowski sum.
Only some faces are candidates. Of the four faces that share a sub-edge of an FF-edge, the two faces
on the outward normal sides of both facets are candidates. If two or more faces share a sub-edge of
a convolution edge, two of them are candidates based on a geometric test [11]. The candidates define
polyhedral surfaces. A surface contributes to the Minkowski sum boundary if it is closed and −A + t
does not overlap B for an arbitrary vertex t of the surface.

The CPU program assigns the candidate faces to surfaces by breadth-first traversal of the face adja-
cency graph. This algorithm is suboptimal for the GPU because the running time is proportional to the
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graph diameter independently of the number of processors. Instead, we compute the surfaces in parallel
with the union-find algorithm whose time complexity is nearly proportional to e/p for e edges and p
processors. Each face is initialized to a singleton set. In each cycle, each face is assigned a process that
merges its set with those of its graph neighbors.

To classify a surface, we find the vertex with maximum z. The surface is an outer boundary if its
incident faces wind counterclockwise about the positive z direction; otherwise, it is an inner boundary.
We assign an inner boundary to its cell by intersecting a ray through one of its vertices with the outer
boundaries and selecting the closest one that is intersected an odd number of times.

3.5 Discarding blocked vertices using data groups
The Minkowski sum boundary is typically a small subset of the arrangement of the convolution. The rest
of the arrangement, called the blocked portion, is in the Minkowski sum interior. Storing the blocked
portion makes the memory footprint of the program far exceed the output size, which inhibits distributed
computation. We discard most blocked vertices and never compute most blocked sub-edges and faces.

The facets of the convolution are oriented so that the polyhedra −A + t and B intersect for t in
a neighborhood of a facet on the negative side of its normal. Since this neighborhood is blocked, we
can discard the part of the convolution that it contains without losing any part of the Minkowski sum
boundary.

We use three tests for being blocked. 1) Let e = v0vk have tangent u = vk − v0 and contain vertices
v1, . . . , vk−1 sorted along e (Fig. 6). The vi are EF-vertices for a convolution edge and are FFF-vertices
for an FF-edge. Each vi is the intersection point of e with a facet si with normal ni. If ni · u > 0, the
intersection of v0vi with a neighborhood of vi is in the interior ofA⊕B due to si, so the sub-edge vi−1vi
is blocked. Likewise, vivi+1 is blocked if ni · u < 0. The only non-blocked sub-edge in our example is
v2v3. 2) If both incident sub-edges of vi are blocked, vi is blocked. 3) If vi is a blocked EF-vertex, the
sub-edge vivf of the incident FF-edge f is blocked.

�22

v1v0 v2 v3 v4

s1
n1

sub-edge

Figure 6: Blocked sub-edges of e = v0v4.

We reduce the memory footprint by dividing the facets into groups prior to edge intersection and
merging the groups after discarding blocked vertices. We form groups of approximately equal size by
constructing a kd-tree for the facet centroids. The facets whose centroids share a leaf are the primary
members of a group. We ensure that a group contains all the facets that intersect its primary members
by including the facets that intersect the bounding box of its primary members. For each group, we
construct FF-edges for the primary members that intersect other members, construct FFF-vertices for the
intersecting pairs of FF-edges, and discard the blocked vertices. After merging the group data, we form
the sub-edges and the faces.

4 Robustness
The goal of robustness is to implement an algorithm in a manner that guarantees an accurate output
for every input. The output of a computational geometry program can have combinatorial and geometric
components. In our case, these are the combinatorial structure of the Minkowski sum and the coordinates
of its vertices. One error metric, called the forward error, is the distance between the output and the exact
answer. Euclidean distance is a fine metric for geometric error, but we are unaware of a useful metric for
combinatorial error. Moreover, the forward error conflates the quality of the algorithm, which is what we
wish to measure, with the condition of the problem, which is beyond our control. Consequently, numer-
ical analyis eschews forward error in favor of backward error: the minimum distance from the input to
an alternative input for which the output is the exact answer. The backward error models computational
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error identically to measurement error in the input. It models combinatorial and geometric error in the
same manner.

