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Abstract— Ensuring the trustworthiness of data retrieved from
a database is of utmost importance to users. The correctness of
data stored in a database is defined by the faithful execution of
only valid (authorized) transactions. In this paper we address the
question of whether it is necessary to trust a database server in
order to trust the data retrieved from it. The lack of trust arises
naturally if the database server is owned by a third party, as in
the case of cloud computing. It also arises if the server may have
been compromised, or there is a malicious insider. In particular,
we reduce the level of trust necessary in order to establish the
authenticity and integrity of data at an untrusted server. Earlier
work on this problem is limited to situations where there are no
updates to the database, or all updates are authorized and vetted
by a central trusted entity. This is an unreasonable assumption
for a truly dynamic database, as would be expected in many
business applications, where multiple clients can update data
without having to check with a central server that approves of
their changes.

We identify the problem of ensuring trustworthiness of data on
an untrusted server in the presence of transactional updates that
run directly on the database, and develop the first solutions to
this problem. Our solutions also provide indemnity for an honest
server and assured provenance for all updates to the data. We
implement our solution in a prototype system built on top of
Oracle with no modifications to the database internals. We also
provide an empirical evaluation of the proposed solutions and
establish their feasibility.

I. INTRODUCTION

Ensuring the integrity and authenticity of data is of ever
increasing importance as data are generated by multiple
sources, often outside the direct control of fully trusted entities.
Increasingly, data are subjected to environments which can
result in invalid (malicious or inadvertent) modifications to
the data. Such possibilities clearly arise when we host our
data in a cloud computing setting where we lack complete
control over the hardware and software running at the cloud
servers. They can also arise when the data are maintained on
trusted servers, but the data may get modified by a malicious
insider or an intruder that manages to compromise the server
or the communication channels. In these situations, can we be
ensured that the data retrieved from an untrusted server are
trustworthy (i.e., the data and retrieved values have not been
tampered or incorrectly modified)?

With the advent of Cloud Computing there is increasing
interest to move operations, including databases, onto a cloud
platform. Although Cloud Computing holds great promise, it
raises a number of security and privacy concerns. It also raises
concerns about the fidelity of the service. In particular, since
the clients have little or no direct control over the software

and hardware that is running at the servers, there is reluctance
to blindly trust the server. For example, a server may be
improperly configured, or inadvertantly left open to hacker
attacks. There is also the concern about the server being
attacked by an external entity that can corrupt the outsourced
data or service despite the best efforts of the server. Even
though, the cloud service provider is likely to be honest, it
may try to hide its failure. Currently, users have no recourse
but to trust the server or rely on legal agreements. Even with
such agreements, it is difficult for a user to discover, let alone
prove, any foul play by the server.

In this paper we show how it is possible to force an
untrusted (relational) database server to provide trustworthy
data. This is achieved by engaging the server in a protocol
that makes it impossible for it to hide unfaithful execution. A
key challenge for this work arises from the fact that multiple,
independent clients can access and make valid updates to parts
of the data using SQL. In order to ensure authenticity it is
necessary to guarantee:

o Correctness: All answers to a query do indeed come
from the authentic database.

o Completeness: The query answer contains all relevant
tuples (i.e., no part of the answer is dropped).

o Transactional Integrity: The database always reflects
a valid consistent state — i.e., the state corresponding
to the initial state followed by the correct application
of all previous valid transactions in the correct order.
Furthermore, each new transaction executes against the
latest (or freshest) state.

Of these, only the first two have been studied in earlier work.
In most earlier work it was assumed that the data were not
modified at the untrusted server. In other words, all updates
were authenticated by the data owner and then sent to the
database server. The legitimacy of any data that was part of
the database was established directly by the data owner. In a
dynamic database setting this is an unacceptable assumption. A
typical database supports a large number of authorized clients
that run transactions directly on the database. Updates to the
data are made through these transactions. It is infeasible for
the database owner to determine the correct updates for each
transaction. The validity of these updates (i.e, what items are
modified, and their new values) is determined by the faithful
execution of a transaction semantics over the latest valid state.
How can the database owner be assured that the (untrusted)
server is indeed correctly executing all transactions?



Many applications may also require, e.g., due to regu-
latory compulsions, to keep the provenance of updates to
the database. This can be particularly important to check if
malicious activity occurred in the past. In addition to these
requirements from the data owner’s perspective, there is an
additional requirement from the service provider. The server
should be able to prove its innocence if it has faithfully
executed all transactions.

