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Abstract

Motivation: Calorie restriction (CR), without malnutrition, is one of the most conserved non-

genetic interventions that extends both the mean, and the maximum life-span in evolutionarily distant

species, ranging from yeast to mammals. The target of rapamycin (TOR) has been shown to play

a key role in mediating life-span extension in response to the CR, by modulating cellular response

to nutrient-availability and orchestrating various components of cellular machinery, including cell

growth, translation initiation, ribosome biogenesis, and autophagy. Furthermore, both genetic and

pharmacological interventions inhibiting the TOR pathway exhibit a similar phenotype, which can

not be further extended by CR. These observations have motivated experimental investigations of

downstream effectors of TOR, which are responsible for mediating life-span extension.

Results: In this paper, we derive the first comprehensive computational map of downstream

effectors of TOR. We adopt a systematic approach, based on the known random-walk method for

tracing information flow in the yeast interactome. Using a rigorous statistical framework, we identify

targets carrying significant amounts of TOR signaling. Our approach, unlike experimental methods,

is not limited to specific aspects of cellular response. Rather, it is shown to predict transcriptional

changes, as well as post-translational modifications in response to TOR signaling. GO enrichment

analysis of the identified effectors not only sheds light on the functional mechanisms downstream

of TOR, but also provides mechanistic understanding of the crosstalk among them. In addition to

identifying several known effectors, our method also identifies a number of other targets, whose roles

have been hypothesized in literature but not confirmed; as well as potential new targets.

Availability: All datasets and supplementary materials are available for download from http:

//compbio.soihub.org/projects/torc1.
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1 Introduction

Cellular aging is a multi-factorial complex phenotype, characterized by the accumulation of damaged

cellular components over the organism’s life-span (Fontana et al., 2010). The progression of aging

depends on both the increasing rate of damage; to DNA, RNA, proteins, and cellular organelles; as well

as the gradual decline of the cellular defense mechanisms against stress, which can ultimately lead to a

dysfunctional cell with a higher risk factor for disease.

Limiting caloric intake without causing malnutrition, also known as calorie restriction (CR), is one of

the most conserved non-genetic interventions, which extends life-span in evolutionarily distant species,

ranging from yeast to mammals(Bishop and Guarente, 2007; Fontana et al., 2010; Kaeberlein, 2010).

Inhibition of the nutrient-sensing pathways using either genetic or pharmacological intervention also re-

sults in a similar phenotype(Bishop and Guarente, 2007; Fontana et al., 2010). More importantly, CR

not only extends life-span, but also delays both the progression and the increasing risk-factor of a wide

range of age-related diseases, including cancers(Colman et al., 2009), cardiovascular disease(Mattson

and Wan, 2005; Cruzen and Colman, 2009), and multiple neurodegenerative disorders(Maswood et al.,

2004; Wu et al., 2008). Motivated by these observations, considerable effort has been invested in un-

derstanding the downstream effectors of the nutrient-sensing pathways that orchestrate DR-mediated

life-span extension.

Ethical concerns, combined with a longer typical life-span make it difficult to study aging in humans.

Budding yeast, Saccharomyces cerevisiae, has been used extensively as a model organism in aging re-

search, due to its rapid growth and ease of manipulation(Kaeberlein et al., 2007; Kaeberlein, 2010).

Having two different aging paradigms – replicative life-span (RLS), defined as “the number of buds a

mother cell can produce before senescence occurs,” and chronological life-span (CLS), defined as “du-

ration of viability after entering the stationary-phase,” yeast provides a unique opportunity for modeling
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both proliferating and post-mitotic cells. These can ultimately be used to shed light on the progression

of cancers and neurodegenerative diseases.

Yeast cells are typically cultured in growth media containing 2% glucose. Reducing glucose con-

centration to 0.5% or less has been shown to increase both CLS and RLS(Lin et al., 2000; Kaeberlein

et al., 2004; Smith et al., 2007). Both Sir2, the leading member of the sirtuins family, and the target

of rapamycin (TOR) play key roles in CR-mediated life-span extension in yeast. Regulation of Sir2 in

response to CR has been attributed to the metabolic shift towards respiration. This elevates the cellular

NAD+/NADH ratio and triggers the Sir2 protein, which is a NAD+-dependent histone deacetylase(Lin

et al., 2002). The most commonly investigated molecular mechanism by which Sir2 mediates life-span

is suppressing homologous recombination around rDNA loci. This prevents the accumulation of ex-

trachromosomal rDNA circles (ERC). The precise role of Sir2 in CR has been a matter of debate in

recent years. Kaeberlein et al. (2004) posit that Sir2 acts in parallel with CR to promote longevity. In

a subsequent study(Kaeberlein et al., 2005), they use a pool of 564 single-gene mutants and identify

