
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2012

Tied Kronecker Product Graph Models to Capture Variance in Tied Kronecker Product Graph Models to Capture Variance in

Network Populations Network Populations

Sebastian Moreno
Purdue University, smorenoa@purdue.edu

Jennifer Neville
neville@cs.purdue.edu

Sergey Kirshner
Purdue University, skirshne@purdue.edu

Report Number:
12-012

Moreno, Sebastian; Neville, Jennifer; and Kirshner, Sergey, "Tied Kronecker Product Graph Models to
Capture Variance in Network Populations" (2012). Department of Computer Science Technical Reports.
Paper 1764.
https://docs.lib.purdue.edu/cstech/1764

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Tied Kronecker Product Graph Models to Capture Variance in
Network Populations

SEBASTIAN MORENO, Computer Science department, Purdue University
JENNIFER NEVILLE, Computer Science department, Purdue University
SERGEY KIRSHNER, Statistic department, Purdue University

Much of the past work on mining and modeling networks has focused on understanding the observed prop-
erties of single example graphs. However, in many real-life applications it is important to characterize the
structure of populations of graphs. In this work, we investigate the distributional properties of Kronecker
product graph models (KPGMs) [Leskovec et al. 2010]. Specifically, we examine whether these models can
represent the natural variability in graph properties observed across multiple networks and find surpris-
ingly that they cannot. By considering KPGMs from a new viewpoint, we can show the reason for this lack
of variance theoretically—which is primarily due to the generation of each edge independently from the
others. Based on this understanding, we propose the mixed Kronecker Product Graph Model (mKPGM) a
generalization of KPGMs that uses tied parameters to increase the variance of the model, while preserving
the expectation. We evaluate the mKPGM model by comparing to several different graph models, through
the multi-dimensional Kolgomorov Smirnov statistics, a new statistic that consider the relation among the
characteristics of the networks. The results show mKPGMs are able to produce a closer match to real-world
graphs, while still providing natural variation in the generated graphs.

Additional Key Words and Phrases: Graph generation models, social network analysis, Kronecker product
graph models

1. INTRODUCTION
Graphs and networks are a natural data representation for analysis of a myriad of
domains, ranging from systems analysis (e.g., the Internet) to bioinformatics (e.g., pro-
tein interactions) to psycho-social domains (e.g., online social networks). Due to the
recent interest in small-world networks and scale-free graphs, there has been a great
deal of research focused on developing generative models of graphs that can repro-
duce skewed degree distributions, short average path length and/or local clustering
(see e.g., [Frank and Strauss 1986; Watts and Strogatz 1998; Barabsi and Albert 1999;
Kumar et al. 2000]). The majority of these works have focused on procedural modeling
techniques (see [Newman 2003] for a good overview). As an example, the preferential
attachment model of [Barabsi and Albert 1999] is an incremental generative method,
which repeatedly adds a node to the graph with a determined number of edges and
each of the edges is linked up to existing nodes in the graph with probability propor-
tional to its current degree (i.e., higher degree are more likely to receive additional
incoming edges).

There are relatively few statistical models of graph structure that represent proba-
bility distributions over graph structures, with parameters that can be learned from
example networks. One method is the Exponential Random Graph Model (ERGM)
(also known as p* models) [Wasserman and Pattison 1996; Robins et al. 2006]. ERGMs
represent probability distributions over graphs with an exponential linear model that
uses feature counts of local graph properties considered relevant by social scientists
(e.g., edges, triangles, paths). Another method is the Chung-Lu model [Chung and Lu
2002], which generates independent edges among nodes through a Bernoulli distri-
bution with the parameter determined by the multiplication of node’s weights. A third
method is the Kronecker product graph model (KPGM) [Leskovec and Faloutsos 2007].
The KPGM is a fractal model, which starts from a small adjacency matrix with speci-
fied probabilities for all pairwise edges, and repeatedly applies the Kronecker product
(of the matrix with itself) to grow the model to a larger size.

2

The aim, for much of the past work on generative graph models, has been to accu-
rately capture the observed properties of a single graph – either global properties such
as average path length or local graph properties such as transitive triangles. As such,
evaluation of the proposed models has generally centered on empirical validation that
observed graph properties match those of the generated graphs. Specifically, empiri-
cal analysis has consisted of visual comparison of properties of the input and a small
number of generated graphs.

However, in many real-life applications one would like to model populations of
graphs. That is, rather than capturing the properties of a single observed network,
we would like to be able to capture the range of properties observed over multiple sam-
ples from a distribution of graphs. For example, in social network domains, the social
processes that govern friendship formation are likely to be consistent across college
students in various Facebook networks, so we expect that the networks will have simi-
lar structure, but with some random variation. Descriptive modeling of these networks
should focus on acquiring an understanding of both their average characteristics and
their variability. Similarly, when analyzing the performance of network protocols or
network classification methods, we would like to measure performance across a set of
network structures that capture the natural variability in these domains.

In recent work [Moreno and Neville 2009], we investigated the distributional prop-
erties of state-of-the art generative models for graphs. Specifically, we considered the
case when more than one instance of a network is available, and examined whether
these models capture the natural variability in graph properties observed across multi-
ple networks. In other words, we evaluated whether the models able to match not only
the mean graph statistics, but also their spread as observed in real network popula-
tions. Our analysis showed that graphs generated by KPGMs [Leskovec and Faloutsos
2007] and ERGMs [Wasserman and Pattison 1996] do not exhibit the variability ob-
served in the network instances in two social network domains. What is particularly
surprising is how little variance (compared to the real networks) was produced in the
graphs generated from each model class. Each of the models appears to place most of
the probability mass in the space of graphs on a relatively small subset of graphs with
very similar characteristics (degenerate global models [Handcock 2003]).

Some theoretical insights to explain this phenomenon is available in the context of
ERGMs. In recent work it was shown that learning ERGMs with only local features
can lead to degenerate global models (i.e., the estimated distribution places most of
its probability mass on either the empty or complete graphs) [Handcock 2003]. This
indicates that the effect may be due to long-range dependencies in social networks
which cannot be accurately captured by local features alone.

In this work, we investigate the issue in more detail for KPGM models. We show
that a number of relatively simple approaches to increase variance in KPGMs do not
work. This includes increasing the number of parameters, estimating and sampling
from a posterior distribution of parameters, and learning the model from multiple net-
works. By considering KPGMs from a new viewpoint, we show the reason for this
lack of variance theoretically—which is primarily due to the generation of each edge
independently from the others. Based on this understanding we propose a generaliza-
tion to KPGMs that uses tied parameters to increase the variance of the model, while
preserving the expectation. We then show experimentally, that our mixed-KPGM can
adequately capture the natural variability across a population of networks.

The rest of the paper is organized as follows. First, we describe the network data
sets considered in the paper and examine their variability across several graph met-
rics (Section 2). Next, we provide a background over the three algorithms that we use
in this work: KPGM, Chung-Lu and ERGM models (Section 3). We continue analyzing
whether KPGM is capable of capturing the variability of the real networks and some

3

(a) Degree (b) Clustering Coefficient (c) Hop Plot

(d) Degree (e) Clustering Coefficient (f) Hop Plot

(g) Degree (h) Clustering Coefficient (i) Hop Plot

Fig. 1. Natural variability in the characteristics of a population of Purdue Facebook (top), Email (bottom)
and AddHealth (bottom) networks.

early approaches to increase the variance of the model (Section 4). We consider the gen-
erative process for KPGMs from a slightly different angle which leads us to a variant of
KPGM that allows higher variance and more clustering in sampled graphs (Section 5).
Next, we explain the training algorithm for mixed-KPGM (Section 6). We then describe
our experiment section and the new multidimensional Kolgomorov Smirnov statistics
(Section 7), to continue with the application of our new approach to multiple instances
of networks (Section 8) and discuss our findings and contributions (Section 9).

2. NATURAL VARIABILITY OF REAL NETWORKS
In this section we analyzed three specific characteristics over three undirected datasets
without self loops, to observe the natural variability that can be found in real networks.

We conducted a set of experiments to explore three distributional properties of
graphs found in natural social network populations: (1) degree, (2) clustering coeffi-
cient, and (3) path lengths. The degree of a node di is simply the number of nodes in
the graph that are connected to node i. Degree is a local property of nodes, but since
many networks have heavy-tailed degree distributions, the overall degree distribution
is often considered a global property to match. Clustering coefficient is calculated for

4

a node i as: ci = 2|∆i|
(di−1)di

, where ∆i is the number of triangles in which the node i par-
ticipates and di is the number of neighbors of node i (degree for undirected networks).
Clustering coefficient measures the local clustering in the graph. For path length, we
consider the hop plot distribution in the graph, which refers to the number of nodes
that can be reached with h “hops” in the graph: Nh =

∑
v Nh(v), where Nh(v) is the

number of nodes that are ≤ h edges away from node v in G. The hop plot measures the
global connectivity of the graph.

Specifically, we investigated three different real-world social network datasets. The
first set is drawn from the public Purdue Facebook network. Facebook is a popular
online social network site with over 845 million members worldwide. We considered
a set of over 50000 Facebook users belonging to the Purdue University network with
its over 400000 wall links consisting of a year-long period. To estimate the variance
of real-world networks, we sampled 50 networks, each of size 2187 nodes, from the
wall graph. To construct each network, we sampled an initial timepoint uniformly at
random, then collected edges temporally from that point (along with their incident
nodes) until the node set consisted of 2187 nodes. In addition to these nodes and initial
edge set, we collected all edges among the set of sampled nodes that occurred within a
period of 60 days from the last nodes added to the network (this increased the connec-
tivity of the sampled networks). The characteristics of the set of sampled networks is
graphed in Figure 1 (top), with each line corresponding to the cumulative distribution
of a single network. The figures show the similarity among the sampled networks as
well as the variability that can be found in real domains for networks of the same size.

The second dataset consists of a collection of emails recollected for two weeks from
the email logs on the Purdue mailserver(s) [Ahmed et al. 2011]. The original data con-
sists of over 200000 nodes with over 2 millions edges, where an edge represents an
email from one user to another. Some of the nodes has an incredibly number of outgo-
ing or incoming mails which are likely to be mailing lists or automatic mailing systems,
while other nodes have not receive or send an email during these two weeks. To elim-
inate these ’anomalies’, we remove any node with an outgoing degree greater than
1000 nodes and any node that has an incoming or outgoing degree of 0. The filtered
data has over 30000 nodes and over 700000 edges. Similarly to Facebook Data, we
sampled 50 networks, each of then with 2187 nodes. Applying the same process than
before, most of the networks were mostly disconnected because of the huge number of
emails among user. To avoid the huge number of disconnected components, we sam-
pled an initial timepoint uniformly at random and recollected, in the smallest time
possible, a determined number of connected nodes. The rest of the nodes and edges
were recollected using the same process than Facebook data with a time window of 36
hours. The characteristics of this dataset can be observed in figure 1 (middle).