The mainstream approach to robustness in computational geometry [5] is to compute combinatorial
structure exactly. Since the control logic is expressed in terms of predicates, polynomials whose signs
are interpreted as truth values, it suffices to evaluate predicates exactly. Exact evaluation is accelerated
by first attempting to resolve the sign with error-bounded floating point arithmetic. This approach works
poorly for degenerate predicates, that is predicates whose value is zero. The first problem is that exact
evaluation of degenerate predicates is slow because floating point evaluation necessarily fails. The impact
on overall running time is large because degenerate predicates are common in real-world inputs, due to
symmetry, to design constraints, and to convention. The second problem is that degeneracy creates
a third branch at every point in the control logic. These branches are typically ignored in theoretical
analysis because they contribute nothing fundamental to the algorithm. Yet they must be handled by a
robust implementation.

Halperin [10] addresses these problems with a robustness technique, called controlled perturbation
(CP), in which a random perturbation in [−δ, δ] is added to each input parameter. The algorithm is
executed with error-bounded floating point predicate evaluation. If all the predicates are resolved, the
combinatorial output is correct for the perturbed input, so the backward error is bounded by δ. Otherwise,
the algorithm is rerun, perhaps with a larger δ. The problem with CP is that a large δ is required to resolve
a singular predicate (zero value and zero gradient), e.g. 10−5 in Minkowski sums [18].

We [17] solve this problem with an extension of CP called adaptive precision controlled perturbation
(ACP), that implements the algorithm exactly on the perturbed input, so there are no predicate failures.
We evaluate predicates in floating point interval arithmetic. If the interval does not contain zero, the
sign is resolved. Otherwise, we re-evaluate in extended precision interval arithmetic, starting with quad-
double and doubling the precision until the sign is resolved. We set δ = 10−8 because this error is
negligible in applications, yet δ is large enough that there are no degenerate predicates with high proba-
bility and that floating point interval arithmetic resolves almost all the predicates. We handle predicates
that are degenerate on the perturbed input (a situation that has yet to occur) by aborting evaluation if 848
bit precision is insufficient, doubling this precision threshold, and restarting the Minkowski sum program
with a different random seed.

The CPU implementation of the ACP strategy is straightforward. The coordinates of the vertices of
A and B are the input parameters, hence are perturbed. The coordinates of the other vertices are defined
parameters. These vertices store their coordinates as floating point intervals and also store pointers to
their defining vertices. A convolution vertex v = a ⊕ b points to a and b. An EF-vertex points to its
convolution edge and facet. An FFF-vertex points to its defining facets. These pointers enable us to
increase the precision of a vertex by recursively increasing the precision of its defining vertices then
recomputing the intervals of its coordinates. Precision is increased solely when a predicate cannot be
resolved in floating point and is decreased immediately to avoid storage of extended precision data. The
GPU version of ACP is described in the appendix.

5 Results
We tested our programs on nine polyhedra with 30 to 37,000 triangular facets (Fig. 7). We scaled each
input to the unit box. We computed the Minkowski sums of all 45 pairs of polyhedra. The 9 duplicated
pairs would have many degenerate predicates without input perturbation, since the convolution facets
are duplicated, so many predicates are nearly degenerate after perturbation. The other 36 pairs have few
nearly degenerate predicates. Fig. 8 shows ten representative Minkowski sums.

1. frame 2. knot 3. torus 5. helix4. dragon 6. bull 7. inner ear 8. horse 9. sphere

Figure 7: Test polyhedra.
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3⊕ 5 2⊕ 4 7⊕ 9 8⊕ 9 1⊕ 7 

1⊕ 8 2⊕ 5 1⊕ 6 2⊕ 2 5⊕ 5 

3⊕ 5 2⊕ 4 7⊕ 9 8⊕ 9 1⊕ 7 

1⊕ 8 2⊕ 5 1⊕ 6 2⊕ 2 5⊕ 5 

3� 5 2� 4 7� 9 8� 9 1� 7

1� 8 2� 5 1� 6 2� 2 5� 5

Figure 8: Minkowski sums.

Table 1 summarizes the results. The complexity of a polyhedron, convolution, or arrangement is its
total number of vertices, edges, and faces. The complexity of a Minkowski sum also includes the number
of cell boundaries and cells. The CPU tests are on one core of an Intel Core 2 Duo. The GPU tests are
on a 3.5GHz i7 CPU and a GeForce Titan graphics card with 6GB onboard memory.

The complexity of the convolution is linear in the sum of the complexities of the polyhedra, as
c/(a + b) is between 1 and 143 with a median value of 7. The arrangements have the same complexity
as the convolution, as s/c is between 1 and 6 with a median value of 2. Discarding blocked elements
sharply reduces the complexity of the arrangements: the median reduction is 74% overall and is 93% for
the six largest Minkowski sums. There is little room for further reduction the arrangements, as m/c is
between 1 and 15 with a median value of 3.