TOR pathway as a key element in life-span regulation by CR. TOR acts as a hub, integrating various

nutrient and stress-related signals, and regulates both spatial and temporal aspects of cell growth(De

Virgilio and Loewith, 2006b; Zaman et al., 2008; Loewith and Hall, 2011; Wei and Zheng, 2011). In-

hibiting TOR pathway using rapamycin helps in identifying downstream effectors of TOR. However,

these targets may be regulated in different levels, including, but not limited to transcription regulation

and post-translational modifications. Capturing various changes that happen during rapamycin treatment

to create a comprehensive systems view of the cell is a complex and onerous task.

In this paper, we propose a computational approach to the identification of downstream effectors of

TOR. Our method is based on the known random walk technique for identifying key players in mediation

of lifespan. We develop a rigorous statistical methodology for reverse engineering downstream effectors

4



from their random walk distances. Using this framework, we build a comprehensive interaction map of

the TOR targets. We validate this map using enrichment analysis, as well as through experimental data,

and identify a number of new targets for future investigations.

2 Target of rapamycin (TOR): A central arbitrator of nutrient and

stress related signals

The target of rapamycin (TOR) is a serine/threonine protein kinase, which belongs to the conserved fam-

ily of PI3K-related kinases (PIKKs). It was first identified using genetic studies in yeast while searching

for mutants that confer rapamycin-resistance(Heitman et al., 1991). Rapamycin, a lipophilic macrolide

originally purified as an antifungal agent and then re-discovered as an immunosuppressive drug, forms

a toxic complex with its intracellular receptor FKBP12, encoded by Fpr1 gene in yeast, and directly

binds to TOR in order to perform its inhibitory action and mediate cell growth(Loewith and Hall, 2011).

It was later discovered that TOR protein kinases, encoded by TOR1 and TOR2 genes in yeast, form

two structurally and functionally distinct multiprotein complexes(Loewith et al., 2002; Wedaman et al.,

2003; Reinke et al., 2004; Wullschleger et al., 2006). TOR Complex 1 (TORC1) is rapamycin-sensitive

and consists of either TOR1 or TOR2, together with KOG1, LST8, and TCO89. On the other hand,

TOR Complex 2 (TORC2) does not contain TOR1, is not inhibited by rapamycin, and contains AVO1,

AVO2, AVO3, LST8, BIT2, and BIT61. These two complexes correspond to two separate branches of

the TOR signaling network, controlling the temporal and the spatial aspects of cell growth(Loewith and

Hall, 2011), which are conserved from yeast to humans(Wullschleger et al., 2006). TORC1 has a critical

role in aging and age-related pathologies(Kapahi et al., 2010; McCormick et al., 2011). Additionally,

many of the known oncoproteins act as upstream activators of TORC1, while several tumor suppressor
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proteins inhibit its activity(De Virgilio and Loewith, 2006a). These observations, together with more re-

cent studies, have motivated many researchers to identify both the upstream regulators and downstream

effectors of TORC1.

As a central hub that integrates various nutrient and stress related signals, and regulates different

aspects of cell growth in response, TORC1 is not only regulated by the quality and the quantity of both

carbon and nitrogen sources(Zaman et al., 2008; Binda et al., 2009; Neklesa and Davis, 2009; Smets

et al., 2010), but also in response to noxious stressors, such as caffeine(Kuranda et al., 2006; Wanke

et al., 2008). In response, TORC1 coordinately orchestrates various aspects of cellular machinery to

mediate cell growth, including protein synthesis (by regulating ribosome biogenesis(Jorgensen et al.,

2004), translation initiation(Barbet et al., 1996), and nutrient uptake(Schmidt et al., 1998; Beck and

Hall, 1999a)), autophagy(Chang et al., 2009), and stress response(Gasch and Werner-Washburne, 2002;

Wanke et al., 2008) (please see Smets et al. (2010) and Loewith and Hall (2011) for comprehensive

reviews).