A third smaller dataset was utilized to test some of our first approaches. This dataset
consists of a set of social networks from the National Longitudinal Study of Adolescent
Health (AddHealth) [Harris 2008]. The AddHealth dataset consists of survey informa-
tion from 144 middle and high schools, collected (initially) in 1994-1995. The survey
questions queried for the students’ social networks along with myriad behavioral and
academic attributes, to study how social environment and behavior in adolescence are
linked to health and achievement outcomes in young adulthood. In this work, we con-
sidered the social networks from 25 schools with sizes varying from 800 to 2000 nodes.
The characteristic of these networks are showed in Figure 1 (bottom), where, despite
the fact that the networks are of different size, since we compare cumulative distribu-
tions, the networks have very similar characteristics.

We consider these sets of networks to be illustrative examples of populations
of graphs (i.e., drawn from the same distribution). These sets are likely to be af-

5

fected/generated by similar social processes (college/high school friendships and email
communication patterns). In addition, these sets exhibit some similarities in their
graph structures, yet with some variation due to random effects.

3. BACKGROUND
For this work, our aim is to study and match the distributional properties of prob-
abilistic models of graph structure using our new method Mixed Kronecker Product
Graph Model. We compare, the results against three representative models that can
be ”learned” from an observed network data.

3.1. Kronecker Model
The Kronecker product graph model (KPGM) [Leskovec and Faloutsos 2007] is a frac-
tal model, which assumes the entries of the adjacency matrix are drawn independently
as Bernoulli trials from a probability matrix which is itself an integer Kronecker power
of a small matrix. It has been shown empirically that this approach successfully pre-
serves a wide range of global properties of interest, including degree distributions,
eigenvalue distributions, and path-length distributions [Leskovec et al. 2010].

More specifically, the model generates self-similar graphs, in a recursive way using
Kronecker multiplication. The algorithm starts with a initial matrix P1 = Θ with b
rows and columns, where each cell value is a probability. Typically b = 2 or 3, e.g.:

P1 = Θ =

[
θ11 θ12

θ21 θ22

]
To generate graphs of a larger size, the Kronecker product of P1 is taken K − 1 times
with itself to generate a matrix:

PK = P [K]
1 = P [K−1]

1
⊗ P1 = P1 ⊗ . . . ⊗ P1︸ ︷︷ ︸

K−1 times

with bK rows and columns. We will denote the (u, v)-th entry of PK by πuv = Pk [u, v],
u, v = 1, . . . , bK . Under KPGM, a graph G = (V,E), with set of nodes V = {1, . . . , N}
where N = bK , K ∈ N, is sampled by performing mutually independent Bernoulli
trials for each pair (u, v) with probability πuv = PK [u, v] and placing an edge (u, v) into
E if the trial for (u, v) results in a success.

To estimate a KPGM from an observed graph G?, the learning algorithm uses max-
imum likelihood estimation to determine the values of Θ that have the highest like-
lihood of generating G?: l(Θ) = logP (G?|Θ) = log

∑
σ

P (G?|Θ, σ)P (σ) where σ defines

a permutation of rows and columns of the graph G?. The model assumes that each
edge is a Bernoulli random variable, given P1. Therefore the likelihood of the observed
graph P (G?|Θ, σ) is calculated as:

P (G?|Θ, σ) =
∏

(u,v)∈E

PK [σu, σv]
∏

(u,v)/∈E

(1− PK [σu, σv]) (1)

where σu refers to the permuted position of node u in σ.
With this formula, the algorithm uses a gradient descent approach to search for

the MLE parameters Θ̂, however the gradient of l(Θ) involves a summation over an
exponential number of permutations over σ. To avoid this calculation, the algorithm
simulates draws from the permutation distribution P (σ|G?,Θ) until it converges. Then
it calculates the expected values of l(Θ) and the gradient. This sampling is performed
with a Metropolis-Hastings algorithm where a new sample σs is accepted if the ratio of

6

the likelihood with σs−1 is greater than a random number uniformly sampled between
0 and 1.

In every iteration of the algorithm, l(Θ) and its gradient are calculated T times,
obtaining their corresponding mean. The parameters Θ̂ are updated with the following
until convergence: Θ̂t+1 = Θ̂t + λ∂l(Θ̂)

∂Θt
.

A second learning algorithm for KPGMs was developed by Gleich and Owen [Gle-
ich and Owen 2012]. This learning algorithm is independent of the permutation of the
network (permutation invariant) which avoids the difficulty of search over the permu-
tation space. The training utilizes the method of moments, to search over all possible
parameters Θ while minimizing the following function:

f(Θ,F(G∗)) =

nm∑
i=1

(
Fi(G

∗)− E[Fi(G)|Θ]

Fi(G∗)

)
(2)

Here F(G∗) = {F1, F2, · · · , Fnm} corresponds to a set of nm “moments” of the observed
training network and E[Fi(G)|Θ] is the expected value of the i moment of the network
G generated by Θ. The method of moments (MoM) training algorithm for KPGMs con-
siders four moments: the number of (i) edges, (ii) 2-stars, (iii) 3-stars, and (iv) triangles.
These moments were selected by the authors because their expected values can be an-
alytically calculated for any Θ, given b = 2.

3.2. Chung-Lu Model
The Chung-Lu model is an extension of the Erdos-Renyi model [Erdos and Renyi 1960].
The Chung-Lu model represents the expected degree distribution of a network through
a set of weights. To generate a sample graph from the model, each edge is sampled
independently with a Bernoulli distribution with parameter wiwj , where wi and wj
represent the learned weight for nodes i and j respectively. This generation process
allows to generate a new graph where the expected degree distribution matches the
degree distribution of real networks.

The training algorithm for Chung-Lu model is determined by the degree of the nodes.
Given a graph G = (V,E), let A be the adjacency matrix for G∗ where Aij = 1 if the
edge (i, j) ∈ E∗ and 0 otherwise. Defining the diagonal matrix D such that: Dij =∑
k Aik if i = j and 0 otherwise, this diagonal matrix represents the degree of each

node, where Dii is the degree of node i. Based on the diagonal matrix D, the weights
are defined by wi = Dii/|E∗| where |E∗| corresponds to the total number of edges in
the graph.

Assuming thatDii <
√
|E∗| ∀i, the expected degree distribution of a generated graph

is given by:

EG[DCL
ii] =

∑
j

DiiDjj

|E∗|
= Dii

∑
j

Djj

|E∗|
= Dii

which corresponds to the degree distribution of the real network. This characteristic
permits to generate networks with very similar degree distribution to the real net-
works using the same number of parameters than nodes |V| = N .

3.3. ERGM Model
The third model is the exponential random graph model (ERGM) [Wasserman and
Pattison 1996; Robins et al. 2006] from the mathematical sociology community (also
known as the p* model). ERGMs represent probability distributions over graphs with
an exponential linear model that uses feature counts of local graph properties consid-
ered relevant by social scientists (e.g., edges, triangles, paths).

7

The approach is focused on modeling the local structure of networks such as trian-
gles or k-stars. For a graph G, we will denote its features with the vector F (G). ERGM
models define a probability distribution of P (G) over the set of possible graphs G:

P (G|η) =
1

Z(η)
exp

(
ηTF (G)

)
where Z (η) =

∑
G′∈G exp

(
ηTF (G′)

)
is the standard partition function.

As with all exponential models, P can be estimated using the maximum entropy
principle: Choose the parameter η̂ which maximizes l (η) the log-likelihood of the in-
put graph G?. It is easy to show that this corresponds to the model that matches the
expected values of features for graphs in G to the features of the input graph G? (i.e.,
F (G?) = EP (G)[F (G)]). The feature constraints ensure that the local properties of the
graph are preserved and the partition function Z ensures global consistency. However,
it has recently been discovered that estimation with ERGMs using only local features
can result in near-degenerate models that place all their probability mass on either the
complete or empty graph, and in which the original graph is very unlikely [Handcock
2003]. Sociologists have alleviated extreme degeneracy problems by manually specify-
ing a larger number of features to use in ERGM models, such as alternating k-stars and
alternating k-paths [Snijders et al. 2004]. Although, this work has begun to explore a
more expansive set of features, it is driven primarily by sociological motivations—the
researchers are more focused on identifying subgraph patterns that are semantically
meaningful (e.g., alternating k-paths measure the connections among a pair of nodes
that are not directly linked) rather than identifying local patterns that will improve
preservation of the global graph structure.

4. VARIABILITY OF KPGM MODELS
In this section, we evaluate KPGMs both empirically and analytically to investigate
whether graphs generated from learned KPGM models can capture the distributional
properties we observe in real-world social networks. We also show our first approaches
to increases the variance of the KPGM model, which leads to the conclusion that the
lack of variance is due to the independent generation of edges.

4.1. Assessing Variability
To learn KPGM models, we selected a single network from each dataset to use as
a training set. To control for variation in the samples, we selected the network that
was closest to the median of the degree distributions for Facebook and Email dataset.
In the Purdue Facebook data, we selected the eleventh generated network with 5634
edges and in Email data, we selected the twenty-forth network with 6666 edges. For
AddHealth, we selected the network from school 72 with 2045 nodes and 15484 edges,
which is the closest network to the training parameters that we use (b = 3,K = 7 ⇒
37 = 2187 nodes).

Using each selected network as a training set, we learned a KPGM model (b = 3) us-
ing maximum likelihood estimation to estimate Θ̂. For each learned model, we gener-
ated 50 sample graphs. The KPGM graphs were generated using the estimated matrix
PK = P [K]

1 . From the 50 samples, we estimated the empirical sampling distributions
for degree, clustering coefficient, and hop plots.

The results, for the original datasets and the KPGM generated data, are plotted in
figures 15-17 in Section 8.2. The plots, show the median and interquartile range for
the set of observed network distributions. Solid lines correspond to the median of the
distributions; dashed lines: the 25th and 75th percentiles.

8

The results in figures 15-17 show two things. First, the KPGM performs as expected,
partially capturing the graph properties that have been reported in the past. Specifi-
cally, the KPGM model is able to capture some of the degree and hop plot fairly well
in the datasets, but it is not able to model the local clustering in none of them. Second,
the KPGM model does not reproduce the amount of variance exhibited in the real net-
works. Moreover, it is surprising that the variance of the generated graphs is so slight
that it is almost not apparent in some of the plots. The lack of variance implies that
while the KPGM model may be able to reasonably capture the patterns of the input
graph, it cannot be used to generate multiple “similar” graphs—since it appears that
the generated graphs are nearly isomorphic.

We conjecture that it is KPGM’s use of independent edge probabilities and fractal
expansion that leads to the small variation in generated graphs. In fact, one obvious
possibility is that the low variance is due to the small number of model parameters
used in the initiator matrix.

4.2. Increasing Variability through initiator matrix
To investigate the change in variance for models with initiator matrices of varying
sizes, we conducted the following simulation experiment. We first manually specified a
2×2 model. Then to create a 4×4 matrix that would produce graphs similar to the 2×2
model, we computed the Kronecker product of the 2× 2 matrix and then perturbed the
parameter in cell by adding a random number∼ N (0, 9E−4). The resulting parameters
are listed below

Θ2×2 =

[
0.95 0.60
0.60 0.20

]

Θ4×4 =

 0.8849 0.6355 0.5659 0.3634
0.6355 0.2220 0.3618 0.1171
0.5659 0.3618 0.1650 0.1288
0.3634 0.1171 0.1288 0.0614

From these specified matrices, we generated 100 networks of size 1024 and mea-

sured the variance in the graph distributions. Figure 2 shows the results, which clearly
indicate that the variance does not increase. We also tried learning KPGM models of
the real datasets (e.g., AddHealth) with initiator matrices up to size 6 × 6 with no
noticeable increase in variance. This indicates that we are unlikely to achieve higher
variance by increasing the parametrization of the model. Although much larger initia-
tor matrices (e.g., 30 × 30) would increase the number of parameters in the model, it
would also decrease the number Kronecker products needed to generate a graph of a
particular size, which may impact the model’s ability to represent fractal structure.

