
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2012

Fast Parallel Algorithms for Graph Similarity and Matching Fast Parallel Algorithms for Graph Similarity and Matching

Georgios Kollias
Purdue University, gkollias@purdue.edu

Madan Sathe
University of Basel

Olaf Schenk
University of Lugano

Ananth Grama
Purdue University, ayg@cs.purdue.edu

Report Number:
12-010

Kollias, Georgios; Sathe, Madan; Schenk, Olaf; and Grama, Ananth, "Fast Parallel Algorithms for Graph
Similarity and Matching" (2012). Department of Computer Science Technical Reports. Paper 1762.
https://docs.lib.purdue.edu/cstech/1762

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Fast Parallel Algorithms for Graph Similarity and

Matching

Giorgos Kolliasa, Madan Satheb, Olaf Schenkc, Ananth Gramaa

aDepartment of Computer Science and Center for Science of Information, Purdue

University, USA
bDepartment of Mathematics and Computer Science, University of Basel, Switzerland

cInstitute of Computational Science, University of Lugano, Switzerland

Keywords: graph alignment, vertex similarity, parallel matching, auction
algorithm

Abstract

With widespread availability of graph-structured data from sources
ranging from social networks to biochemical processes, there is increasing
need for efficient and effective graph analyses techniques. Graphs with mil-
lions of vertices and beyond are commonplace, necessitating both efficient
serial algorithms, as well as scalable parallel formulations. This paper
addresses the problem of global graph alignment on supercomputer-class
clusters. Given two graphs (or two instances of the same graph), we define
graph alignment as a mapping of each vertex in the first graph to a unique
vertex in the second graph so as to optimize a given similarity-based cost
function1. Graph alignment is typically implemented in two steps – in the
first step, a similarity matrix is computed. Entries in the matrix quantify
similarity of node pairs, one chosen from each graph. In the second step,
similar vertices are extracted through a bipartite matching algorithm ap-
plied to the similarity matrix. Using a state of the art serial algorithm
for similarity matrix computation called Network Similarity Decompo-
sition (NSD), we derive corresponding parallel formulations. Coupling
this parallel similarity algorithm with a parallel auction-based bipartite
matching technique, we derive a complete graph matching pipeline that
is highly efficient and scalable. We validate the performance of our inte-
grated approach on a large, supercomputer-class cluster and diverse graph
instances (including Protein Interaction (PPI) networks, Web graphs, and
Wikipedia link structures). Experimental results demonstrate that our
algorithms scale to large machine configurations and problem instances.

Email addresses: gkollias@purdue.edu (Giorgos Kollias), madan.sathe@unibas.ch
(Madan Sathe), olaf.schenk@unibas.ch (Olaf Schenk), ayg@cs.purdue.edu (Ananth
Grama)

1In the sequel, we’ll be using the word alignment as a synonym for global graph alignment;
this is in contrast to local graph alignment that permits a vertex to have different pairings in
feasible local alignments, making it an inherently ambiguous process

(a) (b) (c)

Figure 1: Vertex similarity : The first graph (Figure 1a) when matched against
the graph in Figure 1b results in the vertex mapping shown in Figure 1c. In this
figure, matching vertices are colored differently (red). This example illustrates
the special case of matching a graph (Figure 1b) with its subgraph (Figure 1a).

Specifically, we show that our integrated pipeline enables the alignment of
networks of sizes two orders of magnitude larger than currently possible
(millions of vertices, tens of millions of edges).

1. Introduction and Motivation

Graph structured datasets are commonly encountered in diverse domains,
ranging from biochemical interaction networks, to networks of social and eco-
nomic transactions. Effective analyses of these datasets hold the potential for
significant applications’ insight. Graphs in current databases often scale to
millions of vertices and beyond, requiring efficient serial algorithms as well as
scalable parallel formulations. Graph kernels such as traversals, centrality com-
putations, and modularity have been studied in both serial and parallel contexts
[12, 8, 45, 21]. The problem of matching vertices across graphs based on their
topological similarity is more computationally expensive. This follows from the
fact that topological similarity of a pair of nodes selected from two graphs, re-
spectively, is determined by their network contexts (broader neighborhood in
graphs). Consequently, parallel formulations determine the feasibility envelope
for such problems.

The graph alignment problem (please see Fig. 1) can be informally stated
as follows: given two graphs, “how similar is each vertex in the first graph to
each vertex in the second?” or “what is the best match for each vertex in the
first graph to a vertex in the second graph?”. A complete solution to the first
problem takes the form of a similarity matrix X; its entry xij corresponds to
the similarity of vertex i in the first graph to vertex j in the second. Solution to
the second question takes the similarity matrix X and uses bipartite matching
to map vertices of the first graph to similar vertices in the second graph, to
maximize overall match across the graphs.

To illustrate the problem, we consider the graph in Fig. 2. A similarity ma-
trix (computed using the IsoRank method summarized later in the paper) for

2

1

2

3

4

5

6

7

8

9

10

Figure 2: The example graph used for illustrating the alignment process.

this graph aligned to itself (self-similarity) can be computed where a normal-
ization step is also applied after zeroing diagonal elements (in order to preclude
the trivial solution of matching each node with itself). More specifically, we
then multiply each row by the inverse of the sum of its entries and also with
the percentage of this sum over the total matrix sum. The resulting similarity
matrix X becomes:

X =

0.00000 0.00924 0.00371 0.00286 0.01394 0.01312 0.00304 0.01029 0.00432 0.00383
0.00924 0.00000 0.00686 0.00396 0.03930 0.03622 0.00454 0.02773 0.00874 0.00715
0.00371 0.00686 0.00000 0.00301 0.01004 0.00975 0.00320 0.00714 0.00458 0.00416
0.00286 0.00396 0.00301 0.00000 0.00515 0.00491 0.00268 0.00408 0.00314 0.00297
0.01394 0.03930 0.01004 0.00515 0.00000 0.05924 0.00621 0.04455 0.01343 0.01041
0.01312 0.03622 0.00975 0.00491 0.05924 0.00000 0.00586 0.04096 0.01272 0.01034
0.00304 0.00454 0.00320 0.00268 0.00621 0.00586 0.00000 0.00471 0.00339 0.00317
0.01029 0.02773 0.00714 0.00408 0.04455 0.04096 0.00471 0.00000 0.00930 0.00750
0.00432 0.00874 0.00458 0.00314 0.01343 0.01272 0.00339 0.00930 0.00000 0.00455
0.00383 0.00715 0.00416 0.00297 0.01041 0.01034 0.00317 0.00750 0.00455 0.00000

Next we apply a matching process and get the following pairs of “similar”
vertices: (5, 6), (2, 8), (3, 9), (1, 10) and (4, 7). Quite interestingly the same
matching pairs are produced also in the case when no normalization is applied
after zeroing the similarity matrix diagonal.

This methodology has several important applications. In analysis of biomolec-
ular networks, nodes represent proteins and edges represent functional associ-
ation between proteins (binding, co-localization, etc.). A matching computed
using the above method reveals proteins that have similar interaction profiles,
and consequently are functionally similar. This is a complementary and impor-
tant similarity measure to traditional sequence-based similarity for proteins.

A number of formulations and solutions exist in literature to both the sim-
ilarity computation and matching problems [59, 7, 35, 51, 5]. An important
class of methods relies on the notion that the similarity of two vertices is de-

3

termined by the similarity of their neighbors. Variants within this class differ
on their treatment of dissimilar neighbors (normalization), a-priori vertex sim-
ilarity (also called elemental similarity), the topological scope (how much of
the neighborhood is incorporated into the similarity score), and the iterative
procedure to compute similarity. Our recent work in the area has resulted in
the development of a serial algorithm called Network Similarity Decomposition
(NSD)[30]. NSD can be viewed as an accelerator for a large class of iterative
similarity computation algorithms. It has been shown to reduce the computa-
tional cost of traditional algorithms by over three orders of magnitude in specific
instances.