3 Methods

3.1 Tracing information flow in the interactome

Living cells are complex systems comprising of numerous pathways, that orchestrate various aspects of

the cellular machinery. Understanding their structure, interactions, and crosstalk is essential for uncover-

ing the cellular organization. We propose a computational approach, using a discrete-time random walk

process, to trace information flow in the interactome. Similar formulations have been previously used

to prioritize candidate disease genes(Köhler et al., 2008; Navlakha and Kingsford, 2010), discover net-

work bio-markers for cancer(Nibbe et al., 2010), and identify protein complexes (Macropol et al., 2009;
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Maruyama and Chihara, 2011). Additionally, there is a well-known correspondence between random-

walk methods and formulations based on circuit network models(Doyle and Snell, 1984). To the best of

our knowledge, our study represents the first computational effort aimed at comprehensively identifying

downstream effectors of TOR using random walks. Our methods are supported by rigorous statistical

models for ranking various effectors, resulting in a complete interaction map of TOR effectors.

Let G = (V,E) be a (directed) graph with n vertices and m edges, where (u, v) ∈ E iff vertex u is

connected to vertex v in graph G. A random walk on G, initiated from vertex v, is defined as a sequence

of transitions among vertices, starting from v. At each step, the random walker randomly chooses the

next vertex from among the neighbors of the current node. The sequence of visited vertices generated by

this random process is a Markov chain, since the choice of next vertex depends only on the current node.

We can represent the transition matrix of this Markov process as a column-stochastic matrix, P , where

pij = Prob(Sn+1 = vi|Sn = vj) and random variable Sn to represent the state of the random walk at the

time step n.

Random walk with restart (RWR) is a modified Markov chain in which, at each step, a random walker

has the choice of either continuing along its path, with probability α, or jump (teleport) back to the initial

vertex, with probability 1 − α. Given the transition matrix of the original random walk process, P , the

transition matrix of the modified chain, M , can be computed as M = αP + (1 − α)ev1, where ev is a

stochastic vector of size n having zeros everywhere, except at index v. The stationary distribution of the

modified chain, πv(α), defines the portion of time spent on each node in an infinite random walk with

restart initiated at node v, with parameter α. This stationary distribution can be computed as follows:

πv(α) = Mπv(α)

= (αP + (1− α)ev)πv(α) (1)
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Enforcing a unit norm on the dominant eigenvector to ensure its stochastic property, ‖ πv(α) ‖1= 1,

we have the following iterative form:

πv(α) = αPπv(α) + (1− α)ev, (2)

which is a special case of the personalized Pagerank(Brin and Page, 1998; Page et al., 1999; Jeh and

Widom, 2002; Haveliwala, 2002), with preference vector ev. Alternatively, we can compute πv directly

by solving the following linear system:

πv(α) = (1− α)(I − αP )−1︸ ︷︷ ︸
Q

ev, (3)

where the right-multiplication with ev simply selects column v of the matrix Q. A major benefit

of computing Q directly is that it can be reused to compute the stationary distribution of random walks

starting from different vertices, or to compute random samples of initial vertices with known distribution.

For example, if we have a set of k vertices, S, that have equal chance of selection as the initial vertex

(uniform distribution over set S), then we can linearly integrate the corresponding columns of Q, each

with weight 1
k
, which is the average of the corresponding columns. To interpret πv(α), we expand the

right-hand side of Equation 3 using the Neumann series:

πv(α) = (1− α)
∞∑
i=0

(αP )iev (4)

We construct a model in which node v propagates a unit signal, and at every step, each node equally

distributes its accumulated received signal among its out-going neighbors. Using this model, P iev mea-

sures the strength of the received signal by each node after i steps of transmissions. This assumes that
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transmissions are perfect, i.e., the signal does not attenuate on transmission. However, if we assume

that only α% of the signal is propagated during each transmission, then we can compute the accumu-

lated received signal by each node after exactly i transmissions as (αP )iev. We can view πv(α) as the

strength of the signal received by each node, initially originated from v, after zero or more transmission

steps. Using this method, we note that the closer a node is to the source node (v), the stronger the signal

it receives from node v. Additionally, we can observe that since we integrate signals over all possible

paths, unlike shortest-path based methods that only take a single path into account, we prioritize pairs of

nodes that have multiple parallel pathways between them.

As noted, the stationary distribution of the random walk, πv, depends on the parameter α. This

parameter can be viewed as the decay factor of the signal; the higher the parameter α, the further the

signal can propagate. Let us denote by X the number of hops taken by random walker before it jumps

back to source node v. Then, X follows a geometric distribution with probability of success (1−α) and

the expected (average) length of paths taken by random walker E(X) = α
1−α . In other words, if we let

α = l
1+l

, for a given parameter l, we expect the average length of paths taken by such random walk to be

equivalent to l, thus we call l the depth of the random walk.