To the best of our knowledge, this problem of ensuring
transactional integrity over an untrusted database server, as
critical as it is for outsourced databases, has not been ad-
dressed in earlier work. The contributions of this work are:

o Identification of the problem of ensuring Transactional
Integrity for databases hosted on untrusted servers.

o Novel authentication mechanisms that ensure correctness,
completeness, and transactional integrity.

o Solutions that provide indemnity for the server, and also
trustworthy provenance for the database.

o A demonstration of the feasibility of the solution through
a prototype in Oracle, and its evaluation.

The rest of this paper is organized as follows. Section II
presents some preliminary tools that are necessary for this
work and summarizes existing results that form the basis of
our solution. Section III presents our protocols. A discussion
of the implementation of the solution and empirical evaluation
is presented in Section IV. Section V discusses related work,
and Section VI concludes the paper.

II. PRELIMINARIES

In this section we present some basic tools that we use for
building our solutions, and also discuss existing solutions for
ensuring completeness and correctness.

A. Tools

We use three data security tools in this paper : strong one-
way hash functions, Merkle Trees, and digital signatures.

1) One-Way Hashing: A one-way hash function & takes
as input a data item z and produces as output the hash of
the data item y = h(z). Important requirements for a one-
way hash function are: i) Given a hash value y, and the hash
function h, it is infeasible to find x such that h(z) = y; and ii)
It is infeasible to find two different data items, x and y, such
that h(xz) = h(y). There are many well-known and commonly
used strong one-way hash functions such as SHA-256. Table
I summarizes the symbols used in this paper.

2) Merkle Hash Trees: A Merkle Hash Tree (MHT), or
Merkle Tree, is a binary tree with labeled nodes. We represent
the label for node n as ®(n). If n is an internal node with
children njcp; and n,.5gn¢, then

®(n) = h(®(niese) [P (nrignt)) (1)

Labels for leaf nodes are computed using data values depend-
ing upon the application, e.g., in case of a relation, a label is
calculated as the hash of the tuple represented by that leaf.

TABLE I
SYMBOL TABLE

[ Symbol ] Description |
t a tuple in a relation
t; the 3% tuple of a relation
h(x) the value of a one way hash function over z
D(x) label of node x in MB-Tree
allb concatenation of a and b
Vo a verification object
T; the " committed transaction
DB; the consistent DB state after the :t" commit
MBT; the proof structure after the i*® commit
Proof; the MB-tree root label after the i** commit
Suser(M) | message M signed by User
Ch Cost of computing one hash
Cro Cost of one disk 10
C}O Cost of searching and retrieving one block from history
Sh, Sn, St | Size of a hash value, MB-tree node, and
a tuple in the user table respectively
3) Digital Signatures: A digital signature serves a role

similar to regular signatures: i) it enables the recipient to
ascertain without doubt the author of a message; ii) it prevents
forgery — i.e., it is (computationally) infeasible for Alice to
sign a message with Bob’s signature, and iii) the signature
is not reusable — i.e., a signed message cannot be used to
generate a signature for another message.

B. Model

There are three main entities involved: Alice, the database
owner; Bob, the (untrusted) database server that will host the
database; and Carol, the client(s) that will access this data
(may include Alice) from the server. Clients are authorized
by Alice and can independently authenticate themselves with
the server. In our model, multiple clients can run transactions
concurrently. These transactions can modify the data as well.
Figure 1 shows the various entities in this model.

Alice and Carol need to be ensured that the database is
operated faithfully — i.e., all the transactions are executed
correctly and the data are not maliciously modified by Bob
or an attacker. Bob is interested in hosting Alice’s database
(possibly in return for a fee) and will thus make efforts to
ensure that Alice is convinced about the fidelity of the hosting.
Bob controls the hardware and software that is used to host
the database. He has complete control over all the data. He
has unconditional read and write access to the data, and can
intercept all queries posed to the database and their results,
and may even modify the stored data or the results sent back
to Carol. Note that our assumptions about Bob are minimal.
In most settings, the server is likely to be at least semi-
honest — i.e., it will not maliciously alter the data or query
results. However, due to poor implementation, failures, over
commitment of resources, or other reasons, some loss of data
or updates may occur. Given the lack of direct control over
the server, Alice should not assume that Bob is infallible.