Given a similarity matrix, algorithms for bipartite matching have a rich his-
tory in theoretical computer science. Proposed solutions range from the classic
Hungarian and greedy methods to auction-based techniques. Serial and par-
allel computing tradeoffs of many of these methods have also been studied in
prior work. Even with reduced computational cost of NSD and auction-based
bipartite matching, for large graphs of interest (106 vertices and beyond), it
is necessary to exploit scalable parallelism to achieve acceptable performance.
This paper focuses on parallel formulations of the graph alignment problem. In
particular, it demonstrates that parallel NSD formulations have low communi-
cation and synchronization overheads– making them ideal for large-scale paral-
lel platforms. Furthermore, the data decompositions induced by NSD similarity
computations flow naturally into our parallel auction-based matching algorithm.
This integrated pipeline is shown to have excellent performance and scalability
on large-scale parallel platforms and diverse applications. We use this software
pipeline to solve some of the largest similarity/ matching problems (over two
orders of magnitude larger than those reported earlier) on thousands of process-
ing cores. These results have significant implications for applications ranging
from systems biology to social network analysis.

The rest of this paper is organized as follows: we overview related work in
Section 2. Section 3 presents a brief description of serial NSD and auction-based
matching algorithms. Section 4 presents parallel NSD, the need for sparsifica-
tion, parallel auction-based matching, and an efficient integration of the two
into a single workflow. In Section 5, we present comprehensive performance and
scalability results for parallel versions of similarity computations from large-
scale experiments (networks with millions of vertices on thousands of processing
cores) for the integrated pipeline. Concluding remarks and avenues for future
work are presented in Section 6.

2. Related Results

In (serial) graph alignment, matrix similarity computation has traditionally
been the computational bottleneck, particularly, when heuristic methods are
used for bipartite graph matching to post-process similarity scores. However,
as a result of the reduction in time using NSD for similarity computation, bi-
partite matching represents the dominant computational cost. Consequently,

4

an efficient pipeline must integrate a parallel bipartite weighted graph matching
algorithm with a parallel NSD-accelerated similarity computation algorithm.

We highlight here related efforts on the two major components – algorithms
for computing similarity matrix X illustrated above, and algorithms that com-
pute pair-wise correspondences across the two graphs using the similarity ma-
trices. To the best of our knowledge, there exist no parallel formulations that
integrate these two stages of the pipeline. We provide a brief overview of the
serial methods, followed by preliminary efforts at parallelizing these methods.

2.1. Computing Graph Similarities

Graph similarity computations can be broadly classified into two groups. In
the first group of methods, the outcome of the computation is a single similarity
score sim(G,G′), typically normalized in the range [0, 1]. This similarity score
indicates how similar two graphs G, G′ are in their entirety. Papadimitriou
et al. [47] present an excellent survey of approaches in this group. In this
group, the Vertex/edge overlap (VEO) method is based on the principle that
two graphs are similar if they share many vertices and/or edges. This can be
quantified using a form of edit distance. In vertex ranking (VR), the similarity
of two graphs is based on the similarity of the ranking of their vertices, as
quantified by a rank correlation method such as Spearman’s ρ. Vertex/edge
vector similarity (VS) compares two vectors of weights encoding the quality of
vertices/ edges in the two graphs. In sequence similarity (SeqS), the similarity
of two graphs is determined by the extent to which sequences of short paths of
vertices and edges are shared. Signature similarity (SS) translates each graph
into a set of features that are randomly projected to lower-dimensional feature
space (signatures); the resulting vectors are then compared.

In the second group of methods, the outcome of the computations is a set
of numbers xij , representing the similarity of each vertex i in the first graph
to every vertex j in the second graph. This notion of node-wise similarity
can be extended to edge-wise similarity, or to similarity of small subgraphs in
the two graphs. This second class of methods reflects a finer-grained notion
of graph similarity. We can further categorize methods in this group as local
or global methods. Local methods attempt to reward similarity among small
subgraphs, without penalizing for dissimilarities over non-aligned parts of the
graph [27, 32, 56, 36, 62]. A number of local methods have been proposed
and used in the context of diverse applications. These methods range from
subgraph isomorphism-based methods [36, 62] to greedy methods on sparsified
product graphs [32]. Local algorithms, such as PathBlast [27], NetworkBlast
[26], MaWISh [32] and Graemlin 1.0 [18], typically allow one vertex to have
different pairings in feasible local alignments. Consequently, they are inherently
ambiguous and their scoring functions are based on heuristics associated with
parameter choice, evolutionary models, or other randomized techniques. Global
methods, on the other hand, consider a cost function computed over all vertex
alignments [42, 52, 59].

The focus of this paper is on global methods. A large subset of these methods
can be viewed as computing the rank of a vertex (in a PageRank [46, 58] sense)

5

in the product graph of the input networks. Of the PageRank-based methods
for network similarity, the IsoRank algorithm [59] computes vertex similarity
scores by integrating both vertex attributes and topological similarities. The
graph kernel approach [54], uses characteristics of networks (bounded degree)
to specialize Page-Rank to their target structures. Specifically, in each iteration
of similarity update, optimal mappings between neighborhoods of each pair of
vertices are computed to determine topological similarity. In the GRAAL family
of algorithms - GRAAL [33], H-GRAAL [41], MI-GRAAL [34], C-GRAAL [40]
- the “seed and extend” idea is utilized, basically driven by node similarities,
as computed by affinities to local connectivity structures. Building on its local
counterpart, Graemlin 2.0 [17] integrates a priori known protein sequence simi-
larities (node similarities) and phylogenetic (evolutionary) relations. In NetAl-
ignBP [3], the belief propagation technique is applied, interestingly allowing the
consideration of only a subset of potential pairs; Lagrangian, Markov random
field and integer quadratic programming have also been proposed [16, 2, 37, 28].
SimRank is a generic method introduced in [24] for computing structural-context
similarity between vertices of a single graph.

An excellent survey of early serial results in this area is provided in [19]. Our
parallel similarity construction relies on an acceleration scheme, called Network
Similarity Decomposition (NSD) [30], which relies on low-rank decompositions
of the initial similarity matrix to decouple the matrix construction process. This
acceleration has been shown to yield orders of magnitude improvement in serial
runtime, based on the size of the networks. We provide an overview of NSD
acceleration in Section 3 to motivate our parallel formulations.

Parallel formulations of graph similarity computations have primarily fo-
cused on combinatorial methods aimed at identifying subgraph isomorphisms
(or correspondingly, connected components in product graphs). Among these,
the early efforts [1, 48, 57] utilize different parallel platforms (data parallel and
messaging) for extracting isomorphic subgraphs or maximum cliques. For the
special case of SimRank, for similarity computations within a single graph in-
stance, [22] discuss an iterative aggregation technique exploiting the inherent
parallelism and high memory bandwidth of graphics processing units (GPUs).
We are not aware of any parallelizations that utilize the decoupled accelerations
in NSD.

2.1.1. Applications of Graph Similarity

There is an expanding body of research in graph alignment methods, espe-
cially for biological networks with applications in disease discovery, extending
protein functional annotations, identifying conserved modules across species,
and studying evolutionary trajectories [43]. Beyond applications in biology,
similarity computations can be traced back to [60] for matching chemical struc-
tures on a node-by-node basis, or in [61] for comparing electrical circuits. [20]
computes similarities between computer programs, analyzing their parse tree
representations. In [39], vertex-level granularity scores particularly suited for
database schema comparisons are introduced. Graph similarity can also serve
as a model for reinterpreting the HITS [29] algorithm for ranking Web pages;

6

hub and authority scores for a page can be cast as the similarity values of pairs
containing this page-node and the nodes of a trivial graph consisting of a sin-
gle directed edge. This is an interesting observation in [7], which also uses a
provably converging iterative procedure for computing similarity scores between
vertices with application to synonym extraction. Expanding on these ideas, [63]
investigate the integration of edge information to develop coupled node-edge
scoring.