Based on these investigation, we conjecture that the lack of variance is due to model
placing most of the probability mass on a few nearly isomorphic graphs for any par-
ticular set of parameters Θ̂. We note however, that Figure 2 shows that although the
parameters for the two models are similar, the distributions do not match exactly (i.e.,
the medians are different for the two models). This implies that slight perturbations
to the Θ parameters could increase the variance of the generated graphs. Based on
this observation, we posit that a Bayesian estimation approach, for the KPGM model,
could accurately capture the natural variance in a given domain. Bayesian methods
estimate a posterior distribution over parameters values—and if we use the posterior
distribution over Θ to sample a set of parameters before each graph generation, we
should be able to generate graphs with higher variation that we see with a single MLE
set. We outline this approach in detail next.

9

(a) Degree (b) Clustering Coefficient (c) Hop Plot
Fig. 2. Variance of generated networks, comparing 2× 2 to 4× 4 KPGM initiator matrices.

4.3. Increasing Variability through Bayesian approaches
Our goal is to generate graphs that can capture the variability observed in real graphs,
and in Section 4.1 we used the maximum likelihood (ML) estimate Θ̂ to generate
graphs G ∼ PKPGM

(
·|Θ̂
)

. Instead of using a point estimate of Θ, we propose to sample
the graphs from the predictive posterior distribution P (G|G?) whereG? is the observed
graph1:

P (G|G?) =

∫
Θ

P (Θ|G?)P (G?|Θ) dΘ. (3)

Our previous approach approximated sampling from the predictive posterior by gener-
ating graphs using the supposed mode of the posterior distribution P (Θ|G?). However,
such approximation may not be just in this case as (1) the likelihood surface is not con-
vex and may have multiple modes (not reducible from one to another by a permutation
of rows and columns of the initiator matrix); (2) likelihood surface may be flat around
the found mode with many different matrices Θ explaining the observed data well;
and (3) the ML approach in [Leskovec and Faloutsos 2007] is not even guaranteed to
converge (to a mode).

Exact sampling from the predictive posterior is infeasible except for trivial graphs,
and neither is sampling directly from the posterior P (Θ|G?) as it requires aver-
aging over permutations of node indices. We can however obtain a Markov Chain
Monte Carlo estimation in the augmented space of parameters and permutations as
P (σ,Θ|G?) = P (σ)P (G?|Θ, σ) /P (G?) can be computed up to a multiplicative con-
stant. Our approach alternates the draws from the posterior distribution over the
parameters Θ and permutations σ. The resulting sampling procedure resembles the
maximum likelihood learning algorithm for KPGM [Leskovec and Faloutsos 2007] ex-
cept that instead of updating Θ by moving along the gradient of the log-likelihood, we
resample Θ.

Given a set of parameters Θ and a permutation σ, we use Metropolis-Hastings al-
gorithm (e.g., [Robert and Casella 2004]) to resample a new permutation σnew. As was
mentioned in [Leskovec and Faloutsos 2007], the ratio of the posteriors can be com-
puted efficiently,
P (σnew|G?,Θ)

P (σ|G?,Θ)
=
P (G?|Θ, σnew)

P (G?|Θ, σ)
=

∏
(u,v)∈E

PK [σu, σv]

PK [σnewu , σnewv]

∏
(u,v)6∈E

(1− PK [σu, σv])

(1− PK [σnewu , σnewv])

Given a permutation σ, G?|σ can be viewed as a graph whose vertices has been rela-
beled according to σ. For a proposal distribution, we sample uniformly from all possi-

1Our approach easily extends to a collection of observed graphs.

10

Fig. 3. 10 MCMC chains for BKPGM on a graph with 256 nodes sampled from the initiator matrix with
parameters θ11 = 0.6, θ12 = 0.5, θ22 = 0.2, true joint log-likelihood= −732.2. MCMC was run with 100
resamples of permutations in each iteration. Chains converge to two different modes with initiator matrix
parameters very different from the truth.

ble swaps of two node indices of this graph G?|σ thus resulting in another permutation
(same as in [Leskovec and Faloutsos 2007]). Similarly, we can compute the ratio of the
posterior densities over the parameter θij ,

P
(
θnewij |G?,Θ−ij , σ

)
P (θij |G?,Θ−ij) , σ

=
P
(
G?|θnewij ,Θ−ij , σ

)
P (G?|Θ, σ)

,

where Θ−ij is the set of parameters excluding θij . We considered two proposal distribu-
tions J

(
θnewij |θij

)
for θnewij , the uniform U (0, 1) and Beta (α, β). For Beta, α and β were

chosen so that the mode was equal to θij under a constraint α+ β = 50.
We ran multiple chains from randomly selected initial values of Θ and σ until they

converged to a mode of the posterior (as evidenced by the convergence of the joint like-
lihood P (σ,Θ, G?) ∝ P (G?|Θ, σ)), with samples from the posterior over the parameters
drawn from that point on. Unfortunately, due the size of the space of permutations, the
algorithm is slow to converge for graphs with large number of nodes.

When investigating the behavior of Bayesian KPGM (BKPGM) on the simulated
data, we observed that chains converged to multiple modes, none of which correspond-
ing to the original initiator matrix (e.g., see Figure 3). This suggests that a likelihood
optimization procedure could possibly find local maxima.

To assess the performance of BKPGM we repeated the experiments reported in sub-
section 4.1. Given the large converging time of the algorithm, we decreased the initia-
tor matrix (b = 2) and the size of the training network (school 83, 1278 nodes and 7982
edges) to see initial results. In this experiment, we compared the following approaches:

— KPGM: In this approach we use the original MLE estimation procedure (see Sec-
tion 3.1) to learn the model, and networks generated with Θ = Θ̂MLE .

— BKPGM: In this approach we use the Bayesian estimation procedure recently out-
lined to estimate the posterior P (Θ|G?). Networks are then generated by sampling Θ

from a Beta(α, β) distribution, where α and β are set such that (α−1)
(α+β−2) = Θ̂MAP and

(α×β)
(α+β)2(α+β+1) = V ar(Θ̂).

11

(a) Degree (b) Clustering Coefficient (c) Hop Plot
Fig. 4. Variation of graph properties in generated AddHealth networks.

(a) Degree (b) Clustering Coefficient (c) Hop Plot
Fig. 5. Variation of graph properties in generated AddHealth networks.

— BKPGM*: In this approach we use the BKPGM posterior P (Θ|G?) and generate net-
works by sampling Θ from a Beta(α, β) distribution, where α and β are set such that

(α−1)
(α+β−2) = Θ̂MAP and (α×β)

(α+β)2(α+β+1) = 0.0025. This method is included to explore the
effects of artificially inflating the variance of the posterior for Θ.

Observing the results of Figure 4, the BKPGM* algorithm shows that it is indeed
possible to augment artificially the variance of either the BKPGM or the KPGM model
to capture the natural variability in a network domain, but this approach is completely
subjective and it is not possible to realize a good estimation using the data. We tried
to increase the (estimated) variance of the BKPGM model by learning over multiple
datasets defining a new model called BKPGMG.

BKPGMG uses the Bayesian estimation procedure but we learn the model from mul-
tiple network examples. Specifically, we estimate the posterior P (Θ|G), where G is all
the networks for a specific domain. Then we approximate the posterior with a Beta dis-
tribution and sample Θ for graph generation in the same manner as for BKPGM. This
method is included to explore the effects of learning from multiple samples (rather
than a single graph).

In Figure 5 we compare the BKPGM and BKPGMG models on the AddHealth data.
The aim of this comparison is to investigate whether we can increase the (estimated)
variance of the BKPGM model by learning over multiple datasets (compared to conven-
tional methods which typically use a single network for estimation). For this reason,
we only directly compare to BKPGM and we omit the KPGM and BKPGM* results for
clarity. Unfortunately, the results show that the BKPGMG graphs still do not exhibit
sufficient variability, even though they are estimated from the set of networks that
exhibit that variability. However, surprisingly the BKPGMG graphs fit the observed
distributions for degree and hop plot much better than BKPGM (and KPGM). This
indicates that the models are overfitting when they are learned from a single network.

12

Based on these investigations, we conjecture that it is KPGMs use of independent
edge probabilities and fractal expansion that leads to the small variation in generated
graphs. We explore this issue analytically next.

4.4. Theoretical Analysis
We start with a description of how Kronecker product determines these probabili-
ties πuv = PK [u, v]. For convenience, we will label the nodes {0, . . . , N − 1} instead
of {1, . . . , N} (N = bK). Assume that matrix P1 is indexed by (i, j) with i, j = 1, . . . , b.
Let (vKvK−1 . . . v2v1)b be a representation of a number v in base b. We will refer to it as
a b-nary representation for v (it is also sometimes called b-adic), and will refer to vl as
the l-th b-it of v.2 Then

v =

K∑
l=1

(vl − 1)bl−1 (4)

with each vl ∈ {1, . . . , b}. For a given b, such representation is unique for all v ∈
{0, . . . , N − 1}. As was pointed out in [Mahdian and Xu 2007] for b = 2, and men-
tioned in [Leskovec et al. 2010], for u, v ∈ {0, . . . , N − 1} with b-nary representations
u = (uK . . . u1)b and v = (vK . . . v1)b,

πuv = PK [u, v] =

K∏
l=1

P1 [ul, vl] =

K∏
l=1

θulvl . (5)

Given a matrix of edge probabilities PK = P [K]
1 , a graph G with adjacency matrix A

is realized (sampled or generated) from KPGM with the initiator matrix P1 by setting
Auv = 1 with probability πuv = Pk [u, v] and to 0 with probability 1 − πuv. Auvs can
be thought of as Bernoulli trials or binary random variables. With a slight abuse of
notation, let |E| =

∑
i

∑
j Aij be the number of edges in a random graph G = (V,E)

with N = bK = |V| nodes sampled from KPGM. Then

E [|E|] =

N−1∑
u=0

N−1∑
v=0

E [Auv] =

b∑
i1=1

b∑
j1=1

· · ·
b∑

iK=1

b∑
jK=1

K∏
l=1

θulvl

=

b∑
i1=1

b∑
j1=1

θi1j1 · · ·
b∑

iK=1

b∑
jK=1

θiKjK =

 b∑
i=1

b∑
j=1

θij

K = SKΘ

with SΘ =

b∑
i=1

b∑
j=1

θij is the sum of entries in the initiator matrix P1. We can find the

variance V ar (|E|) similarly. Since Auvs are independent,

V ar (|E|) =

N−1∑
u=0

N−1∑
v=0

V ar (Auv) =

N−1∑
u=0

N−1∑
v=0

πuv (1− πuv)

=

N−1∑
u=0

N−1∑
v=0

πuv −
N−1∑
u=0

N−1∑
v=0

π2
uv =

 b∑
i=1

b∑
j=1

θuv

K −
 b∑
i=1

b∑
j=1

θ2
uv

K = SKΘ − SKΘ2 (6)

2In this case, the digits are 1, . . . , b rather than the standard 0, . . . , b− 1.