We conclude this discussion by describing the process of computation of transition matrix P for a

given directed graph G with adjacency matrix A, where Aij = 1, if node i has a directed edge to node j,

and is 0 otherwise. We first create a column sub-stochastic matrix, P̃ , in which the sum of each column

is either zero, if the corresponding node has no out-going edges, or one, otherwise. Formally:

P̃ji =


0 if Aik = 0;∀1 ≤ k ≤ n,

Aij∑n
k=1 Aik

O.W.

(5)

We then construct the column stochastic matrix P , from P̃ , by adding self-loops to the dangling
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nodes, whose out-degree is zero. Mathematically, this can be formulated as P = P̃ + diag(1T − 1T P̃ ),

where diag(.) operator takes a vector and constructs a diagonal matrix from it.

A similar approach, based on the random-walk method, is the emitting model of ITMProbe (Sto-

jmirović and Yu, 2007, 2012). The main theoretical difference is that in the emitting diffusion model,

unlike our formulation, information in the form of a random walker cannot return to the respective

sources. However, since the set of sources is relatively small in our study (5 nodes), the computed results

using these two seemingly different methods are correlated (please see Section 3.1 for details).

3.2 Validation and statistical analysis of ranked-list of genes

Given a ranked-list of genes (in our case, genes ranked in terms of their random-walk proximity to TOR),

we are interested in assessing the enrichment of different functional annotations among top-ranked genes.

The classical approach to this problem is to select a cutoff, l, which separates the top-ranked genes (target

set) from the rest (background set), and to compute the enrichment p-value using a hypergeometric

distribution. Let us denote the number of genes by N and the total number of annotations (positives)

by A. Using notation similar to Eden et al. (2007), we encode functional annotations for genes in the

ranked-list using a binary vector, λ = λ1, λ2, ...λN ∈ {0, 1}N , having A ones and N − A zeros. Let the

random variable T denote the number of positive genes in the target set, if we distribute genes randomly.

In this formulation, the hypergeometric p-value is:

P − value(T = bl(λ)) = Prob(bl(λ) ≤ T ) = HGT (bl(λ)|N,A, l)

=

min(A,l)∑
t=bl(λ)

C(A, t)C(N − A, l − t)
C(N, l)

, (6)

where HGT is the tail of hypergeometric distribution, and bl(λ) =
∑l

i=1 λi, is the number of ob-
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served positives in the target set. The drawback of this approach is that we need a predefined cutoff

value, l. To remedy this, Eden et al. (2007) propose a two-step method for computing the exact enrich-

ment p-value, called mHG p-value, without a predefined l. In the first step of this process, we identify an

optimal cut, over all possible cuts, which minimizes the hypergeometric p-value. The value computed in

this manner is called the minimum hypergeometric (mHG) score, and is defined as:

mHG(λ) = min1≤l≤NHGT (bl(λ)|N,A, l) (7)

Next, a dynamic programming method is employed to compute the exact p-value of the observed

mHG score, in the state space of all possible λ vectors (please refer to Eden et al. (2007) for algorithmic

details, and Eden (2007) for an efficient implementation). We use this strategy to compute the mHG

p-value of different GO terms, as well as for cross-validating our results with experimental datasets

on rapamycin treatment. For the latter case, we also report −log10(HGT (bl(λ)|N,A, l)) as a function

of top-ranked score percentage, which provides us additional insights into the distribution of positives

among the ranked list of genes. It is worth noting that the only theoretical difference in GO enrichment

analysis versus cross-validating with experimental rapamycin treatment observations is in the construc-

tion of λ vector.

3.3 Dissecting transcriptional regulatory network (TRN) using random-walk

scores

As described in Section 3.2, we compute the mHG p-value for the rapamycin treatment dataset, which

partitions the random-walk scores into l top-ranked genes and N − l bottom-ranked genes. In this

section, we establish the necessary background for analyzing the regulatory elements responsible for the
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transcriptional changes observed during rapamycin treatment. Given a transcription factor (TF), with k

targets, we denote the number of its positive and top-ranked targets by kP and kT , respectively. The first

question that we are interested in answering is: how well do computationally predicted positive targets

predict experimentally observed targets of a given TF? In other words, given that a target gene is ranked

high in terms of its random-walk score, how confident are we that it is a true positive target? To address

this question, we define two random variables. Let X be the number of top-ranked targets, if we were

uniformly distributing k targets of the given TF among all genes. Similarly, let Y be the number of

positive targets of the TF. Then, we can compute the following p-values:

p− value(X = kT ) = Prob(kT ≤ X)

= HGT (kT |N, l, k)

=

min(l,k)∑
x=kT

C(l, x)C(N − l, k − x)
C(N, k)

(8)

p− value(Y = kP ) = Prob(kP ≤ Y )