2.2. Weighted Matching Algorithms in Bipartite Graphs

Weighted graph matching algorithms extract a matching M of similar ver-
tices subject to the constraint that a vertex is an endpoint of at most one
matching edge. A typical objective of matching algorithms is to find a match-
ing where the weight of the matching, i.e., the sum over the matched edges, is
maximized.

There are two broad classes of algorithms that achieve a matching with a
maximum weight:

Approximate weighted matching algorithms compute a maximal matching,
i.e., no edge can be added to M without violating the matching property, with
a maximum weight. A well-known representative of this class is a simple greedy
heuristic that proceeds as follows: store the edge weights in a list, sort the
weights in a decreasing order, and insert edges in the matching set starting from
the largest to the smallest entry conserving the feasibility of the matching. There
exists a linear-time implementation of this 1/2-approximation algorithm [51].
Sophisticated approaches such as 2/3- or 3/4-approximation have been published
by several authors (see e.g., [14, 50]). Attempts to parallelize these methods
have been reported in [11, 23, 38, 49].

Exact weighted matching algorithms obtain a maximum matching, i.e., a
matching with the largest possible number of edges, with a maximum weight.
The maximum weighted matching problem can be optimally solved in polyno-
mial time using the idea of the augmenting path. An augmenting path is a
path that has odd length, its ends are not in M , and its edges are alternatively
out of and in M . Implementations based on the concept are, for instance, the
Hungarian method and its variants [15, 25, 35, 44], or auction-based matching
algorithms [5]. In a different approach, the matching problem can be formu-
lated as a linear program, the well-known linear sum assignment problem, and
solution techniques like the simplex algorithm or interior-point methods can be
applied [9].

One of the interesting candidates for massively parallel platforms is the auc-
tion algorithm. Previous efforts to develop a parallel auction algorithm have
resulted in formulations for both shared- and messaging platforms [4, 10, 53].
Recently, a highly scalable distributed auction algorithm has been developed
that computes weighted matchings on sparse and dense bipartite graphs run-
ning on hundreds of compute nodes, while efficiently using multi-cores on each
compute node [55]. This formulation provides the basis for the matching com-
ponent of our algorithmic workflow.

7

3. Serial Algorithm for Similarity Matrix Computation and Auction-

Based Matching

We first provide necessary background on the serial algorithms for construct-
ing the similarity matrix, and the auction-based scheme for bipartite matching.
Please note that this description is not meant to be comprehensive, rather, we
provide sufficient details to motivate our parallel formulations. We refer the
readers to [30, 55] for more details on these methods.

3.1. Terminology and Preliminaries

We represent a graph GA = (VA, EA) by its adjacency matrix A, where
aij = 1 iff vertex i points to vertex j, indicated by i→ j, and zero otherwise. VA

and EA denote the vertices and edges of GA respectively, and nA = |VA|. Matrix
Ã is the normalized version of the matrix AT ; formally, (Ã)ij = aji/

∑nA

i=1 aji
for nonzero rows of A and zero otherwise. We also introduce operator vec(·)
for stacking matrix columns into a vector, as well as its associated “inverse”
unvec(·) operator for re-assembling the matrix.

3.2. Network Similarity Decomposition (NSD)

In [59], an iterative procedure of the following form is proposed:

x← αÃ⊗ B̃x+ (1− α)h. (1)

Here ⊗ denotes the Kronecker product of matrices, x = vec(X), with xij as pre-
viously defined, and h = vec(H), with element hij of matrix H corresponding
to the elemental similarity score between vertex i ∈ VB and j ∈ VA (matrix H
codes a-priori similarity of vertices). The vector h is normalized to unity. Suc-
cessive iterates scale topological similarity and elemental similarity of vertices
by factors α ≤ 1 and 1 − α, respectively. Utilizing the property of Kronecker
products, AXB = unvec((BT ⊗ A)x), for “unvec”ing, Equation 1 can also be
expressed in terms of a triple-matrix kernel as

X ← αB̃XÃT + (1− α)H. (2)

NSD acceleration of IsoRank relies on low-rank representations of the H
matrix. We start by decomposing H (with the dual purpose of encoding prefer-
ences and serving as the initial condition for our iterations), into a sum of outer
products of vectors. Singular Value Decomposition (SVD), is a well established
method that can be used for this purpose, enabling us to write:

H =
r

∑

i=1

σiuivi
T , (3)

where r ≤ min(nA, nB) is the rank of H, and σi > 0, ui, vi for i = 1, . . . ,r are,
respectively, the singular values, the left singular vectors, and the right singular
vectors of H. Note that σi are implied sorted (σ1 is its largest singular value);

8

additionally vectors ui constitute an orthonormal basis (uiu
T
j = δij); similarly

for vectors vi vectors (viv
T
j = δij).

Using (2) and (3), after suitable manipulations, we get:

X(n) =

r
∑

i=1

σi

[

(1− α)

n−1
∑

k=0

αkB̃kuiv
T

i (ÃT)k + αnB̃nuiv
T

i (ÃT)n

]

, (4)

where parenthesized superscripts denote the iteration step. Setting u
(k)
i = B̃kui

and v
(k)
i = Ãkvi, we obtain

X(n) =

r
∑

i=1

σi

[

(1− α)

n−1
∑

k=0

αku
(k)
i

v
(k)
i

T

+ αnu
(n)
i

v
(n)
i

T

]

(5)

Or, more compactly, as a sum of component score contributions X
(n)
i

X(n) =

r
∑

i=1

X
(n)
i (6)

whereX
(n)
i are computed separately separately, from each SVD triplet (σi, ui, vi)

X
(n)
i

= σi

[

(1− α)

n−1
∑

k=0

αku
(k)
i

v
(k)
i

T

+ αnu
(n)
i

v
(n)
i

T

]

(7)

We refer readers to [30] for details of these derivations and their associated
performance improvements in serial runtime. We stress the fact that SVD is
only one of the alternatives for decomposing H into a sum of outer products
for a given number, s, of vector pairs. Such a decomposition can generally be
expressed as:

H =

s
∑

i=1

wiz
T
i , (8)

where the number of components s does not necessarily coincide with r, the
rank of H (s ≥ r for exact decompositions). Any decomposition into outer
products (including non-orthogonal decompositions such as those from cluster-
ing or Non-negative Matrix Factorization (NMF)) can be used for this purpose.
NSD accelerated IsoRank is summarized in Algorithm 1.

3.3. Auction-Based Bipartite Weighted Matching

Starting from a similarity matrix, efficiently identifying vertex correspon-
dences requires a high quality and fast bipartite graph matching procedure.
This graph matching algorithm views the similarity matrix as a bipartite graph,
and consequently in the rest of the paper, we use the terms graph matching and
bipartite graph matching interchangeably. More specifically, an nA-by-nB sim-
ilarity matrix X, where nA ≤ nB , can be transformed into a bipartite graph
G = (VA, VB , E), where E ⊆ VA × VB . Each row i represents a vertex in VA,
and each column j a vertex in VB . A nonzero entry xij in the matrix represents
a weight of the edge (i, j) ∈ E. A subset M ⊆ E in a bipartite graph is called
a matching if no pair of edges of M are incident to the same vertex.

9

Algorithm 1 NSD: Calculate X(n) given A, B, {wi, zi|i = 1, . . . ,s}, α and n

1: compute Ã, B̃
2: for i = 1 to s do

3: w
(0)
i ← wi

4: z
(0)
i ← zi

5: for k = 1 to n do

6: w
(k)
i ← B̃w

(k−1)
i

7: z
(k)
i ← Ãz

(k−1)
i

8: end for

9: zero X
(n)
i

10: for k = 0 to n− 1 do

11: X
(n)
i ← X

(n)
i + αkw

(k)
i z

(k)
i

T

12: end for

13: X
(n)
i ← (1− α)X

(n)
i + αnw

(n)
i z

(n)
i

T

14: end for

15: X(n) ←
∑s

i=1 X
(n)
i

Auction algorithms find the maximum weighted matching via an auction:
VA and VB represent the set of buyers and objects, respectively. A weighted edge
xij is the benefit that buyer i obtains by acquiring object j. The auction-based
algorithm (see Algorithm 2) consists of three phases: the initialization phase
(lines 1–4), the bidding phase (lines 6–9), and the assignment phase (lines 10–
11). Each object j has an associated price pj , which is initially set to zero.
In an auction iteration, the bidding and assignment phase, and the update of
the price and of the increment ε are performed until every buyer is assigned to
an object. We will discuss the initialization and update of the crucial term ε
(lines 4, 12) in the next Section 4.