The kinetic convolution is much larger than the convex convolution. The facet ratio is 5–24 on 40 of
our 45 pairs. We omitted the 5 largest pairs because we only implemented an n2 algorithm for generating
the kinetic convolution.

The GPU program exhibits a median speedup of 36 relative to the CPU program. The median
speedup increases to 68 on the six pairs with the largest Minkowski sums. The running times and
memory footprints of these pairs are one to two orders of magnitude larger than those of the other 39
pairs.

Table 2 shows the memory usage and running time for the six largest Minkowski sums with 2, 4,
and 8 data groups. A blank entry indicates that the memory footprint exceeds the GPU memory size.
The memory savings is sublinear because of the non-primary members, which comprise 10%–20% of
each group. Also, some blocked elements cannot be detected until the groups are merged because the
relevant tests cross group boundaries. We could reduce the memory footprint by discarding blocked
elements after each group is merged into the step 4 input. The running time increases with the number
of groups because FF-edges and FFF-vertices involving non-primary members of groups are computed
redundantly. We could remove the redundancy by caching the data in a hash map.

5.1 Comparison with prior work
We compare our CPU program to the published running times for prior programs adjusted for processor
speed, except that we timed Hachenberger’s [9] exact convex decomposition [18]. Hachenberger’s pro-
gram took 2,000–4,000 times longer than our program on small tests, 10,000–100,000 times longer on
medium tests, and aborted or did not terminate after several hours on the other tests. Our program is 30
times faster than Varadhan and Manocha’s [20] approximate convex decomposition on their hardest test,
grate1/grate2.
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Table 1: Results: a and b complexities of polyhedra A and B, c complexity of convex convolution, s
complexity of arrangement after discarding blocked elements, p percentage discarded, m complexity of
Minkowski sum, t running time on GPU in seconds, f speedup factor.

a b c s p m t f
1⊕ 1 280 280 2, 327 1, 852 72 664 0.16 3
1⊕ 2 280 2, 960 12, 333 48, 942 79 36, 468 0.22 7
1⊕ 3 280 6, 204 9, 159 26, 897 35 19, 918 0.14 4
1⊕ 4 280 6, 986 12, 618 26, 305 38 18, 510 0.08 8
1⊕ 5 280 12, 038 24, 478 149, 932 66 97, 218 0.18 14
1⊕ 6 280 37, 190 93, 602 194, 593 93 77, 380 0.42 23
1⊕ 7 280 96, 696 109, 090 230, 341 89 101, 452 0.26 31
1⊕ 8 280 119, 084 142, 270 302, 407 90 126, 752 0.31 36
1⊕ 9 280 2, 282 2, 368 5, 255 9 4, 904 0.04 2
2⊕ 2 2, 960 2, 960 110, 820 152, 354 92 54, 498 0.83 33
2⊕ 3 2, 960 6, 204 64, 587 106, 173 30 41, 846 0.14 18
2⊕ 4 2, 960 6, 986 119, 407 164, 963 37 64, 184 0.22 36
2⊕ 5 2, 960 12, 038 230, 598 405, 937 82 128, 324 0.43 54
2⊕ 6 2, 960 37, 190 845, 761 1, 527, 126 94 296, 286 1.63 107
2⊕ 7 2, 960 96, 696 1, 060, 917 1, 844, 852 90 266, 340 1.23 106
2⊕ 8 2, 960 119, 084 1, 186, 562 2, 186, 929 87 391, 008 1.25 110
2⊕ 9 2, 960 2, 282 25, 252 52, 965 17 32, 116 0.07 13
3⊕ 3 6, 204 6, 204 36, 676 69, 853 83 47, 056 0.35 11
3⊕ 4 6, 204 6, 986 59, 510 109, 221 21 34, 954 0.12 16
3⊕ 5 6, 204 12, 038 97, 992 172, 993 41 93, 598 0.14 29
3⊕ 6 6, 204 37, 190 358, 663 710, 078 77 184, 324 0.44 44
3⊕ 7 6, 204 96, 696 321, 871 639, 309 70 204, 878 0.46 49
3⊕ 8 6, 204 119, 084 363, 718 746, 377 68 286, 672 0.54 55
3⊕ 9 6, 204 2, 282 8, 982 19, 448 0 18, 764 0.04 11
4⊕ 4 6, 986 6, 986 136, 535 298, 006 74 106, 222 0.33 32
4⊕ 5 6, 986 12, 038 220, 356 375, 690 24 89, 114 0.25 33
4⊕ 6 6, 986 37, 190 819, 442 1, 534, 669 78 282, 494 0.65 55
4⊕ 7 6, 986 96, 696 956, 038 1, 874, 686 70 315, 968 0.80 53
4⊕ 8 6, 986 119, 084 1, 096, 359 2, 222, 506 66 493, 322 0.88 58
4⊕ 9 6, 986 2, 282 24, 735 48, 980 21 17, 422 0.08 12
5⊕ 5 12, 038 12, 038 480, 627 1, 571, 112 97 1, 064, 996 3.67 87
5⊕ 6 12, 038 37, 190 1, 394, 215 2, 502, 129 86 311, 152 1.13 64
5⊕ 7 12, 038 96, 696 1, 525, 204 2, 785, 053 80 333, 962 1.30 79
5⊕ 8 12, 038 119, 084 1, 664, 459 3, 188, 945 77 449, 584 1.35 75
5⊕ 9 12, 038 2, 282 48, 320 103, 355 14 56, 134 0.08 23
6⊕ 6 55, 784 55, 784 15, 947, 962 12, 172, 855 98 1, 082, 338 19.24 63
6⊕ 7 55, 784 145, 050 16, 734, 559 12, 904, 378 95 887, 584 6.42 73
6⊕ 8 55, 784 178, 625 19, 361, 581 14, 912, 546 93 1, 547, 752 6.63 70
6⊕ 9 37, 190 2, 282 150, 939 250, 485 35 124, 890 0.20 31
7⊕ 7 145, 050 145, 050 13, 954, 664 11, 101, 744 93 1, 454, 272 12.01 58
7⊕ 8 145, 050 178, 625 15, 276, 998 12, 012, 517 89 1, 259, 276 7.75 68
7⊕ 9 96, 696 2, 282 154, 394 292, 433 33 190, 872 0.23 42
8⊕ 8 178, 625 178, 625 21, 990, 951 17, 676, 700 93 2, 306, 742 17.87 68
8⊕ 9 119, 084 2, 282 169, 628 320, 331 32 207, 802 0.27 41
9⊕ 9 2, 282 2, 282 5, 488 11, 502 8 9, 796 0.06 5