13

Data set Estimated mean Estimated variance
Purdue Facebook 5753 10587

Purdue Email 6605 58844
AddHealth 8021 9045070

Fig. 6. Observed mean and variance for total number of edges for real data

Fig. 7. Generative mechanisms for different Kronecker product graph models: (a) KPGM, (b) tKPGM, (c)
mKPGM. Probability matrices are on the left, realizations are on the right. The bottom left matrices are the
final sample from each model. For KPGM, bk × bk independent Bernoulli trials are performed at each level.
For tKPGM, only bl × bl independent Bernoulli trials are performed at a level l; the result of each trial is
then replicated for all bk−l × bk−l entries in the corresponding submatrix. For mKPGM, the first l levels
(l = 2 in the figure) are untied.

where SΘ2 =
∑b
i=1

∑b
j=1 θ

2
ij is the sum of the squares of the entries in the initiator

matrix P1.
Note that V ar (|E|) ≤ E [|E|] and SD (|E|) ≤

√
E [|E|] independently of the value K.

However, in the real-world networks considered in this paper, the estimated variance
significantly exceeds the mean—in Facebook the estimated mean number of edges is
5753, while the variance is 10587. Similarly, in Email the mean number of edges is
6605, while the variance is 58844. Finally, in AddHealth the average number of edges
and variance is 8021 and 9045070 respectively. This indicates that KPGM models are
incapable of reproducing the variance of these real-world network populations. —see
Table of Figure 6 where we report the observed mean and variance for the number of
edges in the Facebook, Email and AddHealth datasets.

Considering that the variance of the number of edges is lower than the expected
number of edges, it is impossible to generate network with enough variance using the
KPGM model. For this reason, we analyze another approach to increment the variance
of the number of edges modifying the sample process.

5. EXTENDING KPGM TO INCREASE VARIANCE
In this section, we propose a generalization of KPGM that permits larger variance in
the properties of the generated graphs by introducing edge dependence in the genera-
tion process. This approach increases the variance in the number of edges by introduc-
ing positive covariance between the edges. We also realizes some empirical simulations
to show the difference between KPGM and our proposed model.

5.1. Another View of Graph Generation with KPGMs
Before introducing our model variant, we present a slightly different view of the graph
generation under KPGM. This viewpoint provides an extra dimension to the model
that if exploited allows a natural way to couple the edge generation and thus to in-
crease the variance of the graph statistics.

14

Remembering the previous section, given a matrix of edge probabilities PK = P [k]
1 ,

a graph G = (V,E) with adjacency matrix A = R (PK) is realized (sampled or gen-
erated) by setting Auv = 1 with probability πuv = PK [u, v] and setting Auv = 0 with
probability 1−πuv. Auvs are realized through a set of Bernoulli trials or binary random
variables (e.g., πuv = θ11θ12θ11). For example, in Figure 7a, we illustrate the process of
a KPGM generation for K = 3 to highlight the multi-scale nature of the model. Each
level correspond to a set of separate trials, with the colors representing the different
parameterized Bernoullis (e.g., θ11). For each cell in the matrix, we sample from three
Bernoullis and then based on the set of outcomes the edge is either realized (black cell)
or not (white cell).

To formalize this, we start with a description of probabilities in the stochastic Kro-
necker matrix PK . Assume N = bK and index the entries of the initiator matrix P1

with (i, j), i, j = 1, . . . , b. Let (v1 . . . vK)b be the representation of a number v in base b
(equation 4) and πuv =

∏K
l=1 θulvl (equation 5).

This description highlights the multiscale nature of KPGM. The probability of hav-
ing an edge (u, v) in a graph realization from PK is equal to the product of contributions
(probabilities θu`v` = P1 [u`, v`]) from different scales (`), with higher order b-its (cor-
responding to small `) responsible for the high-level structure of the graph, and the
lower order b-its (corresponding to ` close to K) are responsible for the local structure.

Alternatively, each Auv can be thought of as drawn in K stages, one for each b-it of u
and v. Let A`uv be a binary random variable with P

(
A`uv = 1

)
= θu`v` and P

(
A`uv = 0

)
=

1− θu`v` . Then Iuv = IKuv ∧ IK−1
uv ∧ · · · ∧ I1

uv =
∏K
`=1A

`
uv or in other words, an edge (u, v)

is included if and only if the trials A`uv resulted in a success for all scales ` = 1, . . . ,K.
Equivalently, an `-th scale adjacency matrix A` =

(
A`uv

)
is realized from (PK)` =

1b ⊗ . . . ⊗ 1b︸ ︷︷ ︸
`−1

⊗ P1 ⊗ 1b ⊗ . . . ⊗ 1b︸ ︷︷ ︸
K−`

where 1b is a b × b matrix of ones. An adjacency

matrix A = A1 ◦ · · · ◦AK is an entriwise (Hadamard) product of the adjacency matrices
at K scales. See illustration in Fig 7(a).

Note that each matrix (PK)` consists only of the values of the initiator matrix P1.
Each of these values is repeated bK−1 × bK−1 times and is contained in the intersec-
tion of bK−1 rows and columns, with the value θij appearing in rows u with u` = i
and columns v with v` = j. Because of the Kronecker product structure of (PK)`, pairs
(u, v) corresponding to the same probability values appear in blocks of bK−` × bK−`.
It is important to note that even though many of A`uv have the same probability dis-
tribution, under KPGM they are all sampled independently of one another. Relaxing
this assumption will lead to extension of KPGMs capable of capturing the variability
of real-world graphs.

5.2. Tied KPGM
Even though the probability matrix PK exhibits hierarchical or multiscale structure,
this hierarchy is not explicit in the graphs realized from KPGM because all of the
trials at all scales are performed independently, or in other words, all of the edges
are untied at all scales. We propose a model where the trials have a hierarchical
structure as well, leading to a higher grouping of edges and a higher variance in
the number of edges. In this model, the edges are tied at all common scales. For
the KPGMs, the adjacency matrix A is obtained from the edge probability matrix PK ,
A = R (PK) = R (P1 ⊗ . . . ⊗ P1). Instead, we propose to realize an adjacency matrix
after each Kronecker multiplication. We denote by Rt (P1,K) a realization of this new
model with the initiator P1 and K scales. We define Rt recursively, Rt (P1, 1) = R (P1),
and Rt (P1,K) = Rt (Rt (P1,K − 1) ⊗ P1). If unrolled,

15

A = Rt (P1,K) = R (. . . R (R (P1) ⊗ P1) . . .)︸ ︷︷ ︸
K realizations of R

.

Similar to section 5.1, we define the probability matrix for scale `, (PK)` = P1 for
` = 1, and (PK)` = Rt

(
(PK)`−1

)
⊗ P1 for ` ≥ 2. Under this model, at scale ` there are

b` × b` independent Bernoulli trials rather than bK × bK as (PK)` is a b` × b` matrix.
These b` × b` trials correspond to different prefixes of length ` for (u, v), with a prefix
of length ` covering scales 1, . . . , `. Denote these trials by T `u1...u`,v1...v`

for the entry
(u′, v′) of (PK)`, u

′ = (u1 . . . u`)b, v
′ = (v1 . . . v`)b. The set of all independent trials is

then T 1
1,1, T

1
1,2, . . . , T

1
b,b, T

2
11,11, . . . , T

2
bb,bb, . . . , T

K
1 . . . 1︸ ︷︷ ︸

K

,1 . . . 1︸ ︷︷ ︸
K

, . . . , TKb . . . b︸ ︷︷ ︸
K

,b . . . b︸ ︷︷ ︸
K

. The proba-

bility of a success for a Bernoulli trial at a scale ` is determined by the entry of the P1

corresponding to the `-th bits of u and v:

P
(
T `u1...u`,v1...v`

)
= θu`v` .

One can construct A`, a realization of a matrix of probabilities at scale `, from a b` × b`
matrix T by setting A`uv = T `u1...u`,v1...v`

where u = (u1 . . . uK)b, v = (v1 . . . vK)b. The
probability for an edge appearing in the graph is the same as under KPGM as

Auv =

K∏
`=1

A`uv =

K∏
`=1

T `u1...u`,v1...v`
=

K∏
`=1

θu`v` .

Note that all of the pairs (u, v) that start with the same prefixes (u1 . . . u`) in b-nary
also share the same probabilities for A`uv, ` = 1, . . . ,K. Under the proposed models
trials for a given scale t are shared or tied for the same value of a given prefix. We thus
refer to our proposed model as tied KPGM or tKPGM for short. See Figure 7(b) for an
illustration.

Just as with KPGM, we can find the expected value and the variance of the num-
ber of edges under tKPGM. Since the marginal probabilities for edges (u, v) are the
same as under KPGM, the expected value for the number of edges is unchanged,
E [|E|] =

∑N−1
u=0

∑N−1
v=0 E [Auv] = SKΘ . The variance V ar (|E|) can be derived recursively

by conditioning on the trials with prefix of length ` = 1:
V ar (|E|) = EP (A11,...,Abb)V ar (XK |A11, . . . , Abb) + V arP (A11,...,Abb)E [XK |A11, . . . , Abb]

=

b∑
i=1

b∑
j=1

[
πijV ar (XK−1) + πijE [XK−1]

2 − (πijE [XK−1])
2
]

= SΘ × V ar (XK−1) + (SΘ − SΘ2)E [XK−1]
2

= SΘ × V ar (|EK−1|) + (SΘ − SΘ2)S
2(K−1)
Θ .

where |EK−1| corresponds to the number of edges generated by K − 1 Kronecker mul-
tiplication rather than K (|EK | = |E|). Using V ar (|E1|) = SΘ − SΘ2 . The solution to
this recursion is

V ar (|E|) = SK−1
Θ

(
SKΘ − 1

) SΘ − SΘ2

SΘ − 1
. (7)

5.3. Mixed KPGM
Even though tKPGM provides a natural mechanism for clustering the edges and for
increasing the variance in the graph statistics, the resulting graphs exhibit too much

16

variance. One of the possible reasons is that the edge clustering and the corresponding
Bernoulli trial tieing should not begin at the highest shared scale (to model real-world
networks). To account for this, we introduce a modification to tKPGM that ties the
trials starting with prefix of length ` + 1, and leaves the first ` scales untied. Since
this model will combine or mix the KPGM with tKPGM, we refer to it as mKPGM.
Note that mKPGM is a generalization of both KPGM (` = K) and tKPGM (` = 1).
The effect of tieing can be seen in Figure 8—the graph sampled from KPGM exhibits
little grouping of the edges, the graph sampled from tKPGM exhibits strong grouping,
and the graph sampled from mKPGM falls in between the other two. How close would
the properties of a graph from mKPGM resemble one of the other two depends on the
proportion of untied scales.