3.4. Quality Measures for Matching

Given two graphs GA and GB , the quality of the computed matchingsmi,mj

is computed from the alignment graph: If mi = (vAi , v
B
i) and mj = (vAj , v

B
j)

in GA × GB are two matches, then (mi,mj) ∈ EA×B ⇔ (vAi , v
A
j) ∈ EA and

(vBi , vBj) ∈ EB .
When analyzing the alignment graph of two networks, a measure for the

topological evaluation of the computed matching is the number of conserved
edges across the two networks. This corresponds to the number of edges in the
alignment graph. Each conserved edge implies matching of the corresponding
edges connecting the elements of the endpoints in the input networks. Conse-
quently, vertex matching naturally follows from edge matching and vice-versa.
An alternate measure called similarity rate is defined as the ratio of conserved
edges over the minimum of the edges in the two networks. For a more compre-
hensive discussion of qualitative assessment of graph matching, we refer readers
to [30].

10

Algorithm 2 Sequential Auction Algorithm for Maximum Weighted Matching

Input: Bipartite graph G = (VA, VB , E, w)
Output: Matching M
1: M ← ∅ . current matching
2: I ← {i : 1 ≤ i ≤ nA} . set of unassigned buyers
3: pj ← 0 for j = 1, . . . , nB . initialize prices for objects
4: initialize(ε) . initialize ε
5: while I 6= ∅ do . auction iteration
6: ji ← argmaxj{xij − pj} . find best object of buyer i
7: ui ← xiji − pji . store profit of the most valuable object
8: vi ← maxj 6=ji{xij − pj} . store second-best profit
9: pji ← pji + ui − vi + ε . update price with the bid ui − vi and ε

10: M ←M ∪ {i, ji}; I ← I \ {i} . assign buyer to the desired object
11: M ←M \ {k, ji}; I ← I ∪ {k} . free previous owner k if available
12: update(ε) . increment/decrement ε
13: end while

4. Building an Integrated Parallel Graph Matching Formulation

Using the NSD-accelerated similarity construction and the auction-based
bipartite matching as our serial bases, we propose highly efficient and scalable
parallel formulations. Specifically, we show that both phases of the alignment
process lend themselves naturally to parallel implementations and that the out-
put from the first phase flows naturally into the second phase without introduc-
ing significant copying overheads.

4.1. Parallelizing NSD

NSD-based similarity matrix construction consists of two parts:

• Computing iterates of Ã and B̃ applied over each of the corresponding

z
(0)
i and w

(0)
i vectors (Algorithm 1, lines 3–8).

• Computing outer products of the iterates and sum (Algorithm 1, lines
9–13, 15).

In the rest of this section we describe two possible approaches to NSD paral-
lelization. The first approach is generic, not customized for integration with
a subsequent matching extraction stage. It has been used in preliminary stan-
dalone experiments of NSD parallelization over heterogeneous platform testbeds.
More specifically, in Algorithm 3 the iterates are computed by the root process
and are consequently partitioned and distributed to a p×q process grid (lines 2–
14). Outer products are then independently calculated, and the final, naturally
distributed, similarity matrix is synthesized by worker processes (lines 15–23).

This approach, in general, induces a 2-D block decomposition of the resulting
matrix. However by setting p = 1 (q = 1) it reduces to a 1-D row-wise (column-
wise) formulation. In this scenario, choosing to parallelize only the second part

11

Algorithm 3 Parallel NSD (generic)

1: Root (lines 2–14) and (r,u) worker process in the p× q grid (lines 15–23).
2: compute Ã, B̃
3: for i = 1 to s do

4: w
(0)
i ← wi, z

(0)
i ← zi

5: for k = 0 to n do

6: w
(k)
i ← B̃w

(k−1)
i

7: z
(k)
i ← Ãz

(k−1)
i

8: end for

9: end for

10: for i = 1, . . . s, k = 0, . . . ,n do

11: Partition w
(k)
i in p fragments, w

(k)
i,1 , . . . ,w

(k)
i,p

12: Partition z
(k)
i in q fragments, z

(k)
i,1 , . . . ,z

(k)
i,q

13: end for

14: Send to every process (r,u) in the process grid p× q its corresponding w
(k)
i,r ,

z
(k)
i,u fragments, ∀i = 1, . . . s, k = 0, . . . ,n (r = 1, . . . ,p, u = 1, . . . ,q)

15: Receive corresponding w
(k)
i,r , z

(k)
i,u fragments, ∀i = 1, . . . s, k = 0, . . . ,n from

the root process
16: for i = 1 to s do

17: zero X
(n)
i,ru

18: for k = 0 to n− 1 do

19: X
(n)
i,ru ← X

(n)
i,ru + αkw

(k)
i,r z

(k)
i,u

T

20: end for

21: X
(n)
i,ru ← (1− α)X

(n)
i,ru + αnw

(n)
i,r z

(n)
i,u

T

22: end for

23: X
(n)
ru ←

∑s

i=1 X
(n)
i,ru

of NSD can be justified on the grounds of its quadratic complexity (in the
number of vertices) compared to the linear complexity (in the number of edges)
of the first part.

The second approach is specifically targeted towards integration with the
parallel auction algorithm for matching, and is the one adopted for the large-
scale experiments reported in Section 5 (Algorithm 6, lines 2–9). Auction-based
algorithms introduce the metaphors of buyers and objects, respectively mapped
to row and column indices of the similarity matrix. Consequently, 2-D block
decompositions partition both the buyers and objects sets, thus resulting in
excessive communication and synchronization costs. Consequently, we restrict
ourselves to a partitioning of the “buyers” only. This translates to a 1-D dis-
tribution of row blocks. To further increase concurrency, B̃-generated vector
iterates are computed using a parallel sparse matrix-vector multiplication ker-
nel (Algorithm 6, line 8).

12

4.2. Parallel Auction-based Weighted Matching

Algorithm 2 corresponds primarily of the bidding and assignment phase. The
bidding phase contains the bid computation of a free buyer, and the assignment
phase includes the matching of the buyer to the object and the price update
of the object. In a parallel version of the algorithm (see Algorithm 4), bids of
free buyers can be simultaneously computed. Each free buyer computes a bid
for the most-valuable object according to the current price of the object. The
buyer with the highest bid for an object is determined and is assigned to the
object. The prices of the objects are updated according to the highest bids.
The parallel bidding phase starts again with the free buyers.

The parallel auction algorithm is based on a 1D row-wise distribution of the
entire matrix. Each process procures a set of buyers and performs the auction
iterations until locally free buyers are assigned in the global matching. The bid
computation on each process can be further accelerated using existing shared
memory parallelization strategies that differ in how the number of threads are
involved in the bid calculation for a buyer. We map, block-wise, the number of
available threads to unassigned buyers. The communication cost of the parallel
auction algorithm corresponds to the exchange of local prices for the objects
among the processes to determine the winner for the object. This communi-
cation cost can be reduced by exchanging only locally altered prices, and by
bundling messages into a single message. Additionally, every process submits
only the locally highest price for the objects. The auction algorithm also has
excellent memory scalability. If the graph is distributed a-priori, a price vector
p ∈ R

nB is stored at each process.