9



Table 2: Impact of data groups: cm convolution size in GB, pk and tk peak memory usage in GB and
running time in seconds for k groups.

cm p2 p4 p8 t2 t4 t8
6⊕ 6 1.07 − 3.42 2.57 − 19.24 23.20
6⊕ 7 1.12 − 2.87 1.73 − 6.42 7.53
6⊕ 8 1.27 − 3.42 2.11 − 6.63 7.40
7⊕ 7 0.97 4.2 2.49 1.55 11.03 12.01 13.64
7⊕ 8 1.05 4.0 2.23 1.23 7.42 7.75 8.45
8⊕ 8 1.42 − 3.98 2.33 − 17.87 19.31

Our program is several times faster than Lien’s [14] non-robust convolution algorithm. His running
times on his two largest examples, knot/bull and knot/inner ear, are 755 seconds and 921 seconds, versus
174 seconds and 130 seconds for our program. He does not test any duplicated pairs. Our program is
over 100 times faster than Barki et al’s [2] exact Minkowski sums of a convex polyhedron and a general
polyhedron. For example, their running times for knot/sphere and grate2/sphere are 172 seconds and
280 seconds, versus 1 second for our program. We accurately compute the full Minkowski sum six times
faster than Campen and Kobbelt [4] compute the outer boundary with low precision. Moreover, their
web server1 returns a “memory or time exceeded” message on our six largest examples and on some
others. Finally, our program is twice as fast as our prior program [18].

Our GPU program computes 1 ⊕ 6 and 1 ⊕ 7 about 10 times faster than Li and McMain’s GPU
program [13], after adjusting for GPU speed. Our error is 10−8 and is under our control, while theirs is
10−3 and is governed by the GPU memory capacity.

6 Discussion
We have presented a convolution algorithm for Minkowski sums of polyhedra with robust CPU and GPU
implementations. The algorithm contains several innovations that support distributed computation. The
computational bottleneck is finding the intersecting pairs of facets. We enabled a distributed algorithm
by creating a novel type of kd-tree that eliminates duplicate entries without using global memory. The
memory bottleneck is the arrangements of the facets of the convolution. We removed this bottleneck by
processing the facets in groups and by removing most of the blocked geometry. We solved the robustness
problem, which is the primary implementation challenge for computational geometry algorithms, using
our ACP strategy. We conclude with plans for future work.