= HGT (kP |N,A, k)

=

min(A,k)∑
y=kP

C(A, y)C(N − A, k − y)
C(N, k)

(9)

We define sensitivity and specificity for the entire set of transcription factors as:

sensitivity = Prob(pval(X = kT ) : significan|pval(Y = kP ) : significant)

specificity = Prob(pval(X = kT ) :!significant|pval(Y = kP ) :!significant) (10)

Next, we are interested in identifying the relevant subset of transcription factors that are responsible
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for significant transcriptional changes among top-ranked genes. Let us denote the number of top-ranked

positive targets of a given TF by kTP . If we compute the probability of observing kTP or more positive

targets among top-ranked genes, purely by chance, we can identify the associated subset of transcription

factors. Let the random variable Z denote the number of top-ranked positive targets, if we were randomly

distributing all targets for a given TF. We can compute the p-value of Z by conditioning it on the number

of top-ranked targets as follows:

p− value(Z = kTP ) = Prob(kTP ≤ Z)

=

min(l,k)∑
x=kTP

Prob(kTP ≤ Z|X = x)Prob(X = x)

=

min(l,k)∑
x=kTP

min(x,bl(λ))∑
z=kTP

Prob(Z = z|X = x)Prob(X = x)

=

min(l,k)∑
x=kTP

HG(x|N, l, k)
min(x,bl(λ))∑
z=kTP

HT (z|l, bl(λ), x) (11)

We define −log10(p− value(Z = kTP )) as the confidence score of a TF being involved in TORC1-

related gene regulation. This allows us to identify the subset of TF(s) responsible for the transcriptional

changes during rapamycin treatment.

4 Results

4.1 Constructing yeast interactome

We obtained the yeast protein-protein interactions (PPI) from the Biogrid(Stark et al., 2006) database,

update 2011(Stark et al., 2011), version 3.1.83, by extracting all physical interactions, except for protein-

RNA interactions, and excluding interspecies and self interactions. This dataset consists of 103,619
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(63,395 non-redundant) physical interactions among 5,691 proteins. We then identified the subset of

post-translational modifications (PTM), associated with ”biochemical activity” evidence code in Biogrid,

and used them to assign direction to the feasible subset of physical interactions, resulting in 5,791 (5,443

non-redundant) biochemical activities among proteins in yeast. After unifying different modifications

among similar pairs of proteins, we obtained 5,421 directional edges among 2,002 proteins in the yeast

proteome. The bulk of these interactions (over 4,000) are the phosphorylation events identified by (Ptacek

et al., 2005) using proteome chip technology. Finally, we constructed the integrated network of yeast,

the yeast interactome, by superimposing protein-protein interactions and post-translational modifications

over the set of known yeast genes, and removing isolated vertices. The final constructed network, avail-

able in the Supplementary Network 1, is shown in Figure 1. Nodes in the network are color-coded using

the family of the corresponding protein. The list of transcription factors was retrieved from YEAS-

TRACT(Abdulrehman et al., 2011), while the list of all kinases and phosphatases was downloaded from

YeastKinome(Breitkreutz et al., 2010). Figure 2 illustrates an example of the integration process around

Sch9 protein, which is a well-documented substrate of TORC1. The set of interactions around Sch9

has been extracted from the protein-protein interaction and the post-translational modification networks,

respectively.

4.2 Information flow analysis from TORC1 in the yeast interactome

Using the yeast interactome, represented as its adjacency matrix A, we compute information flow scores

from TORC1 using the approach described in Section 3.1. In order to give all nodes in the interactome

a chance of being visited, we choose parameter α, controlling the depth of the random walk process,

to be equal to d
1+d

, where d is the diameter of the interactome. For the yeast interactome, we deter-

mined the diameter to be equal to 6 and we set the α = 6
7
∼ 0.85, correspondingly. We used TORC1
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members, namely Tor1, Tor2, Kog1, Lst8, and Tco89, as sources of information flow, and averaged the

corresponding columns of Q by letting ev(i) = 1
5
, if vi ∈ TORC1, and zero otherwise.

Figure 3 illustrates the distribution of computed random-walk distances, starting from TORC1, as a

function of node distance from TORC1. As mentioned in Section 3.1, random-walk scores are functions

of both distance from source nodes, as well as multiplicity of paths between source and sink nodes.

This can be verified from the figure by noting the overlapping tails of distributions for nodes at different

distances, as well as varied distribution of random-walk scores among nodes with same distance from

TORC1.