C. Correctness and Completeness

We begin by discussing the use of Merkle Trees to prove
correctness. And then further discuss a variant of it, MB-tree,
which we use as a building block for our overall solution.
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Fig. 1. The various entities involved: The database owner (Alice); The
database (cloud) server(Bob); and Authorized clients (Carol).

1) Correctness: Correctness requires that all values that are
part of a query result are indeed part of the database. In other
words, this implies that the values returned are indeed from
the right consistent state of the authentic database, and not
manufactured by the server or an attacker.

Merkle trees can be used to establish the correctness of
query results from an outsourced database. Initially, when
Alice chooses to outsource a database relation, she computes
a Merkle tree over the relation. Alice saves only the value
of the root label. The data are then sent to Bob for servicing
queries. Bob computes the same Merkle tree structure over this
data and then services queries from Alice. Figure 2 shows an
example of the tree produced.

The correctness of a tuple, ¢;, in the result of any query is
established as follows: Alice requests the Verification Object
(VO ) for tuple t;. Let x be the leaf node whose label was
computed as the hash of ¢;. The VO for t; consists of all
sibling nodes along the path from z to the root of the Merkle
tree. In Figure 2, these nodes are shaded and are: a, b, c. Bob
returns to Alice the VO for t;. Alice uses the value of ¢; to
compute the label of z. She uses this label and the label for
a from the VO to compute the label for z’s parent, etc. all
the way to the root label. If this value is the same as the root
label that she had computed before outsourcing the data, she
is convinced that ¢; must be part of the original table. If not,
then Alice is unconvinced that the database is uncompromised.

Note that the hash function has to be public. The label of
the root saved by Alice is known as the proof. Of course,
it is also possible for Carol to submit queries and verify the
correctness of each answer similarly. All she needs to know
is the value of the root label initially computed by Alice.

2) Completeness: Completeness requires that all values that
should be in the answer to a query are indeed present in the
answer. In other words, Bob has evaluated the query correctly
and has returned all tuples that are produced as a result without
dropping any out. Note that correctness and completeness
together ensures the correctness of a read-only query.

As explained before, a Merkle Tree is a binary tree.
However, it can be easily extended to use a B+-tree instead
[1]. An MB-tree behaves just like a regular B+-tree with its
nodes extended with child hash values. Similar to the Merkle
Tree, the label of each non-leaf node is computed by hashing
concatenation of labels of its children. Label of a leaf node

Fig. 2.

An example Merkle tree

is computed by hashing concatenation of hash values of each
tuple entry in the node.

We use MB-tree to establish the completeness of the results
of a query. Figure 3 shows an example tree for establishing
completeness. Consider a range query which returns tuples
to...t,. To establish the completeness of tuples satisfying a
range, the VO consists the tuple just before the range (t_1)
and the tuple just after the range (¢,41). VO then includes the
path from those two tuples to the root.

To establish correctness, Alice computes the labels for all
tuples in the results and the two surrounding values. She then
computes the labels of ancestor nodes working her way up the
tree. The VO contains the labels of nodes that she needs to
compute the ancestor label and also which tuples belongs to
the same leaf node. Finally, she compares the computed proof
with the proof she stored earlier to determine if the result set
contains all the tuples that should have been returned. If this
is the case, she is assured that all valid tuples were returned
to her. Alice verifies that ¢y and ¢,4; are outside the query
range, ensuring that the query results were indeed complete.

N S O

Fig. 3.  An example MB tree for completeness. k; represents a key, p; and
h; represent pointer and hash value of the i*? child. The bold values are
returned as VO when the query result is the tuples ¢g . . . t,.

3) Updates Generated By Alice: If Alice wishes to update
the data that she has previously outsourced to Bob, she can
do so by simply sending the updates to Bob after recomputing
the Merkle Tree structure incorporating the updates. Bob
similarly applies the updates to the structure that he maintains.
All subsequent queries are then answered using the updated
database at Bob’s server, and verifications are now done
against the new proof.



This solution requires that (i) all updates have to be routed
through the data owner (Alice) and (ii) if Alice wants to verify
the update, she has to do it before executing further updates.
In the next section, when we discuss a more general solution
for updates that are not generated directly by Alice, we will
remove both of these requirements.

IIT. TRANSACTIONAL INTEGRITY

As seen in the previous section, solutions for ensuring
correctness and completeness have been proposed in earlier
work. In this section we present our solution for ensuring
transactional integrity in a dynamic database where multiple
clients can independently run transactions.