One research direction is to develop a multi-core CPU implementation. The obvious approach is
to assign a core to each group in steps 2 and 3, which dominate the running time, but this approach is
memory bound for four or more cores. A second research direction is to distribute steps 2 and 3 over
multiple GPU’s. We can easily assign the groups from our current algorithm to multiple GPU’s, but we
need to control the cost of data communication.

A third challenge is to compute the swept volume of a polyhedron over a spatial path. The swept
volume can be approximated by constructing facets, computing their arrangements, and extracting cell
boundaries [4]. The inputs are large because many facets are required for accurate approximation. The
algorithms and GPU programs that we developed for Minkowski sums should solve these problems.
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A GPU implementation
We describe the GPU implementation at the requisite level of detail for an experienced GPU programmer
to reproduce it.

Data structures A vertex has single float coordinates and is represented by an index into an array V .
An edge consists of tail and head vertices, an incident facet, and emin and ccw values (explained below),
and is represented by an index into arraysEi. A facet consists of vertices, edges, and an outward normal,
and is represented by an index into arrays Fi. The data structures are initialized with the polyhedra A
and B.

Convolution We use one thread per vertex ofA to find the facets ofB with which it forms convolution
facets, and vice versa. We use one thread per convex edge of A to find the convex edges of B with
which it forms facets. We store the feature pairs contiguously in an array FP using atomic operations for
synchronization. Since these operations are slow, we form groups of m = 256 threads, store the output
of each group in local shared memory, and flush the output to FP using an atomic operation to find the
start index. We use one thread per FP entry to create an array VV of the pairs of indices (a, b) of the
vertices Va ⊕ Vb of the facets. We sort VV lexicographically, remove the duplicates, and add vertices to
V for the remaining pairs. We use one thread per FP entry

We create an array with an entry (e, a, b) for every convolution edge e with a and b the smaller and
larger of its vertex indices. We sort the array lexicographically by (a, b). Each segment with identical
(a, b) entries defines a set of equivalent edges in distinct facets. We set the emin fields of the edges to
the minimum edge index of the set. We sort the edges in counterclockwise order around b − a and set
the ccw field of each edge to the index of its successor in this order if the edge is from a to b, and to the
index of its predecessor otherwise.

Groups When the set of facets is too large to be processed on the GPU, it is divided into groups, the
groups are processed, and the results are merged after removing blocked entities. We place the indices of
the facets in an array P , compute their centroids, and place their coordinates in arrays X , Y , and Z. We
compute the group ids in an array G. Initially, G = 0. We sort the five arrays lexicographically by (g, x)
and then compute the x-medians of the groups by enumerating G and X . We split the current groups
using thread i to set gi ← 2gi if xi is less than the median of gi and gi ← 2gi + 1 otherwise. We cycle
through the coordinates until we obtain the requested number of groups. We create arrays Pi of the facet
indices of the primary members of the groups by scanning P and G. We use one thread per facet not in
Pi to test if it intersects the bounding box of group i and if so to add it to Pi.

The next three paragraphs discuss FF-edge creation, FFF-vertex creation, and blocked geometry
within a group. The following paragraph explains how the group data is merged.

FF-edges We construct a kd-tree of facets with a prior GPU algorithm [21], but we do not split facets
that intersect cutting planes. Leaf node data are stored in an array of leaf facets LP, an array of leaf labels
LL, and an array of bit vectors LB. We generate a duplicate-free array PP of all P pairs. Let Nst be an
array containing the indices of start entries in LP for groups andNn be an array containing the leaf sizes.
We assign 1

2Nn[l](Nn[l] − 1) threads for each leaf l to enumerate pairs. Each thread i maps its index i
to (a, b), an entry of the upper triangular matrix of size Nn[l], which is then added by Nst[l]. Then, we
insert the facet pair (LP [a], LP [b]) to PP, if (a, b) passes the bit vector test LB[a] ∧ LB[b] = 0 and the
oriented bounding box test.