4.2.1. ε-scaling

ε-scaling is an important aspect of auction-based bipartite matching de-
scribed in Algorithms 2 and 4. Consider line 9 in the Algorithm 2. Here, a
new price for an object is computed by adding the bid and a small increment
ε to the old value of the price. To understand the importance of ε in the price
update, assume that ε is set to zero. Furthermore, imagine that two buyers are
bargaining for the same valuable object, while the best and second-best profits
are of the same value. In this case, the updated price remains unchanged. In
such a scenario, neither buyer will be satisfied with the current assignment, and
the process ends in a price war , where a small number of buyers are competing
for equally desirable objects. In order to ensure that the price for an object is
raised after each iteration, a small increment ε is introduced.

For the parallel auction-based matching algorithm the following ε-scaling
strategies for sparse and dense graphs are proposed. For sparse graphs εlocal is
initialized to εlocal =

n+1
θ

, and decremented slightly by εlocal = max{ε, εlocal− ε},
where θ = 16 and ε = 1

n+1 .
Unfortunately, in the dense case, using this choice of variables, the parallel

algorithm often runs into a price war scenario, the number of iterations may
dramatically rise, and the algorithm does not scale well. Consequently, an
alternate scaling strategy is used. The value of εlocal is initialized to a small

13

Algorithm 4 Parallel Auction Algorithm for Weighted Matchings

Input: Bipartite graph G = (VA, VB , E, w)
Output: Matching M
1: Mlocal ← ∅ . set of locally matched buyers
2: Ilocal ← {i : 1 ≤ i ≤ nA

P
} . reindexing set of locally free buyers

3: Iglobal ← allgather(Ilocal) . globally free buyers
4: pj ← 0 for j = 1, . . . , nB . global price vector for the objects
5: initialize(εlocal)
6: while Iglobal 6= ∅ do
7: ji ← argmaxj{wij − pj} . computation phase via threading
8: ui ← wiji − pji
9: vi ← maxj 6=ji{wij − pj}

10: pji ← pji + ui − vi + εlocal . update prices with bid ui − vi and εlocal

11: Mlocal ←Mlocal ∪ {i, ji} . locally assign buyer i to desired object
12: gather changed prices(pji) . communication phase
13: check winner(ji) . if overbidded update local price
14: Ilocal ← Ilocal \ {i} or Mlocal ←Mlocal \ {i, ji} . update sets
15: Iglobal ← allgather(Ilocal) . update global free buyers
16: update(εlocal)
17: end while

value and adaptively increased relatively to the overall progress (see Algorithm
5). The basic idea behind this heuristic is that in the inner iteration at least
δ buyers get assigned to an object while εlocal converges faster to a large value
(line 6). In the outer loop (line 5), εlocal will be reset again to a small value if the
threshold has been exceeded. Thus, the approximate variant forces the auction
algorithm to match a buyer faster in the early stage of the algorithm. This
aggressive ε-scaling strategy is embedded in the main routines in Algorithm
4. The algorithm delivers a maximal matching with maximum weight, but
the quality of the match is adequate in the context of graph similarity. For
a detailed discussion of these issues (not directly related to parallel processing
issues, which form the focus of this paper), we refer the readers to [31]. The
proposed heuristic terminates if every buyer is matched, or the prices for the
objects are too expensive, so the bids for unassigned buyers are negative.

4.3. A Parallel Sparsification Strategy

While our similarity computation routines are capable of analyzing large
graphs 106 vertices and beyond, they generate similarity matrices in outer prod-
uct forms. To the best of our knowledge there are currently no matching al-
gorithms that can be applied directly on such low-rank matrix representations.
Therefore, it becomes imperative to explicitly compute the similarity matrix
from these outer product forms. This task poses constraints in terms of stor-
age requirements for the similarity matrix, which is quadratic in the number of
vertices in the graphs. As an example, the similarity matrix for two graphs of

14

Algorithm 5 Adaptive Parallel Auction Algorithm

1: Perform the initialization phase of algorithm 4 (lines 1–4)
2: ξ ← 2; θ ← 16; γ ← n+1

θ

3: δ ←
⌊

min
{

|Iglobal|
ξ

, n
θ

}⌋

. initialize threshold δ

4: while Iglobal 6= ∅ do
5: εlocal ←

θ
n+1 . reset εlocal to small value

6: while |Iglobal| > δ do

7: Perform bidding and assignment phase of algorithm 4 (lines 7–15)
8: if γ > εlocal then

9: εlocal ← εlocal · ξ
10: else

11: εlocal ← γ
12: end if

13: γ ← γ/ξ
14: end while

15: δ ← δ/ξ; θ ← θ · ξ . update δ and θ
16: end while

k #conserved edges

5 (0.07%) 784 (53.88%)
10 (0.13%) 913 (62.75%)
100 (1.33%) 1263 (86.80%)
200 (2.66%) 1317 (90.52%)
500 (6.65%) 1413 (97.11%)

1000 (13.30%) 1442 (99.11%)

Table 1: For various k we compute the number of conserved edges resulting from
a sparsified similarity matrix instance (for two PPI networks). Percentages are
computed based on the fact that the number of columns is 7518 (k column) and
the number of conserved edges from the dense similarity matrix is 1455.

106 vertices each, is a dense matrix of 1012 entries. This requires a distributed
memory of in the order of a few terabytes, simply for storing the similarity
scores.

To address this storage requirement, we propose a sparsification scheme that
is integrated into the assembly process for the similarity matrix from the outer
products. In addition to reducing storage, while not significantly impacting the
match quality, the result of the sparsification scheme must be in a form that can
be directly used by the parallel matching algorithm (i.e., in a row-wise block
partitioned form). We use the following strategy:

• Use the jth element of each of the w
(n)
i,r vectors (in lines 19 and 21 of

Algorithm 3 ; q = 1) to scale the z
(k)
i

T
vectors consecutively for all local

15

Algorithm 6 NSD-based Parallel Graph Matching

1: � = root process, no labels = all processes r
2: � load adjacency matrices A, B and component vectors wi, zi;
3: � compute Ã, B̃;
4: broadcast Ã, wi, zi;
5: distribute B̃ by row blocks . each process r gets its B̃r part;

6: for all components i and steps k (z
(0)
i = zi, w

(0)
i = wi)

7: compute vector iterates z
(k)
i ← Ãz

(k−1)
i

8: compute vector iterates w
(k)
i,r ← B̃rw

(k−1)
i , gather w

(k)
i (// matvec);

9: compute row-wise the local similarity matrix Xr (embarrassingly //)
10: . NSD-based, sparsify if needed (sort row entries, keep largest ones);
11: compute weighted matchings by // auction

12: . matching permutation lands on root;
13: � compute number of conserved edges, similarity rate;

row indices j.

• Once a row of the similarity matrix is constructed, retain only the k largest
values in the row (with k << n) before advancing to the next row.

This sparsification procedure decreases the storage requirement associated
with the similarity matrix by a factor k

n
. It can be adaptively tuned as a trade-

off between available memory and input network sizes. Our intention here is to
provide a practical and intuitive aproximation strategy, rather than a formally
quantified pruning solution. We empirically note that this strategy works well
for our test cases. Table 1 demonstrates that the proposed sparsification pre-
serves, to a large extent, the “quality” of the similarity matrix output: with 5%
of similarity matrix entries we can match almost 95% of the conserved edges for
two PPI networks.

We collect all stages in our workflow (parallel similarity matrix construc-
tion, sparsification, parallel auction-based matching, computation of quality
indices) into an integrated procedure for parallel graph matching. This is de-
scribed in Algorithm 6, the basis for the implementation running on a large,
supercomputer-class cluster. Note that a subset of sparse matrix-vector prod-
ucts is also parallelized. Some of the steps in this skeleton algorithm have already
been described as parts of Algorithm 3 (computation of the local similarity ma-
trix, specifically for a p × 1 process grid), in Subsection 4.3 (sparsification), in
Algorithm 4 (parallel matching) and in Subsection 3.4 (quality measures).