Transactional integrity requires that each transaction is run
against a consistent database containing all, and only the
changes of all previously committed transactions, in order
of their commits. Furthermore, any updates generated by the
correct execution of transaction are reflected in the updated
database upon commitment. From the point of view of authen-
tication, we impose the following restriction. Transactional
integrity will only be guaranteed for Replayable Transactions.
A replayable transaction is one which is deterministic — i.e.,
the outcome of the transaction (the outputs it generates, the
values of its updates and its decision to commit or abort)
is completely determined by the values that it reads from
the database and its input parameters. This assumption is
no different than one that is currently made by database
systems in order to ensure the well known ACID properties
of databases (e.g, the ability for the database to automatically
restart a running transaction if it is deadlocked).

A. Requirements

To ensure the integrity of the database, each transaction
must be authorized by Alice or Carol. Alice needs to be
ensured that the transaction was faithfully executed by Bob
without any tampering of the results. Furthermore, any sub-
sequent queries should be answered against this resulting
database following the transaction’s commitment. The problem
is difficult because we must ensure that Bob does not:

« drop a transaction, i.e., claims to execute it, but does not;

e add an invalid transaction not authorized by Carol;

o alter the order of execution of transactions; or

o alter the data read by or modified by a transaction.

In addition, we also require indemnity for Bob: that is, if
he faithfully executes all transactions received from Alice or
Carol, it is impossible for Alice or Carol to implicate him, i.e.,
he must be able to prove his innocence.

B. Key Idea

Databases are complex systems, but they are built to ensure
that the following simple definition of consistency is satisfied
[2]. Figure 4 shows this graphically. The initial state of the
database (D By) is considered to be a consistent state. The
correct (isolated, atomic) execution of a transaction(7;) over a
consistent state(D B;_1) takes the database to a new consistent
state(D B;). Of course, this is only a conceptual notion — in

Consistent
DB state
DB, DB,

Consistent

Initial State DB state o O O

DBy

Fig. 4. A simplified view of database consistency

reality multiple transactions execute concurrently and can have
various SQL isolation levels. Thus, in practice, the database is
in an inconsistent state represented by the partial execution
of concurrent transactions. However, when a transaction is
allowed to commit it is certain that its execution is equivalent
to having run in isolation against the consistent state produced
by the execution of all transactions that have committed earlier
(in the order of commits).

Our initial solution focuses on strict serializability. If a
user is willing to run a transaction with a weaker isolation
level, than our solution can be applied with an appropriately
relaxed notion of correctness. Since strict serializability is the
most stringent condition for correctness and completeness (as
required by many applications, e.g., Banking), we limit our
discussion to this case.

Our solution is built upon the fact that in strict serializable
isolation level, each transaction “sees” a consistent, committed
state of the database corresponding to the state produced
after completing earlier committed transactions. All its reads
are from this consistent state. If the transaction is able to
successfully execute and commit, it generates a set of updates
which must all be installed atomically to produce the next
consistent state.

Based on this observation, from the conceptual point of
view, the integrity and authenticity of a transaction’s execution
can be divided into three sub-components:

o Establishing that all values read by the transaction come
from a single consistent state (in particular, one that
reflects the updates of all prior committed transactions,
in correct order).

« Faithful execution of the transaction using these values —
determination of the correct values of the updates.

« Establishing that all updates generated by this execution
have been applied to the database.

Under the assumption of replayable transactions, Bob does
not need to prove the second point listed above (faithful
execution) since this can be verified by a simple re-execution
of the transaction over the same consistent state that was
visible to the transaction when it was run by Bob. We need to
establish that a given transaction, 7}, ran against a particular
consistent state, DB;_; and produced a particular consistent
state, D B;. This will be achieved by using MB-tree structure
discussed earlier. Although the database at any time is in
flux and contains inconsistent states, we will only update the
MB-tree structures at the time of transaction commitment.
Thus each new MB-tree reflects the commitment of exactly
one transaction. In other words, we maintain a one-to-one
correspondence between the conceptual consistent states and



Algorithm 1 Initialization
1: Alice sends the initial database, DB, to Bob
2: Bob computes M BTy, and sends Sp,(Proofy) to Alice.
3: Alice independently computes Proofy and verifies what
Bob has sent.
4: Alice retains Proofy. (She may now choose to discard
her copy of the database.)

the proof structure — a new version of the structure is generated
in one step only upon the commitment of a transaction. This
new structure is computed from the previous structure by
applying the changes made by exactly one transaction — the
one that has just committed. Bob has to declare this structure
at the time of commitment of a transaction (by sending out a
signed copy of the new root label, Proo f;, beyond his control),
and be able to use this structure when asked to verify the
correct execution of the transaction (which will also involve
the structure before the commitment of the given transaction).