We use one thread per pair to generate an array of all (e, p) pairs with p one facet of a PP pair and e
an edge of the other facet. We set e to the emin of the edge. We sort the array, remove duplicate entries,
and assign each entry (e, p) to a thread that checks if e intersects p. If so, an EF-vertex is created by
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adding (e, p) to an array EF g and adding the intersection point to V . For each pair in PP with two EF g

entries (or one entry and a shared vertex), a thread creates an FF-edge by adding the pair to an array FF g

and updating the Ei.

FFF-vertices We sort FF g in lexicographic order. For each segment with first index s, we use m
threads with a shared buffer to generate the triples (s, a, b) with a < b for all second indices a and b. We
use one thread per triple to test if the three facets intersect. If so, an FFF-vertex is created by adding the
triple to an array FFF g and adding the intersection point to V .

Blocked geometry We form an array L of pairs (e, v) with e an edge and v a vertex. An EF-vertex
forms one pair with its convolution edge. An FFF-vertex forms three pairs with its three FF-edges. We
use one thread per pair to compute the projection of v along e, d = v · (h − t) where t and h are the
end points of e. We sort L in d order. We use one thread per pair to compute an array S of the signs of
n · (h− t) where n is the normal of the facet that e intersects at v.

We compute an array B in which bi = 1 if vi is blocked. Initially, B = 0. One thread per L pair sets
bi = 1 if ei = ei+1 and si = si+1 = 1 or if ei = ei−1 and si = si−1 = −1. Next, one thread per L
pair sets bi = 1 if ei = ei+1, si = 1, and bi+1 = 1 or if ei = ei−1, si = −1, and bi−1 = 1. A blocked
FFF-vertex is deleted. An FF-edge with no FFF-vertices is deleted if one of its vertices is blocked. A
blocked EF-vertex is deleted unless it is incident to an FF-edge, as it may be needed to recompute a
FFF-vertex, as explained in the ACP paragraph.

Merging Let FF g , EF g , and FFF g be the output of group g. We append each EF g to the global EF
and add its start index to the EF-vertex indices in FF g . We append each FF g to the global FF and add
its start index to the FF-edge indices in FFF g . We append each FFF g to the global FFF. We sort FFF
and remove duplicates, sort FF, remove duplicates, and update FFF. We sort EF, remove duplicates, and
update FF. We update the indices with GPU prefix sum and sorting operations.

Sub-edges We use one thread per vertex to create the sub-edges of the emin edges. For e = v0vk with
remaining vertices v1, . . . , vk−1, vivi+1 is a sub-edge if si > 0 and si+1 < 0. We use one thread per
emin sub-edge to create equivalent sub-edges for the rest of its edge set, and to set the emin and ccw
fields.

We set the next field of each sub-edge vivj to the next sub-edge vjvk in counterclockwise order
around the normal of the facet of vivj . If this sub-edge is blocked (so it was not created), next is set
to null. We form an array T of triples (p, f, e) for every sub-edge e = th incident to facet f and for
p = t, h. We sort T by (p, f), which segments it into groups consisting of the sub-edges of a face that
are incident to a vertex. We use one thread per group to set the next fields. The computation depends on
whether p is a vertex of f , a boundary EF-vertex, an interior EF-vertex, or an FFF-vertex (Fig. 4b). The
groups for each of these four cases need to be adjacent in T to prevent execution flow divergence among
adjacent threads. We negate f if p is an EF-vertex on its boundary. Sorting T places these vertices first,
the facet vertices next, the interior EF-vertices next, and the FFF-vertices last.

Faces We use a thread to generate the sub-edge loop of a given sub-edge by following next fields until
it returns to that sub-edge or encounters a null next field. In the first case, the loop id of every sub-edge
in the loop is set to its smallest sub-edge index and this id is recorded in an array H . Using one thread
per sub-edge would generate every loop once for each of its sub-edges. We reduce the redundancy
by repeatedly running one thread for every fifth sub-edge whose loop id is null until none is found.
In practice, the first iteration finds most of the loops. Even if multiple threads traces the same loop,
synchronization is unnecessary, because they set the same loop id for the edges in the loop.