Formally, we can define the generative mechanism in terms of realizations. Denote
by Rm (P1,K, `) a realization of mKPGM with the initiator P1, K scales in total, and `
untied scales. Then Rm (P1,K, `) can be defined recursively as Rm (P1,K, `) = R (PK)
if K ≤ `, and Rm (P1,K, `) = Rt (Rm (P1,K − 1, `) ⊗ P1) if K > `. Scales 1, . . . , ` will
require b` × b` Bernoulli trials each, while a scale s ∈ {`+ 1, . . . ,K} will require bs × bs
trials. See Figure 7(c) for an illustration.

Intuitively, the graph sampling mechanism under mKPGM can be viewed as gen-
erating a binary b` × b` matrix according to KPGM with P` = P [`]

1 , and then for each
success (1 in the matrix) generating a bK−`×bK−` matrix according to tKPGM with ini-
tiator P1 andK−` scales. Failure (0) in the intermediate matrix results in a bK−`×bK−`
matrix of zeros. These bK−` × bK−` then serve as submatrices of the realized bK × bK
adjacency matrix.

Since the marginal probabilities for edges are unchanged, P (Auv) = πuv =∏K
l=1 θulvl , the expected value for the number of edges is unchanged as well, E [|E|] =

SKΘ . However, the variance expression is different from that in (7), and it can be ob-
tained conditioning on the Bernoulli trials of the ` highest order scales:

V ar (|E|) = SK−1
Θ

(
SK−`Θ − 1

) SΘ − SΘ2

SΘ − 1
+
(
S`Θ − S`Θ2

)
S

2(K−`)
Θ . (8)

Note that for ` = 1, the variance is equal to SK−1
Θ

(
SKΘ − 1

) SΘ−SΘ2

SΘ−1 , the same as for
tKPGM, and the variance of mKPGM is smaller than that of tKPGM for ` > 1. When
` = K, the variance is equal to SKΘ − SKΘ2 , the same as for KPGM, and the variance of
mKPGM is greater than that of KPGM for ` < K.

From another point of view, given Θ, K, and ` ∈ [1, · · · ,K] the number of untied
levels, the mKPGM generation process samples a network of size bK as follows. First,
the model uses a KPGM model with parameters Θ and ` to calculate a probability
matrix P` and sample a graph G`. Then, a subsequent Kronecker product, G` ⊗ Θ,
is realized to obtain a new probability matrix P`+1. To tie the parameters, a graph
G`+1 is sampled from P`+1 before any further Kronecker products. This process is then
repeated K − `− 1 times to generate the final network G = (V,E).

Considering this generation process, the running time of a mKPGM network is sep-
arated in the generation of the KPGM network G` = (V`,E`) (with b` nodes and S`Θ
edges) and the generation of the K − ` tied levels for each edge of the set E`. The run-
ning time for KPGM is O(|E`|) [Leskovec and Faloutsos 2007], while the running time
of one subnetwork with K − ` tied levels corresponds to the total number of bernoulli
trial for the generation. Considering that the expected number of edges for the level
i − 1 is given by Si−1

Θ , and that for each edge b2 bernoulli trials are realized (one for

17

Fig. 8. Generated networks of 28 nodes for different Kronecker product graph models: KPGM
(left), tKPGM (center), mKPGM (right). For mKPGM the number of untied scales was 5.

(a) Total Edges (b) Degree (c) Cluster Coefficient (d) Diameter

Fig. 9. Mean value (solid) ± one sd (dashed) of characteristics of graphs sampled from mKPGM as a func-
tion of l, number of untied scales.

each each parameter of Θ), the total number of trials is given by:
K−`∑
i=1

b2Si−1
Θ = b2

K−`−1∑
i=0

SiΘ = b2
1− SK−`Θ

1− SΘ

considering each trial as O(1), the running time for the generation of K − ` tied levels
is O(b2SK−`Θ). Multiplying this value for the number of edges of G`, the final running
time for the entire network is O(S`Θ + S`Θb

2SK−`Θ) ≈ O(b2SKΘ) ≈ O(|E|).

5.4. Empirical Simulations
We perform two shorts empirical analysis of mKPGMs using simulations. Figure 9
shows the variability over four different graph characteristics, calculated over 300

sampled networks of size 210 (b = 2 and K = 10) with Θ =

[
0.99 0.20
0.20 0.77

]
, for

` = {1, .., 10}. In each plot, the solid line represents the mean of the analysis (median
for plot (b)) while the dashed line correspond to the mean plus/minus one standard
deviation (first and third quartile for plot(b)).

In Figure 9(a), we can see that the total number of edges does not change signif-
icantly with the value of `, however the variance of this characteristic decreases for
higher values of `, confirming that the KPGM (` = 10) has the lowest variance of all.

Figure 9(b) shows how the median degree of a node increases proportionally to the
value of `. Also, considering that the number of nodes in the network remains constant
for all values of `, it is clear that as ` increases the edges are assigned more uniformly
throughout the nodes compared to the tKPGM (` = 1)—where some nodes get the
majority of the edges.

The Network average cluster coefficient presented in plot (c) of the same figure,
demonstrates how the clustering coefficient of the network and its respective variance
decrease as ` increase. Considering that KPGM has a uniformly repartition of the
edges through the nodes, there is a small probability that three nodes are connected

18

among them which reduced the probability to get a higher clustering coefficient. On
the other hand, the sampling process of tKPGM allows, with a higher probability, that
some groups of nodes will be connected among them increasing the clustering coeffi-
cient of the network.

In the final plot (d) can be observed that the diameter increases with the value of
`. The uniform assignment over different nodes in the KPGM model produces large
chains of nodes that are not connected between them, generating a huge diameter
for the network. On the other hand, how tKPGM produces different groups of nodes
connected among them the diameter is just incremented by the connection between
these groups.

The clustering coefficient and diameter phenomena explained before can be observed
in figure 8 where in the left plot (KPGM) the edges are distributed over all the nodes,
producing a higher diameter but a small clustering coefficient. In the middle plot
tKPGM has group of nodes with several edges among them increasing the cluster-
ing coefficient value however there is few edges connecting these groups. Finally the
right plot shows how mKPGM produces some groups of nodes and at the same time
some connection between these groups.

The second empirical simulation explores the advantages of the mKPGM represen-
tation over KPGM, as well, as the utility of a larger initiator matrix. We generated
networks over a wide range of parameter values in Θ and measured the character-
istics of the resulting graphs. Specifically, we considered 9239 different values of Θ
for initial matrices of size b = 2. For each Θ setting, we generated 50 networks with
K = 11 from both the KPGM (` = K) and the mKPGM (` = 6). This resulted in net-
works with 3500-15200 edges. We also generated the same quantity of networks, with
similar number of nodes, edges and equivalent levels of parameter tying for initial ma-
trices of size b = 3. For b = 3, we considered 18816 different values of Θ and generated
networks with K = 7 from KPGMs (` = K) and from mKPGM (` = 4). This resulted in
networks with 3400-16300 edges. From the set of networks generated by each param-
eter setting, we calculated three moments for each graph i: (i) number of edges (di), (ii)
average clustering coefficient (ci), and (iii) average geodesic distance (gi). We plot the
observed moments in Figure 10.

Figure 10 first column shows that mKPGM (d) is capable of generating higher clus-
tering coefficient than the KPGM (a), obtaining the highest clustering coefficient with
b = 3. However, the KPGM is capable of producing larger geodesic distances. Figures
(b) and (e) show that the average geodesic distance is inversely proportional to the
number of edges for KPGM, which implies that the high geodesic distance is obtained
via small numbers of edges connected in chain-like structures. Finally, figures (c) and
(f) confirms that mKPGM can generate higher clustering coefficient than KPGM, and
that mKPGMs can generate a wider range of networks with higher clustering coeffi-
cient using b = 3.

6. MKPGM ESTIMATION
This section explains the training algorithm of the mKPGM model. Lamentably, the
training algorithm for KPGM can not be applied for mKPGM algorithm. However, con-
sidering the advantage of the permutation independent of the MoM training algorithm
(subsection 3.1), we develop a new training algorithm which combines the simulated
method of moments with a constrained line search in two dimensions (2D) to obtain
the best set of parameters.

The empirical simulations indicate that the structure of tKPGMs (high clustering,
small diameter) will be unlikely to capture the characteristics of real world networks,
thus we are more interested in estimating the parameters for mKPGM models. We

19

(a) KPGM gi VS ci (b) KPGM ci VS di (c) KPGM gi VS di

(d) mKPGM gi VS ci (e) mKPGM ci VS di (f) mKPGM gi VS di

Fig. 10. Variation of graph properties for synthetic networks using generator matrix of size b=2 and b=3
for KPGM model.

conjecture that mKPGMs will be able to capture the variance and clustering of real
world social networks more accurately than conventional KPGMs.

Even though the likelihood of mKPGMs is similar to the KPGM likelihood (Eq. 1), it
can not be used to calculate the parameters of the model. The likelihood of the mKPGM
model has two parts, which vary as a function of `, the number of untied scales in the
model. One part of the likelihood (` levels) is based on the original KPGM. The other
part of the likelihood (K − ` levels) is based on tKPGM. The likelihood of the observed
graph P (G?|Θ, σ) for a mKPGM model is calculated as:

P (G?|Θ, σ) =
∏

(u,v)∈E

πuv
∏

(u,v)/∈E

(1− πuv) =
∏

(u,v)∈E

K∏
i=1

θuivi

∏
(u,v)/∈E

(
1−

K∏
i=1

θuivi

)

=
∏

(u,v)∈E

P`[σu, σv]
K−`∏
i=1

θuivi

∏
(u,v)/∈E

(
1− P`[σu, σv]

K−`∏
i=1

θuivi

)

One might think that the KPGM MLE estimation algorithm could easily be extended
to estimate the parameters of mKPGMs. If the level of untied scales is known, then
the algorithm can alternate sampling a permutations and estimating the parameters
of the KPGM and tKPGM models. However, we found out that this estimation is not
straightforward in this context, since local search (i.e., swap of single pair of nodes)
in permutation space is extremely unlikely to discover the block structure that is
necessary to accurately estimate mKPGMs and tKPGMs. In practice, we found that
straightforward MLE estimation only works well when starting from very close to the
true permutation—which will not work for real datasets.

Discarding MLE estimation, we searched for a training method which is indepen-
dent of the position of the nodes in the network. Based on the work [Gleich and Owen

20

2012], we tried to implement the method of moments (MoM) for mKPGM. However,
because of the complex relationship between the edges in mKPGMs, it is difficult to
derive analytical expressions for even simple moments. In particular, consider the
case where Aij = 1 if there is an edge between nodes i and j, and 0 otherwise. Then
E[AijAkl] 6= E[Aij]E[Akl] for nodes that have common parameters in the network gen-
eration of GK−`. This makes it difficult to directly minimize f(Θ,F(G∗)) in Eq. 2.

Even though, a direct implementation of MoM is not possible for mKPGMs, since the
MoM training is permutation independent, it successfully avoids the difficult search
over the factorial permutation space. To exploit this, we developed a simulated method
of moments (SMM) approach that approximates the objective function in Eq. 2 with
empirically estimated moments. Simulated method of moments (see e.g., [Pakes and
Pollard 1989]) is often used to estimate models where the moments are complicated
functions that cannot easily be evaluated analytically (e.g., in econometric models). In
SMM methods, simulation experiments are used to empirically estimate the moments
and/or their derivatives.