C. The Protocol

We now discuss our solution for ensuring Transactional
Integrity. We discuss the initialization steps taken by Alice and
Bob, the execution of a single transaction by Carol (similar
for Alice), and the verification steps to establish the validity
of a given transaction. For ease of exposition, we discuss only
the case of one relation. The extension to multiple relations is
straightforward and omitted due to lack of space. All signed
messages are verified by the recipient — this is not explicitly
mentioned in the discussion below.

While it is certainly feasible for Carol (or Alice) to validate
every single transaction, this results in a heavy burden. In prac-
tice, we expect that they will randomly validate transactions
with a frequency that reflects their distrust of Bob. In order for
this to achieve the goals of this work, it is essential that they
be able to verify any past transaction without any forewarning
to Bob during the execution of the transaction. Moreover, the
solution must ensure that once they request the validation of
a transaction, it is impossible for Bob to go back and “fix”
any errors or omissions with respect to the execution of that
transaction. These requirements are met by our solution.

1) Initialization: Algorithm 1 describes the initialization
step. In the beginning, Alice and Bob independently compute
M BT, — the MB-tree structure over the initial state of the
relation. Alice retains only the proof, Proofy. Bob sets up
the database with this initial table and opens shop, ready for
processing transactions from Alice and Carol.

2) Transaction Execution: Algorithm 2 describes this step
and Figure 5 shows the steps graphically. To execute a trans-
action, Carol sends to Bob a signed message containing the
identity of the transaction (as discussed above), all necessary
parameters (e.g., account numbers), and a unique transaction
sequence number (SID). This sequence number must be unique
for each transaction submitted by Carol (if there are multiple
Carols, i.e., multiple authorized clients, the number needs to be
unique for each such client, not necessarily across all clients).
Bob verifies the signature to be that of Carol and examines

1.8 4y |(transaction,SID)

2. Save signed
message with Tran.
commit sequence, i
3. Execute Txn

4. Generate MBT;

5. Sgop(SID,i, Proof ;_4, Proof ;, RSet)
‘ 6. Sgpp(Proof _4,
7.8 (Proof ;_4, Proof ;
Carol 1 / 8. Update proof chain.

Fig. 5. Transaction Execution Steps

Proof ;, Sgro(transaction,SID))

the message. He rejects a transaction request from Carol if the
sequence number is not larger than the earlier request from the
same client. The sequence numbers prevent replay attacks by
Bob. That is, Bob will be prevented from re-using a transaction
request to run that transaction multiple times. The details will
become clear later in the section.

Bob then runs the requested transaction. He keeps track
of the data items written by the transaction. If the transaction
successfully commits, Bob installs the updates produced by the
transaction into the current proof structure. Since transactions
are committed sequentially, let ¢ be the ordinal position of
this transaction’s commitment since the initial outsourcing.
This transaction will be identified by Bob as T; — i.e., the
i'" transaction to commit. Concurrency control will ensure
that this transaction’s reads were consistent with DB;_{ —
the consistent state corresponding to all earlier committed
transactions. If this is not the case, then the transaction will not
be allowed to commit (recall that we are assuming only strict,
serializable executions [2]). Once it commits, its changes will
be included in the next conceptual consistent state, D B;. Bob
stores the authorization message from Carol along with the
transaction’s commit position, <.

Bob needs to declare that T; was applied on DB;_; and
produced D B;. He does this by computing the corresponding
MB-tree structures M BT;_1 and M BT;. As part of the proof
of the commitment of 7;, he send to Carol a signed message
containing (i) the sequence number submitted by Carol, (ii)
the transaction’s commit sequence number, ¢, (iii) the label of
the root of M BT;_1, i.e., Proof;_1, (iv) the label of the root
of M BT, i.e., Proof;, and (v) RSet, the result set produced
by the transaction. He also sends to Alice a signed message
containing (i) the transaction commit sequence number, i,
(i) Proof;_1, (iii) Proof;, and (iv) the Carol’s transaction
request — Scarol(transaction, SID). Note that for a read-
only transaction, Bob need not send anything to Alice.