In addition to our random-walk method, we also computed the ITMprobe scores, using the emitting

model, with the termination probability set to 0.85. The computed ITMprobe scores are highly correlated

with our scores in this experiment (ρ = 0.9993), and thus, we only provide further analysis for our

method. The final computed random-walk scores, both for our method and the ITMProbe, are available

for download as Supplementary Table 1.

4.3 Information flow-based prediction of transcriptional changes in response to

rapamycin treatment

In order to further analyze the random-walk neighborhood of TORC1, we ranked all nodes in the yeast

interactome based on their computed information flow scores. We hypothesized that if the information

flow-based method faithfully reconstructs the TORC1 signaling network, it should be able to predict

transcriptional changes due to rapamycin treatment, which inhibits TORC1 in vivo. To validate this hy-

pothesis, we used a recent mRNA expression profile of yeast in response to rapamycin treatment(Fournier

et al., 2010). We extracted the set of genes that have significant expression change at a minimum thresh-

old of 2-fold change, resulting in a total of 366 repressed and 291 induced genes. We constructed the
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set of true positives from the rapamycin-induced genes by filtering out genes that do not have a corre-

sponding vertex in the yeast interactome. Using this set of true-positives, we computed the mHG score

to assess the frequency of rapamycin-induced genes among top-ranked genes identified by our informa-

tion flow method. Figure 4 shows the tail of the hypergeometric distribution as a function of cut-size

from the top of random-walk scores. The peak of the plot, corresponding to the minimum hypergeo-

metric (mHG) score, occurs at the index l = 906 from the top of random walk scores, which covers

approximately the top 15% of scores. There are 181 positive genes in this partition, from a total of 579,

yielding a mHG score of 1.1078e-22. We computed the exact p-value corresponding to this mHG score,

using the dynamic-programming method of Eden et al. (2007), resulting in the significant enrichment

p-value of 3.2526e-19. This in turn suggests that the random-walk neighborhood of TORC1 is highly

correlated with rapamycin-induced gene expression changes and can be used as a predictor of genes that

are regulated by TORC1.

4.4 Information flow scores and transcriptional regulatory networks

As shown in the previous section, top-ranked random-walk scores are highly enriched with rapamycin-

impacted genes. However, TORC1 does not directly regulate transcription of these genes. This obser-

vation led us to ask: which transcription factors are responsible and which intermediary elements are

involved in these regulations?

To address this problem, we constructed the yeast transcriptional regulatory network (TRN) from the

documented regulations in YEASTRACT(Abdulrehman et al., 2011), consisting of 48082 interactions

between 183 transcription factors (TF) and 6403 target genes (TG). Among these 183 TFs, 179 of them

have a corresponding node in the yeast interactome. For each of these transcription factors, we computed

all the statistics described in Section 3.3. These are summarized in Supplementary Table 2. We used the
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threshold of 0.01, after correcting for multiple hypothesis testing using Bonferroni method, in order

to find significant p-values. At this threshold level, sensitivity and specificity are 0.2619 and 0.9854,

respectively. The observed specificity value is high, meaning that if a TF is not experimentally validated

(the number of positive targets are not significant), with high probability our computational model also

reports it as negative (it will not have significant number of top-ranked targets). On the other hand, the

relatively low sensitivity value means that even if a TF has many positive targets, our computational

method may miss it. In conclusion, transcription factors that have significant numbers of top-ranked

targets are high-confidence, but not comprehensive, candidate(s) for downstream effectors of TORC1.

In order to identify most relevant subset of transcription factors in a systematic manner, we introduce

the confidence score for each TF, defined as−log10(p−value(Z = kTP )), which assesses both positivity

and high rank of its targets (please see Section 3.3 for details). Using this approach, we identified 16

TFs with very high confidence scores, which are postulated to be responsible for transcriptional changes

in a TORC1-dependent manner. From a total of 16 high-confidence TFs, five are also highly ranked

themselves (Table 1).

Among these top-ranked, high confidence, transcription factors, Sfp1, Gln3, and Gcn4 are well-

documented downstream effectors of TORC1(Lempiäinen et al., 2009; Beck and Hall, 1999b; Bertram

et al., 2000; Steffen et al., 2008)(please see Zaman et al. (2008), Smets et al. (2010), and Loewith and Hall

(2011) for a more comprehensive review). Sfp1 is a stress- and nutrient-sensitive regulator of cell growth,

responsible for mediating the expression of genes involved in ribosome biogenesis, such as RP genes

and RiBi factors(Jorgensen et al., 2002; Marion et al., 2004). TORC1 mediates Sfp1-related genes by

phosphorylating Sfp1 and regulating its nuclear localization(Lempiäinen et al., 2009). Gln3 is a GATA-

family transcription factor, which positively regulates the expression of nitrogen catabolite repression