4.4. Complexity of the Integrated Approach

The sparsification procedure requires sorting (per row), and this introduces
an extra average complexity term of O(n2 log n), for networks of size n. This
is in addition to the standard O(n2) complexity of matrix similarity construc-
tion (per component, without sparsification). The sorting procedure can be

16

Figure 3: The NSD-based graph matching pipeline: NSD outputs a similarity
matrix and the auction matching algorithm generates pairs of vertices from the
two networks that match; indices can characterize the quality of these matches
and can be computed at the right end of the pipeline.

the dominant part of the computation for a small number of components (e.g.
s = 1). However, this cost is amortized for larger values of s. Furthermore, other
hash-based approaches can be used to approximate these ranges. Note also that
auction matching stage, that follows this stem in the integrated pipeline of Fig-
ure 3, has a worst case complexity of O(nm log(nC)); n and m are respectively
the size and the number of nonzero values of the (sparsified) similarity matrix
and C = maxij |xij | .

5. Experimental Results

We provide results from a detailed set of experiments to quantify the per-
formance of our methods on large-scale parallel platforms for diverse sets of
input networks. Results are presented for two variants of the method: with and
without sparsification of the similarity matrix. Performance results are com-
plemented by quality measures, computed as conserved edges from matching
results.

5.1. Experimental Environment and Setup

The code is implemented in C using a “hybrid” parallel programming model
(MPI and OpenMP). This model efficiently utilizes both shared address space
models supported by multiple cores and messaging across nodes.

In all cases α = 0.8 (recall that α is the fraction of the similarity score that
comes from topological similarity; the rest comes from elemental similarity), the
number of iterations is fixed. Also s = 10 randomly generated components were
input in all runs; this choice reflects the fact that no specific, a-priori matching
preferences are available in general. Uniform H scores encode the base truth
that, initially, any vertex in one graph could match any vertex in the other with
equal likelihood.

17

Pair Graph #Vertices #Edges

protein-protein
yeast 5,499 31,898
fruitfly 7,518 25,830

net/pfinan
net4-1 88,343 1,265,035

pfinan512 74,752 335,872

snapA
soc-slashdot090221 82,144 549,202
soc-slashdot090216 81,871 545,671

snapB
soc-slashdot0902 82,168 948,464
soc-slashdot0811 77,360 905,468

usroads
usroads 129,164 165,435

usroads-48 126,146 161,950

dnvs
halfb 224,617 6,306,219
fullb 199,187 5,953,632

b3
m133-b3 200,200 800,800

shar te2-b3 200,200 800,800

coAuthors
coAuthorsDBLP 299,067 977,676
coAuthorsCiteseer 227,320 814,134

notreDame
NotreDame www 325,729 929,849
web-NotreDame 325,729 1,497,134

stanford
Stanford 281,903 2,312,497

web-Stanford 281,903 2,312,497

(a)

Pair Graph #Vertices #Edges

amazon
amazon0505 410,236 3,356,824
amazon0601 403,394 3,387,388

delaunay
delaunay n19 524,288 1,572,823
delaunay n18 262,144 786,396

authorsSelf
coAuthorsCiteseer 227,320 814,134
coAuthorsCiteseer 227,320 814,134

coPapers
coPapersDBLP 540,486 15,245,729
coPapersCiteseer 434,102 16,036,720

papersSelf
coPapersCiteseer 434,102 16,036,720
coPapersCiteseer 434,102 16,036,720

dbpedia1
dbpedia-3.0 300k 300,000 1,320,138
dbpedia-3.5.1 500k 500,000 10,546,881

eu/in
eu-2005 300k 300,000 10,835,193
in-2004 500k 500,000 8,506,508

dbpedia2
dbpedia-3.0 500k 500,000 2,680,807

dbpedia-3.5.1 1500k 1,500,000 26,794,451

euSelf
eu-2005 862,664 19,235,140
eu-2005 862,664 19,235,140

(b)

Table 2: Characteristics of networks (organized in pairs) used in experiments.
Note the extra spacings defining the 7 graph pair sets.

Pair Total time (s) #Cores

protein-protein 75 1

net/pfinan 796 48
snapA 2,688 48
snapB 1,497 48

usroads 281 384
dnvs 880 384
b3 1,593 384

coAuthors 659 768
notreDame 764 768
stanford 615 768

(a)

Pair Total time (s) #Cores

amazon 558 3,072
delaunay 938 3,072

authorsSelf 226 3,072
coPapers 2,167 3,072
papersSelf 1,630 3,072

dbpedia1 17,382 128
eu/in 18,122 128

dbpedia2 16,838 256
euSelf 10,939 256

(b)

Table 3: Networks (organized in pairs) used in experiments, together with base
timings recorded at corresponding compute core counts. Note the extra spacings
defining the 7 graph pair sets.

Our experiments are performed on the Cray XE6 at the Swiss National
Supercomputing Centre in Manno, Switzerland. The Cray XE6 has 176 dual-
socket compute nodes, each socket is a 12-core AMD Opteron (aka Magny-
Cours), connected through a Gemini communication interface. We map each

18

Pair eu/in dbpedia1
Cores 128 256 512 1024 128 256 512 1024

t generateIterates 5.07 5.04 5.33 6.13 11.00 11.19 11.53 12.36
t generateRow 16,451 8,152 4,030 1,225 15,704 7,475 3,254 1,229
t sort 1,578 788 395 197 1,606 802 401 201
t similarityMatrix 18,046 8,949 4,429 1,424 17,327 8,287 3,660 1,431
t parallelAuction 55.16 28.82 16.32 11.90 31.97 19.78 14.37 14.93
t total 18,122 8,999 4,467 1,458 17,382 8,329 3,697 1,471

Table 4: Timing results (in secs) from various phases of the similarity analysis
process for the eu/in and dbpedia1 datasets. With reference to Algorithm 6,
t generateIterates corresponds to lines 7-8, t generateRow and t sort are sub-
parts of t similarityMatrix (lines 9-10), t parallelAuction corresponds to lines
11-12 and t total is the total time elapsed.

MPI process to a socket, fix the number of OMP threads either to 8 or 12, and
test scalability for up to 256 MPI processes, resulting to 3,072 compute cores,
at maximum. The PathScale programming environment (version 3.1.61) is used
with its accompanying compiler.

As dataset a diverse set of networks (see Table 2) available in the form
of their adjacency matrices are taken from the University of Florida sparse
matrix collection [13], the Wikipedia datasets containing its inter-article link
structure [6], and well-known protein-protein interaction networks [59]. We also
report about timings and number of cores to run the full integrated pipeline on
diverse adjacency pairs (see Table 3). These are the baseline computations for
the speed improvement plots.

5.2. Results with Sparsification

In this set of experiments we construct a sparsified version of the similarity
matrix and sparsification can be driven by two different objectives as we increase
the number of cores. In the first approach, the total number of nonzero entries of
the global (sparsified) similarity matrix is kept constant. This can be enforced
by using a constant value for k (the number of values per row we keep). It
follows that the number of nonzero entries for the local part of the resulting
similarity matrix will decrease for larger configurations, since the number of
rows locally assigned is also reduced in this case. This corresponds to the strong
scaling case for auction matching. In this case, near-linear speedup is observed
for all compute-intensive intermediate steps for up to 1,024 cores. We note that
our algorithm can extract matching pairs for half-a-million vertex networks in
less than 30 minutes using our cluster (see Table 4).

In the second approach, the total number of nonzero entries in the local part
of the similarity matrix is kept constant. We implement this in our code by
adaptively increasing k with the number of cores (that also implies a decrease
in the number of rows locally assigned), so as to utilize the full 16 GB memory

19

0.25

0.5

1

2

4

8

16

32

512 1024 2048 512 1024 2048

S
p
ee

d
 I

m
p
ro

v
em

en
t

(T
2
5
6
 c

o
re

s
/

T
p
ar

al
le

l)

dbpedia2

t-similarityMatrix t-parallelAuction

euSelf

Figure 4: Speed improvement of the similarity matrix construction in the strong
scaling sense, and the parallel auction in the weak scaling sense by using up to
2,048 compute cores.

available for each socket of Cray XE6. This is the weak scaling case for auc-
tion matching. Note that in this scenario, the auction matching algorithm is
effectively applied to different (successively denser) similarity matrices as the
number of cores is increased, and this impacts the matching pairs returned.
Weak scaling experiments for auction matching and strong scaling for similarity
matrix construction are illustrated in Figure 4 using up to 2,048 cores. We can
process pairs of million-vertex networks and extract similar vertex pairs in a
couple of hours on such configurations.