In our SMM method, we replace the analytical expression of the moment i given by
E[Fi(G)|Θ] with an empirical estimation Ê[Fi(G)|Θ] based on simulation of networks
from Θ. In the function estObjFunc below, we show how to estimate f(Θ,F(G∗)) em-
pirically. The function estimates the error between F(G∗) and the estimate Ê[F(G)|Θ]
calculated empirically via SMM, by averaging the moments observed in S sampled
networks. Each network G(i) (i ∈ {1, · · · , S}) is generated with the mKPGM algorithm
using Θ, K, and `. For each G(i), the vector of moments F(G(i)) is obtained and the
estimation of the expected moments is calculated by Ê[F(G)|Θ] = 1

S

∑S
i=1 F(G(i)). Fi-

nally, the value of the objective function is calculated by Eq. 2. The pseudocode for this
function is provided in Algorithm 1.

ALGORITHM 1: Function estObjFunc
Require: Θ, K, `, S, F∗
1: for i = 1; i+ +; i ≤ S do
2: Generate G(i) mKPGM network using (Θ,K, `)
3: Calculate moments F(G(i)).
4: end for

5: Ê[F(G)|Θ] =
1

S

S∑
i=1

F(G(i))

6: return
∑|F(G)|

i=1

(
Fi(G

∗)−Ê[Fi(G)|Θ]
Fi(G∗)

)

The calculation of the objective function through SMM avoids the complexities of
determining an analytical expression for the moment, and facilitates the inclusion
of a wider range of moments in the learning algorithm. However, since the objective
function is not convex, we still need to determine a way to search over the parame-
ter space to minimize f(Θ,F(G∗)). Moreover, without a closed form expression for the
moments, we can not estimates their gradients to implement a gradient descent-type
optimization. To address this, we develop a line search optimization method, where
the moments are empirically estimated by SMM.

To investigate whether linear search is a promising direction to pursue, we explored
whether the objective function is locally convex. We considered each parameter θij ,
while keeping the rest of parameters constant, and evaluated f(Θ,F(G∗)) for different
values of θij (see Figure 11(a)). In all cases, we observed a locally convex error func-
tion with a minimum around the value of θij such that expected number of edges is

21

(a) 2D error (b) 3D error
Fig. 11. Error function with respect to the variation of one (left) and two (right) parameters.

approximate to the number of edges of the training network (SKΘ ≈ |E∗|). Then, the
minimum is founded when θij makes SKΘ around the number of edges of the training
network. This implies that one dimensional linear search (i.e., changing a single pa-
rameter) will not be able to easily explore the parameter space once it reaches a local
minima that matches |E∗| (since changing a single parameter in isolation will always
affect the expected number of edges). However, a two dimensional (2D) search, where
we keep SKΘ constant, could improve f(Θ,F(G∗)) for other moments.

To explore this, we considered each combination of two parameters in Θ and eval-
uated f(Θ,F(G∗)) for different values of the parameters, while keeping the rest of
parameters constant (see Figure 11(b)). Again, in all cases, the 2D curve was locally
convex. Thus, knowing that the 2D parameter space is likely to be locally convex we
will approximate a full search over the parameter space by initializing the parame-
ters such that SKΘ = |E∗| and performing a linear search in two dimensions, while
constraining the parameters to match SKΘ = |E∗|. This will help the algorithm from
getting trapped in local minima.

6.1. mKPGM Learning Algorithm
The training algorithm for mKPGM realizes a constraint linear search over possible
combinations of two parameters to find the best set of parameters that can reproduce
the desires moments. The moments are approximated by Ê[F(G)|Θ] using the SMM.
The pseudocode for this function is provided in Algorithm 2.

The algorithm first calculates the required number of Kronecker multiplications
through K =

⌈
log(|V ∗|)

log(b)

⌉
, where |V ∗| is the number of nodes of the training network

G? = (V ∗, E∗) and b × b is the size of the parameter matrix Θ. It continues with the
initialization of each parameter Θ by ∀i, j θij= K

√
|E∗|/b2, which ensures the constraint

SKΘ = |E∗| explained before. With the initial set of parameters Θ, the initial error of
the moments EF ∗ is calculated by estObjFunc. The algorithm continues with the gen-
eration of the set of Nc =

(
b2

2

)
possible pairs of parameters to consider in the 2D search

(Θpairs = {(11, 12), · · · , (b(b − 1), bb)}, where Θpairs(i) = (ij, kl) corresponds to the two
indexes of the i-th element of the set). In case of an undirected networks the set Θpairs

is reduced to Nc =
(
b(b+1)

2

)
elements, due to the symmetric relationship in Θ.

Once that the EF ∗ and Θpairs are calculated, the algorithm initializes the search
over the parameter space. The algorithm consists in three loops: The first loop iterates
over step sizes δ, which determines the changes of parameters values θij (θij ± δ).
The second loop iterates over the set Θpairs, where in each iteration two indexes are
selected determining the part of space that is searched. The two indexes of the selected
parameters are given by the pair index = Θpairs(mod(j,Nc) + 1), where index(1) and
index(2) correspond to the parameters indexed by the first and second element of index

22

ALGORITHM 2: mKPGM training algorithm
Require: G? = (V∗,E∗), b, δ, `, iter, S
1: Calculate the moments F(G∗) for G?

2: K =
⌈

log(|V ∗|)
log(b)

⌉
3: Initialize ∀ i, j θij = K

√
|E∗|/b2

4: EF ∗ = esObjFunc(Θ,K, `, S,F(G∗))

5: Nc =
(
b2

2

)
{combinations of 2 parameters}

6: Let Θpairs = {(11, 12), · · · , (b(b− 1), bb)}
7: for i = 1; i+ +; i ≤ iter do
8: j = 0
9: idx = Nc

10: while j < idx do
11: index = Θpairs(mod(j,Nc) + 1)
12: for k = −3; k + +; k ≤ 3 do
13: Ω = Θ
14: Ωindex(1) = Ωindex(1) + k ∗ δ
15: Ωindex(2) = Ωindex(2) − k ∗ δ
16: if (0 ≤ Ωindex(1),Ωindex(2) ≤ 1) then
17: EF ′ = estError(Ω,K, `, S,F(G∗))
18: if EF ′ < EF ∗ then
19: EF ∗ = EF ′

20: Θ = Ω
21: idx = idx+mod(j,Nc) + 1

{Search is extended for the next Nc iterations}
22: end if
23: end if
24: end for
25: j + +
26: end while
27: δ = δ/2
28: end for
29: return Θ

respectively (for example if Θpairs(1) = (11, 12), then index(1) = 11 modifying θ11 and
index(2) = 12 modifying θ12). The third loop (over k), implements the restricted linear
search, by iterating from −3δ to 3δ with a step size of δ. The loop begins with a copy
of the original set of parameters (Ω = Θ), then two parameters of Ω are modified
according to Ωindex(1) = Ωindex(1) + k and Ωindex(2) = Ωindex(2) − k. This modification
searches over the two dimensional parameter space while constraining SKΘ = |E∗|.
If ∀ i, j 0 ≤ Ωij ≤ 1, then the moment error EF ′ for the new set of parameter Ω is
calculated by estObjFunc. If the new moment error is lower than the minimum error
(EF ′ < EF ∗), then Ω is accepted, the error is updated, and the search extended for the
next Nc iterations.

The running time of the mKPGM training algorithm is O(C|E|), where C is at least
iter ∗ Nc ∗ 7 ∗ S. This value is calculated from the inner loop (estObjFunc function)
to the outer loop (the number of iteration for δ loop). The running time of the func-
tion estObjFunc is given by O(S(|E| + |V| + |E|)) ≈ O(S|E|). This value corresponds
to the generation and analysis of S networks, where the generation time of mKPGM
algorithm is dominated by O(|E|) (subsection 5.3), and the moment estimation is domi-
nated by O(|E|+ |V|) (the running time of a breadth-first search algorithm to calculate
the geodesic distance for a sample of nodes). The range of three main loops contribute
the other values of C.

23

Our proposed training method has three important advantages in comparison to the
previous MoM learning method for KPGMs. First, our algorithm is not limited to the
specific moments considered in the original MoM method. The only consideration for
including additional moments involve the time complexity for calculating them em-
pirically in network samples. In particular, we considers five moments in our training
algorithm: (i) average number of edges, (ii) average cluster coefficient, (iii) average
geodesic distance (approximated by a sample of nodes rather than all pairs), (iv) size
of the largest connected component, and (v) number of nodes with degree greater than
zero (to solve the problem that Kronecker models often generate isolated nodes [Se-
shadhri et al. 2011]). The second advantage is that the SMM method facilitates appli-
cation of the training algorithm to any size of the initial generator matrix (i.e., b ≥ 2).
Third, our training algorithm is not limited to undirected networks, since the SMM
approach can handle the complexity of directed networks.

7. EXPERIMENTS
This section describes new single networks datasets utilized in the paper and a new
method of evaluation of the results based on the Kolgomorov Smirnov test.

7.1. Datasets
Besides the three datasets describes in section 2, we used three others single networks
to evaluate the training performance in single networks. The three single network data
were obtained from the Stanford Network Analysis Project.3 These single networks
were model by mKPGM with ` = K to compare our learning algorithm against KPGM
training methods. The first network is the Gnutella peer-to-peer network (Nutella),
which is a sequence of snapshots of the Gnutella peer-to-peer file sharing network from
August 2002 with 6,301 nodes and 20,777 edges. The second dataset is the Arxiv Gen-
eral Relativity and Quantum Cosmology (GRQC) collaboration network, where each
of the 5,242 nodes represent authors, and the 28,980 edges indicates a publication be-
tween two authors. The last dataset is the CAIDA AS Relationships Datasets (CAIDA)
from December 2004 with 18,501 nodes and 76,530 edges.

7.2. Methodology
We aim to capture three specific characteristics of real network datasets: degree, clus-
tering coefficient, and hop plot (described in section 2). To measure these characteris-
tics, we compare the cumulative distribution functions (CDFs) of the three characteris-
tics. The CDF provides a more complete description of the network structure compared
to a single aggregate statistic (e.g., average degree). Specifically, while some generated
networks may easily match the average of a particular characteristics, it is not as sim-
ple to match the entire distribution in the original network.

To quantitatively measure the differences between the CDFs observed in the train-
ing data and those of the generated networks, we outline a new test measure–
the 3-dimensional Kolmogorov-Smirnov distance (KS3D). The Kolmogorov-Smirnov
(KS) test measure defines the difference between two cumulative distribution
as the maximum value of the absolute difference between the two distributions
KS(CDF1, CDF2) = maxx|CDF1(x) − CDF2(x)|. This distance, which varies between
0 and 1, is utilized to define how similar are the two distributions, with zero indicat-
ing a perfect match. KS distance is commonly used to evaluate the characteristics of
graph (see e.g.,[Ahmed et al. 2011]). However, to assess whether the model matches
multiple characteristics simultaneously, researchers considered each distribution in-
dependently, even though there are clear dependencies among graph measures. This

3http://snap.stanford.edu/data/

24

could lead to a perfect match of each distribution by separate but a completely different
distribution when two or more variables are considered at the same time.