We sort H , remove duplicates, and use one thread per loop id to classify the loops as outer or inner
boundaries. For vj the vertex with the largest z component, a loop is an outer boundary if the sub-
edges vivj and vjvk form a convex angle. We generate a face for each outer boundary. We assign each
inner boundary to its face by intersecting a ray through one of its vertices with the outer boundaries and
selecting the closest one. We choose a pair of two vertices, each from inner- and outer-boundaries not
obscured by any edges, and create new edges connecting them to make a single boundary of the face.
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Cell boundaries We implement the union-find algorithm for generating the cell boundaries using ar-
rays P and M with one entry per face including unsubdivided facets. The P entry of a face is its parent
face in the tree that represents its set. The M entry is true if this set might be a closed surface. Initially,
every P [i] is set to i so that every face is in a singleton set, and M is true. We use one thread per face to
merge its set with the sets of the adjacent faces along its edges. The adjacent face along an edge e is the
incident face of e.ccw. If no face is adjacent along an edge, the M entry of the root of the f set is set to
false. Merging is done in the standard manner and the M entry of the union is set to the conjunction of
the M entries of the merged sets. We iterate this process until every pair of adjacent faces is in the same
set. A synchronization error can occur if two threads try to set the same entry, but it is corrected by the
next iteration. To lower the chance of synchronization errors, we merge the set with a larger root id to
the other set with a smaller root id. In practice, the first iteration finds all the boundaries with no errors.

Minkowski sum As described in step 4 of Sec. 3, we classify the boundaries as outer and inner, form
cells, assign inner boundaries to cells, and identify the free cells using our GPU version of a prior
collision detection algorithm [8].

ACP In the CPU version of ACP, a predicate throws an exception if it is ambiguous at the current
precision. A controller catches the exception, increases the precision, and retries the predicate. This
approach is impractical on the GPU. Moreover, the ACP library uses an initial precision of double float,
whereas single float is much faster on the GPU. The GPU version of ACP evaluates a predicate on
a sequence of arguments, using stages instead of exceptions to increase precision. Stage 1 evaluates
in single float, records the signs for the unambiguous elements in the sequence, and forms a second
sequence from the ambiguous elements. Stage 2 increases the precision of the second sequence to double
float and reevaluates the predicate in double float. Stage 3 evaluates the third sequence in quad-double
[15]. In the extremely rare cases where ambiguous predicates remain, the GPU passes them to the CPU
for evaluation using MPFR [7].

Pseudo-code We conclude the description of the GPU algorithm with selected pseudo-code. Please
email the first author, Kyung, for further details.
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procedure MinkowskiSum(A, B, MS)
Input

A, B: input models in triangular meshes
Output

MS: Minkowski sum boundaries
begin

1. Construct convolution of A and B. The convolution result is stored in
Fi: a global array of facets in 4D vectors containing vertex IDs
Ei: a global array of edges in (t, h, next, ccw)
VV: a global array of vertex positions

2. Call DoGroupFacets(P0,..,Pm−1)

3. for group g = 0, ..,m− 1 do

(a) Construct a kd-tree of facets Pg and output the leaf nodes in an array of leaf facets LP, an
array of leaf labels LL, and an array of bit vectors LB.

(b) Call EnumerateFacePairsWithFiltering(LP, LL, LB, PP)

(c) Call PairwiseFacetIntersection(PP, EFg , FFg)

(d) Call CreateFFFVertices(FFg , FFFg)

(e) Call RemoveBlockedVertices(EFg,FFg , FFFg)

end

4. Merge EFg’s, FFg’s, and FFFg’s to EF, FF, and FFF

5. Construct sub-edges by subdividing edges in Ei and FFg with vertices in EFg and FFFg

6. Construct faces by tracing sub-edges, whose start vertex ids are stored in H

7. Append first edge ids of unsubdivided facets of Fi to H

8. Call ConstructCellBoundaries(H , P )

9. For all k, delete H[k] if boundary P [k] is determined to be blocked by collision test

10. Construct MS by tracing edges from the remaining edges in H

end
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procedure DoGroupFacets(P0,..,Pm−1)
Output

P0.., Pm−1: facet groups
begin

Initialize P with a sequence 0, .., |Fi| − 1, and G with 0
Place the coordinates of facet centroids in arrays X , Y , and Z.
for k = 0, .., blogmc do

Let C be one of X , Y , Z in cyclic order
Sort P , G, X , Y , and Z lexicographically by G and C.
Construct M containing the median of C for each facet group distinguished by G
for i = 0, .., |P | − 1 in parallel

if C[i] < M [G[i]] then
G[i]← 2 ∗G[i]

else
G[i]← 2 ∗G[i] + 1

end
end

end
Sort P by G
Copy each facet group in P to P0, .., Pm−1

end

procedure EnumerateFacePairsWithFiltering(LP, LL, LB, PP)
Input

LP: an array of leaf facet ids
LL: an array of leaf labels
LB: an array of bit vectors