(NCR)-sensitive genes(Courchesne and Magasanik, 1988; Bertram et al., 2000). TORC1-dependent
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regulation of Gln3 is mediated by promoting its association with its cytoplasmic anchor protein Ure2,

which is dependent on Tap42-PPase branch(Loewith and Hall, 2011), but not the Sch9 branch(Urban

et al., 2007). Gcn4 is a nutrient-responsive transcription factor, activated upon amino acid starvation,

which is noted for its role in regulating amino acid biosynthesis(Hinnebusch, 2005). Additionally, Steffen

et al. (2008) proposed a critical role for Gcn4 in mediating life-span in yeast. TORC1 regulates Gcn4 by

mediating its translation level in a eIF2α-dependent manner(Loewith and Hall, 2011).

In contrast, Ste12 and Yap1 have not been previously positioned downstream of TORC1, to the best

of our knowledge. Ste12 is best known as a downstream target of mitogen-activated protein kinase

(MAPK) signaling cascade and is responsible for regulating genes involved in mating or pseudohy-

phal/invasive growth(Madhani and Fink, 1997). Rutherford et al. (2008) showed that over-expression

of the ammonium permease Mep2 induces the transcription of known targets of Ste12. A more recent

study by Santos et al. (2012) additionally positions TORC1 downstream of Mep2, which, taken together

with the link between Mep2-Ste12, suggests Ste12 as a potential downstream effector of TORC1. Yap1

is an AP-1 family transcription factor required for inducing oxidative(Stephen et al., 1995; Temple et al.,

2005) and carbon(Wiatrowski and Carlson, 2003) stress responses, the latter of which is proposed to be

independent of TORC1. Additionally, Yap1 expression has been shown to increase significantly during

replicative aging(Yiu et al., 2008). Finally, it has been suggested recently that spermidine, a conserved

longevity factor (Eisenberg et al., 2009), mediates macroautophagy in a Yap1 and Gcn4 dependent man-

ner(Teixeira et al., 2011). Finally, there is a diverse set of age-related functions associated with Yap1,

many of which are also attributed to TORC1. These observations suggest Yap1 as a potential candidate

downstream effector of TORC1.

An interesting observation, from Figure 4, is that the highest-ranked genes (approximately the top

150 genes) are not enriched in terms of rapamycin-induced genes. This can be explained by noting that
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the regulatory elements, including TFs, do not typically change their expression level in response to TOR

signaling. Instead, they are targeted for post-translational modifications (typically, phosphorylation). We

consequently hypothesize that the top genes should be enriched in terms of phosphorylation events. To

verify this hypothesis, we extracted the signaling and regulatory elements responsible for Gap1, a general

amino acid permease regulated by NCR. More specifically, Gap1 is positively regulated via Gln3 and

Gat1 and is repressed by Gzf3 and Dal80(Zaman et al., 2008; Smets et al., 2010). Surprisingly, all four of

these regulators are among top-ranked transcription factors, yet none of these has significant expression

change in response to rapamycin treatment. Using a recent phosphoproteome of yeast in response to

rapamycin treatment(Huber et al., 2009), we identified that both of the transcriptional activators of Gap1,

Gln3 and Gal80, are highly phosphorylated in response to rapamycin treatment. Finally, Tap42-Sit4 is

the upstream regulator of Gcn4 and a direct substrate of TORC1. Figure 5 illustrates this signaling

pathway with each element annotated using its random-walk rank. All signaling elements upstream

Gap1 are ranked among top-ranked scores, yet none of these change their expression levels in response

to rapamycin treatment. This supports the notion that the top-ranked genes in the random-walk are

primarily involved in TOR signaling.

Finally, we constructed the TORC-specific TRN, a subgraph of the yeast TRN in which we only

included top-ranked transcription factors and their top-ranked targets. This network consists of 1960

interactions, between 25 transcription factors and 778 target genes, and is available as Supplementary

Network 2.
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4.5 GO Enrichment analysis: constructing a functional map of the information

flow scores

We used GOrilla(Eden et al., 2009) to compute the mHG p-value of each gene ontology (GO)(Ashburner

et al., 2000) term, under biological process, molecular function, and cellular component branches. We

identified the set of significant terms using the p-value threshold of p < 10−3. The comprehensive list of

enriched terms for each branch of the GO is available for download as Supplementary Tables 3-5.

In order to visualize the high-level organization of enriched terms, we extracted the subset of yeast

GO terms marked by the Saccharomyces Genome Database (SGD)(Cherry et al., 2012) as GO slim.