To address this issue, we outline the KS3D test measure, which captures the cor-
relation among graph measures. The KS3D test measure corresponds to the maxi-
mum difference between two discrete cumulative distributions in 3 dimensional space
(3D). To construct the 3D-CDF for each network, we represent every node i as a 3D
point Poi =< di, ci, gi > where di stands for degree, ci for clustering coefficient, and
gi is the average geodesic distance of paths from node i. We then calculate the maxi-
mum percentage difference between two distributions. Specifically, given two graphs
G(1) = (V(1),E(1)) and G(2) = (V(2),E(2)), where V(i) and E(i) represent the set of
nodes and edges respectively, the KS3D test measure is defined by:

KS3D(G(1), G(2)) = maxPox |cp1(Pox)− cp2(Pox)| (9)
where cpi(Pox) represents the percentage of points from network G(i) that are lower
or equal than the point Pox in all dimensions. The KS3D test measure varies between
0 and 1, with 0 indicating a perfect match between the two distributions. Although we
describe the distance based on three dimensions, generalization to higher dimensions
is straightforward.

The code for the KS3D test measure is presented in Algorithm 3. Given G(1) =
(V(1),E(1)) and G(2) = (V(2),E(2)), the set V = V(1) ∪ V(2) is defined. For every
node i in V, we use Poi to calculate cp1 and cp2 for G(1) and G(2), if the absolute
difference between them is greater than the maximum distance known, we save the
new difference and continue with the next point. Once that all points are considered,
the maximum distance is return. If |V| is too large to calculate the KS3D test measure,
it can be approximated through the use of a 3D-grid. In this particular case, Eq. 9 is
rewritten by KS3D(G(1), G(2)) = maxx|cp1(x) − cp2(x)|, where x is a point of the 3D-
grid.

ALGORITHM 3: KS3D test measure algorithm
Require: G(1) = (V(1),E(1)), G(2) = (V(2),E(2))
1: Let V = V(1) ∪V(2)
2: maxDist = 0
3: for node i in V do
4: Let Poi =< di, ci, gi > {degree, clustering coefficient and geodesic distance of node i}
5: for j = 1; j + +; j <= 2 do
6: cpj = 0 {Proportion of points lower than Poi in G(j)}
7: for node k in V(j) do
8: Let Pok =< dk, ck, gk >
9: if dk ≤ di and ck ≤ ci and gk ≤ gi then
10: cpj + +
11: end if
12: end for
13: cpj = cpj/|V(j)|
14: end for
15: if maxDist < |cp1 − cp2| then
16: maxDist = |cp1 − cp2|
17: end if
18: end for
19: return maxDist

25

Dataset Real data ` = 2 ` = 3 ` = 4 ` = 5
Synthetic 1277 - 2529 1107 -
Facebook 323 - - 536 291

Email 765 - 1056 483 -
AddHealth 2491 2826 1789 - -

Fig. 12. Standard deviation of the number of edges, for real data and mKPGM algorithm.

Θorig ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM 0.90 0.50 0.10
- 0.90 0.10
- - 0.70

 0.77 0.02 0.17
- 0.54 0.64
- - 0.92

 0.83 0.18 0.82
- 0.76 0.12
- - 0.08

 [
1.00 0.43

0.38

]

Fig. 13. Original and learned parameters for Kronecker algorithms in synthetic data.

8. RESULTS
We evaluated our training algorithm over one synthetic dataset and six real datasets.
For each dataset, we selected a single network to use as a training set. To control for
variation in the samples, we selected the network that was closest to the median of the
degree distribution. For the synthetic data, we selected the network 27 (13460 edges),
for Facebook data we selected the network 11 (5634 edges), and for Email data the
network 24 (6666 edges). For AddHealth, we selected the network from school 72 with
2045 nodes and 15484 edges, which is the closest network to 37 = 2187 nodes. The
other real datasets have only a single network.

To determine the best value of `, we compared the standard deviation of the number
of edges observed in the real data against the standard deviation generated by the
learned parameters. We chose the value of ` to be the value with closest match to the
real data. The standard deviation for the number of edges and the selected values of `
(in bold) are included in figure 12.

Using each selected network as a training set, we learned each of the described
models. For mKPGM and KPGM-MLE we used b = 3; for KPGM-MoM we used b = 2
since the algorithm is specific to that size of initial matrix. For mKPGMs, we used
δ = 0.15, iter = 9, and S = 50. From each learned model, we generated 50 sample
graphs. From these samples, we estimated the empirical sampling distributions for
degree, clustering coefficient, and hop plots. The results are plotted in figures 14-17
for datasets with multiple network and in figures 20-22 for single networks. The plots
show the median and interquartile range for the set of observed network distributions.
Solid lines correspond to the median of the distributions; dashed lines: the 25th and
75th percentiles.

8.1. Synthetic Data
The synthetic data experiment is intended to evaluate whether our proposed mKPGM
estimation algorithm is able to learn parameters successfully in networks generated
from mKPGM distributions. The results for all models can be observed in Figure 14,
while the learned parameters, for the methods based on Kronecker multiplication, can
be observed in Figure 13.

According to Figure 13, KPGM-MLE does not learn the original parameters, this
is also reflected in the generated networks that do not match the original networks
(Figure 14). Even though our mKPGM training algorithm does not recover the exact
parameters, it can emulate the properties of the original synthetic dataset—which can
be seen in both the visual comparison in the figures and the small KS3D error (fig-
ure 19(a), first column). We note that models are not identifiable when MoM is used

26

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 14. Variation of graph properties in generated synthetic networks.

with fewer moments than the number of model parameters. In our experiments, we
used five moments to estimate six parameters, and combined this with constrained
search—with quite accurate results. In future work, we will explore whether addi-
tional moments can be used to improve estimation without incurring additional com-
putational costs.

The only method able to model the observed variance in the synthetic networks is
mKPGM. The lack of variance and huge error for ERGM may be due to degeneracy
problems, even though we used some prescribed solutions to avoid it. We expected
that KPGMs would generated graphs with less variance than mKPGM, and this is
confirmed by the results. Finally, the lack of variance in the Chung-Lu graphs can
also be explained by the models assumption of edge independence. The variance of the
number of edges for a graph G = (V,E), with adjacency matrix A, generated by the
Chung-Lu model is:

V ar (|E|) =

N∑
i=1

N∑
j=1

V ar (Aij) =

N∑
i=1

N∑
j=1

wiwj(1− wiwj)

=

N∑
i=1

N∑
j=1

wiwj −
N∑
i=1

N∑
j=1

w2
iw

2
j = E[|E|]−

N∑
i=1

N∑
j=1

w2
iw

2
j

where wi is the weight of node i (subsection 3.2). Given that
∑N
i=1

∑N
j=1 w

2
iw

2
j ≥ 0 then

it is demonstrated that⇒ V ar (|E|) ≤ E[|E|].
The only model that can match all characteristics is mKPGM, this is not surprising

since the data were generated with a mKPGM. The first set of columns in Figure 19(a)
shows the KS3D distance for the synthetic data. To avoid the effect of the variation in
the networks, we selected the minimum KS3D distance between the set of generated
networks and G?. The results show that mKPGM is almost a perfect match with re-
spect to the original data (represented by the low value), while the other models can
not capture the joint characteristics of the synthetic data.

8.2. Real Data
Similar to the results of the synthetic data, the only model that can capture the vari-
ance observed in real networks is the mKPGM. The Chung-Lu model is the closest
method to the median of the degree distribution in all datasets (Figures 15(a)-17(a)).
However, the low variance of the method makes it difficult for it to match the entire
degree distribution. The mKPGM is able of match not only the median of the distri-
butions but also capture the variance of the degree distribution. On the other hand,
KPGM-MLE is able to match part of the degree distribution but not the variance.
KPGM-MoM and ERGM are not able to match any of the degree distributions.

27

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 15. Variation of graph properties in generated Facebook networks.

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 16. Variation of graph properties in generated Email networks.

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 17. Variation of graph properties in generated AddHealth networks.

KPGMs and Chung-Lu model generate networks with almost no clustering coeffi-
cient (Figures 15(b)-17(b)). In all the cases, over 90% percent of the nodes in these
models have zero clustering coefficient. In contrast, our mKPGM training algorithm
finds a good set of parameters for mKPGM, which are able to reproduce the clustering
observed in social networks, resulting in an almost perfect match on the Facebook and
AddHealth datasets. Lastly, ERGMs are not able to match any distribution over the
datasets.

Besides being the only method which can model the variance in real networks, the
mKPGM is the only method that can match all the Hop Plot distributions in the real
data (Figures 15(c)-17(c)). In contrast, KPGMs and Chung-Lu underestimate the hop
plot (except the KPGM-MoM on the Email data). These models are generating net-
works with a small diameter and at the same time without clustering coefficient—this
does not reflect the properties of real social networks.

Figure 19(a) shows the KS3D distance for the three real datasets. In all cases, the
most accurate model is the mKPGM. With the exception of the Facebook data, where

28

Facebook
ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM[

0.99 0.03 0.04
- 0.99 0.63
- - 0.01

][
0.58 0.05 0.87

- 0.77 0.12
- - 0.03

] [
1.00 0.33

- 0.39

]
Email

ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM[
0.98 0.05 0.01

- 0.99 0.70
- - 0.03

][
0.70 0.22 0.84

- 0.64 0.01
- - 0.01

] [
1.00 0.52

- 0.05

]
AddHealth

ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM[
0.95 0.09 0.85

- 0.97 0.07
- - 0.03

][
0.84 0.15 0.72

- 0.79 0.24
- - 0.15

] [
1.00 0.38

- 0.50

]

Nutella
ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM[

0.84 0.05 0.20
- 0.14 0.82
- - 0.68

][
0.85 0.25 0.75

- 0.49 0.17
- - 0.07

] [
1.00 0.49

- 0.29

]
GQRC

ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM[
0.01 0.01 0.78

- 0.99 0.02
- - 0.99

][
0.99 0.09 0.57

- 0.66 0.01
- - 0.27

] [
1.00 0.47

- 0.27

]
CAIDA

ΘmKPGM ΘKPGM−MLE ΘKPGM−MoM[
0.09 0.18 0.54

- 0.09 0.52
- - 0.82

][
0.91 0.46 0.70

- 0.24 0.02
- - 0.02

] [
1.00 0.59

- 0.00

]

Fig. 18. Learned parameters for Kronecker algorithms. Left: Multiple networks datasets: Facebook, Email,
and Addhealth. Right: Single networks datasets: Nutella, GRQC, and CAIDA.

the mKPGM only exhibits a small improvement over KPGM-MLE and ERGM, the
mKPGM achieves a large improvement over all the comparison statistical models. Sur-
prisingly, one of the worst models is Chung-Lu, even though it explicitly replicates the
degree distribution. KPGM-MoM performs worse than KPGM-MLE in all the cases,
but this could be explained by its use of a smaller number of parameters (i.e., b = 2).
Except for Facebook datasets, the KPGM-MLE does not adequately models any other
datasets, confirming the limitations of the current representation and learning algo-
rithms.