Output
PP: an array of facet id pairs

begin
Construct Nst and Nn from LL, arrays of start entries and numbers of leaf facets, respectively.
Generate a work item array W in which Nn[l](Nn[l]− 1)/2 entries assigned for leaf l

are set to the number l.
for i = 0..(|W | − 1) in parallel

g ←W [i]
k ← i− the first entry of work items for leaf l
Find the largest integer r satisfying r(r + 1)/2 ≤ k.
(a, b)← (k − r(r + 1)/2, r + 1) +Nst[l].
if LB[a] ∧ LB[b] = 0, then

if OBB(LP[a]) ∩ OBB(LP[b]), then
Insert (LP[a], LP[b]) to PP.

end
end
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procedure PairwiseFacetIntersection(PP, EF, FF)
Input

PP: an array of facet id pairs
Output

EF: an EF-vertex array
FF: an FF-edge array

begin
Generate EF, an array of all unique edge/facet id pairs made from facet pairs in PP.
Initialize Done with 0.
Repeat the for-loop in the single-, double-, quad double- (GPU),

and higher-precision interval arithmetic(CPU), respectively.
for i = 0..(|EF| − 1) in parallel

if Done[i] = 0 then
if EF[i].e intersects EF[i].f then

Insert EF[i] to EF
else if uncertain then return
Done[i]← 1.

end
for i = 0..(|PP| − 1) in parallel

if two facets in PP[i] share two EF-vertices (or a EF- and a facet vertices) then
Insert PP[i] to FF
Create a new edge of PP[i] to Ei

end

procedure CreateFFFVertices(FFg , FFFg)
Input

FFg: an array of FF-edges in two facet ids
Output

FFFg: an array of FFF-vertices in three facet ids
begin

Sort FFg in lexicographic order
Enumerate FF-edge pairs with the same first facet id in FFg to an array P .
Initialize Done with 0.
Repeat the for-loop in the single-, double-, quad double- (GPU),

and higher-precision interval arithmetic(CPU), respectively.
for i = 0..|FFg| − 1 in parallel

if Done[i] = 0 then
if edge P [i].a intersects edge P [i].b then

Form a facet triple from P [i] and insert it to FFFg

Insert the intersection point to V
else if uncertain then return
Done[i]← 1.

end
end
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procedure RemoveBlockedVertices(EFg,FFg , FFFg)
begin

Form L, an array of (e, v) with e and edge and v an EF- or FFF-vertex on e
Create D, S, and B, arrays of size L
for i = 0, .., |L| − 1 do

D[i] = L[i].v · (L[i].e.h− L[i].e.t) Sort L lexicographically by (L[i].e,D[i])
for i = 0, .., |L| − 1 do

n← the normal of the facet that L[i].e intersects at L[i].v
S[i] = sign(n · (L[i].e.h− L[i].e.t))

end
The entries of B are set to false
for i = 1, .., |L| − 2 do

if (L[i].e = L[i+ 1].e) ∧ (S[i] = S[i+ 1] = 1) then
B[i] = 1

if (L[i].e = L[i− 1].e) ∧ (S[i] = S[i− 1] = −1) then
B[i] = 1

end
for i = 1, .., |L| − 2 do

if (L[i].e = L[i+ 1].e) ∧ (S[i] = 1) ∧ (B[i+ 1] = 1) then
B[i] = 1

if (L[i].e = L[i− 1].e) ∧ (S[i] = −1) ∧ (B[i− 1] = 1) then
B[i] = 1

end
Remove FFF-vertex with id L[i].v from FFFg if B[i] = 1
Remove FF-edges with no FFF-vertices from FFg , if they have a blocked end vertex
Remove EF-vertices with no FF -edges from EFg

end

procedure ConstructCellBoundaries(H , P )
Input

H: an array of start edge ids of face loops
Output

P : an array of cell ids
begin

Initialize P with a sequence 0, .., |H| − 1
Repeat the for-loop until P is not updated any more

for i = 0..(|H| − 1) in parallel
e0 ← H[i], e← e0
do

ne← e.ccw
if ne = 0 or ne is not opposite to e then

P [i] = −1
else

r ←FindRootWithPathCompression(P , i)
r′ ←FindRootWithPathCompression(P , ne.inface)
if r < r′ then P [r′]← r
else if r > r′ then P [r]← r′

end
e← e.next

while (e 6= e0)
end

For all i, delete H[i] and P [i] if P [i] = −1 or P [P [i]] = −1
end
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