5.3. Results without Sparsification

The scalability of our approach is also demonstrated for datasets and config-
urations without using sparsification. In Figure 5 near linear speedup is reported
for parallel similarity matrix construction and also for the overall time. This
follows from the fact that parallel auction matching scales reasonably well and
takes only a small fraction of the overall time. Particularly, for protein-protein
interaction networks, a dramatic time reduction for the full pipeline is gained
from parallelization: extracting matching pairs for two typical networks using
64 cores takes about three seconds. Using sequential state-of-the-art approaches
like IsoRank [59] these matching requires about 1.5 hours for a solution of com-
parable quality. Table 5 presents timing results for the largest instances tested.
Similarity computation requires 256 sockets (3072 cores) to store the entire data.

5.4. Quality Measurement

Up to 3,072 cores are used for matching up to approximately 500k-vertex
networks. We report on the similarity rate, that is a “normalized” version of

20

1

2

4

8

16

32

64

2 4 8 16 32 64

S
p
ee

d
 I

m
p
ro

v
em

en
t

(T
1
 c

o
re

 /
 T

p
ar

al
le

l)

Protein-Protein Interaction

Size 10k
t-total t-similarityMatrix t-parallelAuction

1

2

4

8

16

32

96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536 S
p
ee

d
 I

m
p
ro

v
em

en
t

(T
4
8
 c

o
re

s
/
 T

p
ar

al
le

l)

snapA

Size 100k
t-total t-similarityMatrix t-parallelAuction

net/pfinan snapB

1

2

4

8

768 1536 3072 768 1536 3072 768 1536 3072 S
p
ee

d
 I

m
p
ro

v
em

en
t

(T
3
8
4
 c

o
re

s
/

T
p
ar

al
le

l)

dnvs

Size 200k
t-total t-similarityMatrix t-parallelAuction

usroads b3

1

2

4

8

1536 3072 1536 3072 1536 3072 S
p
ee

d
 I

m
p
ro

v
em

en
t

(T
7
6
8
 c

o
re

s
/

T
p
ar

al
le

l)

notreDame

Size 300k
t-total t-similarityMatrix t-parallelAuction

coAuthors stanford

Pair amazon delaunay coPapers papersSelf authorsSelf

t similarityMatrix 481.73 935.04 2,156.20 1,620.30 222.56
t parallelAuction 76.18 2.61 10.37 9.47 3.01
t total 557.91 937.65 2,166.57 1,629.77 225.57

Figure 5: Speed improvement and timing results (in secs) from the major steps
in our integrated approach for variable-sized dataset using up to 3,072 compute
cores.

the number of conserved edges. Our intention here is to assess the robustness of
our approach for the case of self-similarity (matching a graph with itself): since
no approximation is introduced (e.g. by sparsification) it is expected to obtain
a number of conserved edges equal to the number of edges in the graph in the
optimal case. This is indeed the case for authorsSelf and papersSelf pairs (Table
5).

6. Conclusions and Future Work

We address the problem of matching similar vertices of graph pairs in par-
allel. Our approach consists of two basic components: parallel NSD, a highly
efficient and scalable parallel formulation based on a recently introduced serial
algorithm for similarity matrix computation and parallel auction-based bipartite
matching. We validate the performance of our integrated pipeline on a large,

21

Pair #CE Rate

protein-protein 745 0.03

net/pfinan 74,778 0.22
snapA 14,296 0.02
snapB 77,617 0.09

usroads 2,666 0.02
dnvs 1,750,799 0.29
b3 29,217 0.15

coAuthors 85,437 0.11
notreDame 113,992 0.12
stanford 107,968 0.05

(a)

Pair #CE Rate

amazon 46,278 0.01
delaunay 112,152 0.14

authorsSelf 814,134 1.00
coPapers 3,520,545 0.23
papersSelf 16,036,720 1.00

dbpedia1 1,100 0.004
eu/in 80,884 0.04

dbpedia2 2,082 0.007
euSelf 219,759 0.26

(b)

Table 5: Quality measurement indices from experiments with various network
pairs: number of conserved edges (CE) and the similarity rate (rate). The extra
spacings define the 7 graph pair sets (in the sense of the caption in Table 2.

supercomputer-class cluster and diverse graph instances. We provide experi-
mental results demonstrating that our algorithms scale to large machine con-
figurations and problem instances. In particular, we show that our integrated
pipeline enables alignment of networks of sizes two orders of magnitude larger
than currently possible (millions of vertices, tens of millions of edges).

As part of future work, we investigate the feasibility of a bipartite matching
algorithm accepting as input the vectors of low-rank approximations of the
similarity matrix, rather than the fully assembled similarity matrix. We will
explore the possibility of substituting a formal pruning strategy for the optional
sparsification stage.

References

[1] R. Allen, L. Cinque, S. Tanimoto, L. Shapiro, and D. Yasuda. A parallel
algorithm for graph matching and its MasPar implementation. Parallel and
Distributed Systems, IEEE Transactions on, 8(5):490–501, 1997.

[2] S. Bandyopadhyay, R. Sharan, and T. Ideker. Systematic identification
of functional orthologs based on protein network comparison. Genome
research, 16(3):428–435, 2006.

[3] M. Bayati, M. Gerritsen, D.F. Gleich, A. Saberi, and Y. Wang. Algo-
rithms for large, sparse network alignment problems. In Data Mining,
2009. ICDM’09. Ninth IEEE International Conference on, pages 705–710.
IEEE, 2009.

[4] D. P. Bertsekas and D. A. Castan̂on. Parallel synchronous and asyn-
chronous implementations of the auction algorithm. Parallel Computing,
17(707–732), 1991.

22

[5] D. P. Bertsekas and D. A. Castan̂on. A forward/reverse auction algorithm
for asymmetric assignment problems. Computational Optimization and Ap-
plications, 1:277–297, 1993.

[6] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and
S. Hellmann. Dbpedia - A crystallization point for the web of data. Web
Semantics: Science, Services and Agents on the World Wide Web, 2009.

[7] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren.
A measure of similarity between graph vertices: Applications to synonym
extraction and Web searching. SIAM Rev., 46(4):647–666, 2004.

[8] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[9] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009.

[10] L. Buš and P. Tvrdik. Towards auction algorithms for large dense assign-
ment problems. Computational Optimization and Application, 43(3):411–
436, 2009.

[11] Ü. V. Çatalyürek, F. Dobrian, A. H. Gebremedhin, M. Halappanavar, and
A. Pothen. Distributed-memory parallel algorithms for matching and color-
ing. In 2011 International Symposium on Parallel and Distributed Process-
ing, Workshops and PhD Forum (IPDPSW), Workshop on Parallel Com-
puting and Optimization (PCO’11), pages 1966–1975. IEEE Press, 2011.

[12] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[13] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38(1), 2011.

[14] D. E. Drake and S. Hougardy. Linear time local improvements for weighted
matchings in graphs. In WEA’03 Proceedings of the 2nd international con-
ference on Experimental and efficient algorithms, pages 107–119, 2003.

[15] I. S. Duff and J. Koster. On algorithms for permuting large entries to
the diagonal of a sparse matrix. SIAM Journal on Matrix Analysis and
Applications, 22:973–996, 1999.

[16] M. El-Kebir, J. Heringa, and G. Klau. Lagrangian relaxation applied to
sparse global network alignment. Pattern Recognition in Bioinformatics,
pages 225–236, 2011.

[17] J. Flannick, A. Novak, C.B. Do, B.S. Srinivasan, and S. Batzoglou. Auto-
matic parameter learning for multiple network alignment. In Proceedings
of the 12th annual international conference on Research in computational
molecular biology, pages 214–231. Springer-Verlag, 2008.