In Figure 18(left column), we report the learned parameters for KPGM and mKPGM
models. The similarity, among the learned parameter for mKPGM, suggests the gen-
eration of two important groups of inter-connected nodes (high values in the main
diagonal), which increase the clustering coefficient of the network, and a third group
of nodes with a sparse connectivity (low value in the main diagonal). The connection
among these groups, given by the upper triangles parameters, allow the connectivity
to capture the geodesic distance. Most of the parameters learned by KPGM-MLE are
middle-high or middle-low, generating a large connectivity between the nodes (which
explains the underestimation of the hop plot distribution) and a low clustering coeffi-
cient. Similar to mKPGMs, the learned parameters for KPGM-MoM has high values
in the main diagonal and median values in the second diagonal, however the limita-
tion of the training algorithm and the number of parameters (b = 2) do not enable the
KPGM-MoM to model the complexities of the real datasets.

In summary, our mKPGM training method is able to learn parameters from real
data—in order to accurately capture not only the structural characteristics of the ob-
served networks but also the variation in the network population.

Given that KPGMs are a special case of mKPGMs (where ` = K), we apply our train-
ing method to three individual network datasets and compare our learning algorithm
with ` = K, against the current KPGM training algorithms. Similar to the previous
results, once we learned the models we generated 50 networks to compare against the
real data. Lamentably, ERGM can not be tested in the largest dataset for memory
problem, so these results were omitted.

Similar to the previous results, mKPGM is the best algorithm to model the data,
which is confirmed by the KS3D test measure. Figures 20(a)-22(a) show the degree

29

(a) Multiple networks data (b) Single networks data
Fig. 19. 3 dimensional Kolgomorov-Smirnov distance for all datasets.

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 20. Variation of graph properties in generated Nutella networks.

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 21. Variation of graph properties in generated GRQC networks.

distribution over the different data, beside Nutella network, mKPGM is one of the
best model with Chung-Lu. While KPGM-MOM underestimate the degree in all the
cases, ERGM overestimate. Finally KPGM-MLE can model two of the datasets, doing
a complete underestimation over the GRQC data.

The low clustering coefficient for Nutella data Figures 20(b) is almost perfectly
matched by mKPGM, being the best model in comparison to the other data. Given
the very high clustering coefficient of GRQC dataset (Figure 21(b)), it is almost impos-
sible to the model match this characteristic, being mKPGM the closest model to match
it. However, the clustering coefficient for CAIDA networks was not model by mKPGM,
which could be related by the nature of business relation (Figure 22(b)).

Figures 20(c)-22(c) show the hop plot distribution for all the networks. mKPGM is
the best model in two of the dataset, having an almost perfect match with Nutella
data. Similarly, than previous results, the hop plot distribution in CAIDA network is
not as well as expected.

30

(a) Degree (b) Clustering Coefficient (c) Hop Plot

Fig. 22. Variation of graph properties in generated CAIDA networks..

In Figure 18(right column), we report the learned parameters for KPGM and
mKPGM models. Given the different behavior of the network, the differences over
the learned parameter for each model is expected. While GRQC behaves similarly to
the previous dataset to model the extremely high clustering coefficient of the network
(high values in the main diagonal), the NUTELLA learned parameters does not have a
extremely high value to avoid a high clustering coefficient. On the other hand, CAIDA
learned parameters, has very low values in the main diagonal, and two middle val-
ues in the upper left triangle, explaining the low clustering coefficient observed in the
network.

Figure 19(b) shows theKS3D distance for the three single datasets. The results show
that mKPGM algorithm has the smallest error in all datasets, outperforming all the
other models (remember that we could not learn an ERGM on CAIDA due to memory
issues). In two of the datasets, mKPGM achieves almost a 50% reduction in KS dis-
tance compared to the next best competitor. This confirms that our learning algorithm
can also be applied to model datasets where we have no information about variabil-
ity and outperform existing KPGM learning methods. This implies that other models
could have a better independent match of the characteristics by separate, however they
are not resembling the real structure of the networks.

9. DISCUSSION AND CONCLUSIONS
In this paper, we investigated whether the state-of-the-art generative models for large-
scale networks are able to reproduce the properties of multiple instances of real-world
networks generated by the same source. Surprisingly Chung-Lu, ERGM and KPGMs
methods, some of the most commonly used models, produces very little variance in
the simulated graphs, significantly less than the observed in real data. To explain this
effect, we showed analytically that KPGMs and Chung-Lu cannot capture the variance
in the number of edges that we observe in real network populations, and attempts to
inflate the variance of characteristics of KPGM graphs by increasing the number of
parameters or by employing Bayesian approach were not sufficient. Moreover, KPGMs
and Chung-Lu can not reproduce the clustering coefficient observed in real network
being incapable to model most of social networks.

We demonstrate, that the lack of variance in the number of edges for KPGM and
Chung-Lu can be explained by the independent drawn of edges, in the generation pro-
cess. To solve this problem for KPGM, we proposed a tied sampled of the edges. The
Tied KPGM, that preserves the marginal probabilities of edges in a given location but
does not treat them as independent, results in considerably more variance than the
original KPGM model and the variance reflect in real-world domains. Due to this, we
introduce the mixed-KPGM, that introduces dependence in the edge generation pro-
cess by performing Bernoulli trials to determine whether new edges are added in a

31

hierarchy. By choosing the level where the hierarchy begins, one can tune the amount
of edges that are grouped in a sampled graph.

The mKPGM is a generalization of KPGM (` = K) and tKPGM (` = 1), with special
properties when the value of ` increase. An experimental analysis empirically demon-
strates that as ` increment from 1 to K the mean and variance of the clustering coeffi-
cient for the sampled network decrease, and the variance of the total number of edges
decrease too. As an opposite behavior, the diameter and the degree increment propor-
tionally to the value of `. Another experimental analysis indicates that when the initial
size of Θ is increased to b = 3, mKPGM can generate a wider range of networks with
high clustering coefficient. In contrast, KPGMs do not exhibit as much change with
respect to b.

One synthetic and three real Multiple networks datasets were analyzed using
Chung-Lu, ERGM, KPGM and mKPGM. mKPGM is the best model among them,
mKPGM improves the fit in clustering coefficient, and specially in hop plot distribu-
tion where is the only model to match, almost perfectly, this characteristic. Moreover,
mKPGM is the only model able to reproduce the observed variance in network charac-
teristics. The improved fit is due primarily to the ability of mKPGMs to jointly capture
the clustering coefficient and the hop plot distribution.

We also demonstrated, over three single networks real datasets, that mKPGM can
be applied to learn from a single network by setting ` = K. In this case, mKPGMs
offer a significant improvement over current KPGM learning algorithms—by avoiding
the difficulties of search over permutations and the complexities of analytical moment
calculations through the use of simulated method of moments.

These results agree with the new statical measures utilized in the paper, the 3D
Kolmogorov-Smirnov test measure. This measure considers the correlation among
graph distributions utilized in this paper and enables a more accurate assessment of
the characteristics of generated networks by considering the empirical joint distribu-
tion. In the seven datasets utilized in this paper, the mKPGM algorithm obtained the
best performance among all datasets. Confirming, the capability of mKPGM to model
real data.

In the future, we will extend the mKPGM learning algorithm to consider the use of
additional moments, including higher order moments (i.e., variance) that can be used
to learn the most appropriate way to tie parameters (e.g., by varying levels throughout
the graph).

REFERENCES
AHMED, N., NEVILLE, J., AND KOMPELLA, R. 2011. Network sampling via edge-based node selection with

graph induction. Tech. Rep. CSD TR #11-016, Dept of Computer Science, Purdue University.
BARABSI, A.-L. AND ALBERT, R. 1999. Emergence of scaling in random networks. Science 286, 5439, 509–

512.
CHUNG, F. AND LU, L. 2002. The average distances in random graphs with given expected degrees. Pro-

ceedings of the National Academy of Sciences of the United States of America 99, 25, 15879–15882.
ERDOS, P. AND RENYI, A. 1960. On the evolution of random graphs. In PUBLICATION OF THE MATHE-

MATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES. 17–61.
FRANK, O. AND STRAUSS, D. 1986. Markov graphs. Journal of the American Statistical Association 81, 395,

pp. 832–842.
GLEICH, D. F. AND OWEN, A. B. 2012. Moment based estimation of stochastic Kronecker graph parameters.

Internet Mathematics X, X, XX–XX.
HANDCOCK, M. S. 2003. Assessing degeneracy in statistical models of social networks. Working Paper 39,

Center for Statistics and the Social Sciences, University of Washington.
HARRIS, K. 2008. The National Longitudinal Study of Adolescent health (Add Health), Waves I & II, 1994-

1996; Wave III, 2001-2002 [machine-readable data file and documentation]. Chapel Hill, NC: Carolina
Population Center, University of North Carolina at Chapel Hill..

32

KUMAR, R., RAGHAVAN, P., RAJAGOPALAN, S., SIVAKUMAR, D., TOMKINS, A., AND UPFAL, E. 2000.
Stochastic models for the web graph. In Proceedings of the 42st Annual IEEE Symposium on the Foun-
dations of Computer Science.

LESKOVEC, J., CHAKRABARTI, D., KLEINBERG, J., FALOUTSOS, C., AND GHAHRAMANI, Z. 2010. Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research 11, Feb, 985–1042.

LESKOVEC, J. AND FALOUTSOS, C. 2007. Scalable modeling of real graphs using kronecker multiplication.
In Proceedings of the 24th international conference on Machine learning. ICML ’07. ACM, New York,
NY, USA, 497–504.

MAHDIAN, M. AND XU, Y. 2007. Stochastic Kronecker graphs. In 5th International WAW Workshop. 179–
186.

MORENO, S. AND NEVILLE, J. 2009. An investigation of the distributional characteristics of generative
graph models. In Proceedings of the The 1st Workshop on Information in Networks.

NEWMAN, M. E. J. 2003. The structure and function of complex networks. SIAM Review 45, 2, 167–256.
PAKES, A. AND POLLARD, D. 1989. Simulation and the asymptotics of optimization estimators. Economet-

rica 57, 5 Sep, 1027–1057.
ROBERT, C. AND CASELLA, G. 2004. Monte Carlo statistical methods. Springer Verlag.
ROBINS, G., SNIJDERS, T., WANG, P., HANDCOCK, M., AND PATTISON, P. 2006. Recent developments in

exponential random graph (p*) models for social networks. Social Networks 29, 192–215.
SESHADHRI, C., PINAR, A., AND KOLDA, T. G. 2011. An in-depth study of stochastic kronecker graphs.

Data Mining, IEEE International Conference on 0, 587–596.
SNIJDERS, T., PATTISON, P., ROBINS, G., AND HANDCOCK, M. 2004. New specifications for exponential

random graph models. Sociological Methodology 36, 99–153.
WASSERMAN, S. AND PATTISON, P. E. 1996. Logit models and logistic regression for social networks: I. An

introduction to Markov graphs and p*. Psychometrika 61, 401–425.
WATTS, D. AND STROGATZ, S. 1998. Collective dynamics of ’small-world’ networks. Nature 393, 440–42.

	Tied Kronecker Product Graph Models to Capture Variance in Network Populations
	Report Number:
	

	tmp.1355935492.pdf.IpAE9