We then used EnrichmentMap(Merico et al., 2010), a recent Cytoscape(Smoot et al., 2011) plugin, to

construct the network (map) of enriched GO slim terms, shown in Figure 6. Here, nodes represent GO

terms and edges represent the extent of overlap between the geneset of terms. GO terms under BP, MF,

and CC branches of GO are color-coded using red, green, and blue colors, respectively. The p-value

of each term determines the opacity of both the node and its label; the bolder a term looks, the more

significant its enrichment score is. Finally, the total number of enriched genes for each GO term is

shown using the size the corresponding node. The final enrichment map is available for download as

Supplementary Network 3.

We first note that all previously known targets of TORC1 are also identified using our random-walk

method. For example, many of the terms in the enrichment map, such as transcription from RNA poly-

merase I and III promoter(s), rRNA processing, ribosomal subunit export from nucleus, and ribosomal

large subunit biogenesis, describe different aspects of the ribosome biogenesis. Additionally, in order to

gain a mechanistic understanding of each GO term, we project them back to the original network and

construct the induced subgraph of the yeast interactome. As a case study, we extracted the set of enriched
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genes represented by the transcription initiation GO term and constructed its corresponding induced sub-

graph, which is shown in Figure 7. Here, nodes are grouped and/or annotated based on their functional

role in forming the transcription pre-initiation complex (PIC), as well as the RNA polymerase (RNAP).

The basal level of transcription in Eukaryotic cells by RNAP needs a family of general transcription

factors (GTF), prior to the formation of PIC. The TATA-binding protein (TBP), encoded by Spt15 gene

in yeast, is a universal GTF that is involved in transcription by all three types of nuclear RNAP. As a

component of TFIIIB complex, it forms the PIC complex and recruits RNAPIII to the transcriptional

start site(TSS) of tRNAs, 5S rRNA, and most snRNAs. As a part of TFIID, it forms a complex together

with TBP-associated factors (TAF), and binds to the core promoter region of the protein-coding genes, as

well as some snRNAs. The correct assembly of PIC, required for directing RNAPII to the TSS, needs ad-

ditional GTFs, namely TFIIA, -B, -D, -E, -F, and TFIIH, as well as the Mediator (MED) complex. These

components are assembled in an orderly fashion to form the PIC and mediate the transcription initiation

by RNAPII (please see Hampsey (1998) and Maston et al. (2006) for a comprehensive review). These

complex interactions are shown in Figure 7, which provides a mechanistic understanding of transcription

initiation in the yeast cells.

5 Conclusion

We have proposed a random-walk based method for tracing information flow in the yeast interactome

and applied it to identify downstream effectors of TORC1. We showed that our information flow scores

faithfully predict transcriptional changes in response to rapamycin-treatment, which supports accuracy of

predicted effectors. Additionally, we proposed a rigorous statistical framework to identify the transcrip-

tion factors that are responsible for the bulk of these transcriptional changes. Our framework identifies
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previously known targets of the TOR signaling pathway, as well as providing new targets for future

research.
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Köhler, S., Bauer, S., Horn, D., et al. 2008. Walking the interactome for prioritization of candidate disease genes. American journal of human genetics 82(4), 949–58.

Kuranda, K., Leberre, V., Sokol, S., et al. 2006. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR,

PKC and Ras/cAMP signalling pathways. Molecular microbiology 61(5), 1147–66.
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Figure 1: Yeast interactome, constructed using physical interactions extracted from the Biogrid dataset.

Nodes are color-coded using the family of their corresponding protein.
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walk scores are a function of distance, as well as multiplicity of paths.
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Figure 4: mHG score as a function of random-walk cut-off, computed using true-positives constructed

from the set of genes that significantly change their expression level in response to rapamycin treatment.

The peak of plot occurs at around top 10% of scores, with mHG p-value of 3.3e-19.
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Figure 5: Signaling network from TORC1 to Gap1. Each node is annotated with its rank in random-walk

scores from TORC1.
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Figure 6: Enrichment map of yeast GOslim terms identified by mHG p-value, computed for ranked-list

of genes from random-walk scores. Each node represents a GO term and edges represent the overlap

between genesets of GO terms.
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Table 1: Top-ranked transcription factors with high confidence scores, postulated to be TORC1-

dependent regulators.

TF ORF TF name TF rank TF confidence

YLR403W SFP1 22 43.5048

YER040W GLN3 148 57.7734

YML007W YAP1 618 24.3672

YEL009C GCN4 638 4.822

YHR084W STE12 825 2.9668
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