23

[18] J. Flannick, A. Novak, B.S. Srinivasan, H.H. McAdams, and S. Batzoglou.
Graemlin: general and robust alignment of multiple large interaction net-
works. Genome research, 16(9):1169–1181, 2006.

[19] L. Getoor and C.P. Diehl. Link mining: a survey. ACM SIGKDD Explo-
rations Newsletter, 7(2):3–12, 2005.

[20] D. Gitchell and N. Tran. Sim: a utility for detecting similarity in computer
programs. In ACM SIGCSE Bulletin, volume 31, pages 266–270. ACM,
1999.

[21] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic library for
distributed graph computations. In In Parallel Object-Oriented Scientific
Computing (POOSC. Citeseer, 2005.

[22] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen. Parallel SimRank
computation on large graphs with iterative aggregation. In Bharat Rao,
Balaji Krishnapuram, Andrew Tomkins, and Qiang Yang, editors, Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010,
pages 543–552. ACM, 2010.

[23] S. Hougardy and D. E. Vinkemeier. Approximating weighted matchings in
parallel. Information Processing Letters, 99(3):119–123, 2006.

[24] G. Jeh and J. Widom. SimRank: a measure of structural-context similarity.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543. ACM, 2002.

[25] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing, 38(4):325–340,
1987.

[26] M. Kalaev, M. Smoot, T. Ideker, and R. Sharan. NetworkBLAST: compar-
ative analysis of protein networks. Bioinformatics, 24(4):594–596, 2008.

[27] B.P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B.R. Stockwell, and T. Ideker.
PathBLAST: a tool for alignment of protein interaction networks. Nucleic
Acids Research, 32(suppl 2):W83, 2004.

[28] G.W. Klau. A new graph-based method for pairwise global network align-
ment. BMC bioinformatics, 10(Suppl 1):S59, 2009.

[29] J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM (JACM), 46(5):604–632, 1999.

[30] G. Kollias, S. Mohammadi, and A. Grama. Network Similarity Decompo-
sition (NSD): A fast and scalable approach to network alignment. IEEE
Transactions on Knowledge and Data Engineering, 99(PrePrints):1–13,
2011.

24

[31] G. Kollias, M. Sathe, S. Mohammadi, and A. Grama. A fast approach for
the global alignment of protein-protein interaction networks. 2012 (sub-
mitted).

[32] M. Koyutürk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, and
A. Grama. Pairwise alignment of protein interaction networks. Journal of
Computational Biology, 13(2):182–199, 2006.

[33] O. Kuchaiev, T. Milenković, V. Memǐsević, W. Hayes, and N. Pržulj. Topo-
logical network alignment uncovers biological function and phylogeny. Jour-
nal of the Royal Society Interface, 7(50):1341–1354, 2010.

[34] Oleksii Kuchaiev and Natasa Przulj. Integrative network alignment reveals
large regions of global network similarity in yeast and human. Bioinfor-
matics, 27(10):1390–1396, 2011.

[35] H. W. Kuhn. The Hungarian Method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 1955.

[36] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceed-
ings of the 2001 IEEE International Conference on Data Mining, pages
313–320. IEEE Computer Society, 2001.

[37] Z. Li, S. Zhang, Y. Wang, X.S. Zhang, and L. Chen. Alignment of molecular
networks by integer quadratic programming. Bioinformatics, 23(13):1631–
1639, 2007.

[38] F. Manne and R. H. Bisseling. A parallel approximation algorithm for the
weighted maximum matching problem. In Proceedings Seventh Interna-
tional Conference on Parallel Processing and Applied Mathematics (PPAM
2007), volume 4967 of Lecture Notes in Computer Science, pages 708–717,
2008.

[39] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A versatile
graph matching algorithm and its application to schema matching. In Data
Engineering, 2002. Proceedings. 18th International Conference on, pages
117–128. IEEE, 2002.

[40] V. Memǐsević and N. Pržulj. C-GRAAL: Common-neighbors-based global
GRAph ALignment of biological networks. Integr. Biol., 2012.

[41] T. Milenković, W.L. Ng, W. Hayes, and N. Pržulj. Optimal network align-
ment with graphlet degree vectors. Cancer informatics, 9:121, 2010.

[42] T. Milenković and N. Pržulj. Uncovering biological network function via
graphlet degree signatures. Cancer Informatics, 6:257–273, 2008. PMID:
19259413.

[43] S. Mohammadi and A. Grama. Biological network alignment. Functional
Coherence of Molecular Networks in Bioinformatics, pages 97–136, 2012.

25

[44] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38,
1957.

[45] M.E.J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[46] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the Web. Technical report, Stanford University,
1998.

[47] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. Web graph similar-
ity for anomaly detection. Journal of Internet Services and Applications,
1(1):19–30, 2010.

[48] P. M. Pardalos, J. Rappe, and M.G.C. Resende. An exact parallel algorithm
for the maximum clique problem. In In High Performance and Software
in Nonlinear Optimization, pages 279–300. Kluwer Academic Publishers,
1998.

[49] M. A. Patwary, R. H. Bisseling, and F. Manne. Parallel greedy graph
matching using an edge partitioning approach. In Proceedings of the Fourth
ACM SIGPLAN Workshop on High-level Parallel Programming and Appli-
cations (HLPP 2010), pages 45–54, 2010.

[50] S. Pettie and P. Sanders. A simpler linear time 2/3-ε approximation for
maximum weight matching. Information Processing Letters, 91(6):271–276,
2004.

[51] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In STACS 99, pages 259–269. Springer, 1999.

[52] N. Pržulj. Biological network comparison using graphlet degree distribu-
tion. Bioinformatics, 23(2):e177 –e183, January 2007.

[53] J. Riedy. Making static pivoting scalable and dependable. PhD thesis, EECS
Department, University of California, Berkeley, 2010.

[54] M. Rupp, E. Proschak, and G. Schneider. Kernel approach to molecular
similarity based on iterative graph similarity. Journal of chemical informa-
tion and modeling, 47, 2007.

[55] M. Sathe, O. Schenk, and H. Burkhart. An auction-based weighted match-
ing implementation on massively parallel architectures. 2011 (submitted).

[56] R. Sharan, S. Suthram, R.M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sit-
tler, R.M. Karp, and T. Ideker. Conserved patterns of protein interaction
in multiple species. Proceedings of the National Academy of Sciences of the
United States of America, 102(6):1974, 2005.

26

[57] Y. Shinano, T. Fujie, Y. Ikebe, and R. Hirabayashi. Solving the maximum
clique problem using PUBB. In Parallel Processing Symposium, 1998.
IPPS/SPDP 1998. Proceedings of the First Merged International ... and
Symposium on Parallel and Distributed Processing 1998, pages 326–332,
1998.

[58] C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Gener-
alizing association rules to dependence rules. Data Min. Knowl. Discov.,
2(1):39–68, 1998.

[59] R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein in-
teraction networks with application to functional orthology detection. Pro-
ceedings of the National Academy of Sciences, 105(35):12763–12768, 2008.

[60] E.H. Sussenguth Jr. A graph-theoretic algorithm for matching chemical
structures. Journal of Chemical Documentation, 5(1):36–43, 1965.

[61] M. Takashima, A. Ikeuchi, S. Kojima, T. Tanaka, T. Saitou, and J. Sakata.
A circuit comparison system with rule-based functional isomorphism
checking. In Design Automation Conference, 1988. Proceedings., 25th
ACM/IEEE, pages 512–516. IEEE, 1988.

[62] X. Yan and J. Han. gspan: Graph-based substructure pattern mining.
In Data Mining, 2002. ICDM 2002. Proceedings. 2002 IEEE International
Conference on, pages 721–724. IEEE, 2002.

[63] Laura A. Zager and George C. Verghese. Graph similarity scoring and
matching. Appl. Math. Lett, 21(1):86–94, 2008.

27

	Fast Parallel Algorithms for Graph Similarity and Matching
	Report Number:
	

	2761.pdf