Alice uses the messages from Bob to maintain the sequence
of proofs: Proofy, Proofi, ..., Proof; that Bob claims to
be the sequence of consistent states that the database has gone
through. She ensures that Proof;_1 is currently the last value
in its proof chain. If this is the case, she adds Proof; to the end
of the chain. She also retains the latest SID used by each client.
She checks to see that the SID has not been used by this client
earlier and is in increasing order for the client. Alice receives



Algorithm 2 Transaction Execution

Algorithm 3 Transaction Verification

1: Carol generates the unique transaction sequence number
SID and sends S¢ o (transaction, SID) to Bob.

2: Bob records this message after verifying the signature and
executes the transaction.

3 If the transaction successfully com-
mits, Bob computes M BT; and sends
SBop(SID,i, Proof;_1, Proof;, RSet) to Carol. 1

is the transaction’s commit sequence number, and RSet
is the result set produced by the transaction.

4: Bob also sends to Alice
SBob(i, Proofi_1, Proof;, Scarei(transaction, SID)).

5: Alice verifies Bob’s signature and then adds Proof; to its
chain of proofs after verifying that Proof;_; is at the end
of the current chain. Alice also checks that the SID for
this client is in increasing order.

6: Carol sends Scqrol(Proofi_1, Proof;) to Alice.

7: Alice checks that Proof;_1 and Proof; are contiguous
proofs in its chain.

Proof;_1 and Proof; from Carol as well, and ensures that
Proof;_1 precedes Proof; in the sequence received from
Bob. If not, Alice has detected a problem.

3) Transaction Verification: Algorithm 3 explains the ver-
ification protocol formally. Following the execution of a
transaction, Carol (or Alice) can arbitrarily decide if she
wants to verify a given transaction (current or past). To verify
transaction Tj;, three requirements need to be established.

Firstly, Bob has to show that all values read by the trans-
action were indeed from DB;_;'(Step 2 and 3). To do this,
he needs to produce the verification objects for the reads from
M BT;_1. For now, let us assume that Bob maintains a copy
of MB-tree for each consistent state. We will revisit this issue
later and propose a more efficient solution. Carol uses the
Correctness and Completeness mechanisms discussed earlier
to verify the reads against Proof;_1(Step 4 and 5).

Secondly, Carol needs to know the correct values of all
updates generated by the given (replayable) transaction when
run on a database corresponding to D B;_1. Given a replayable
transaction and the values read by the transaction (as declared
by Bob and validated in the previous step), we need to
determine the values of its updates. Given the replayable
transaction and the values that it reads, Carol (or Alice) can
determine the values of its output and updates (Step 6).

Thirdly, Carol needs to establish that the updates of the
transaction were faithfully recorded in the database and used
for subsequent transactions. To do this, Bob needs to show that
M BT; differs from M BT;_1 by exactly the modifications of
T;. For this, Bob sends the node values from M BT;_; which
were modified at the time of commit of transaction 7;. Bob
also sends other nodes values required for Carol to generate the
Proof; (Step 7). Then, Carol can update the partial M BT;_1
to include the changes applied by the transaction and verify

I'As is always the case, if T} updates a data value and subsequently reads
it, it will read the value it wrote, not the one from D B;_q. This should be
taken care of during the transaction verification.

1: Carol asks Bob to verify a transaction 7T;

2: Bob computes M BT;_1 and M BT;.

3: Bob sends to Carol the verification objects for all values
read by 7T; based on M BT;_;.

4: Carol obtains Proof;_1 and Proof; from Alice.

5. Carol verifies the correctness and completeness of T;’s
reads.

6: Carol determines the outputs and updates for T} (replays
T;) given these reads.

7: Bob sends to Carol the verification objects for T;’s updates
based on M BT;.

8: Carol verifies that M BT; contains these updates.

the new proof (Step 8). Carol then ensures that the new proof
(Proof;) is indeed what Bob claimed it to be at the time
of transaction commit. This is verified by comparing it with
Proof; value obtained from Alice in Step 4.

Notice that in our solutions, the overhead for Alice is
minimal. Alice just maintains the proof chain and stores the
latest SID used by each client. Alice incurs cost of verification
only if she wants to. The clients can verify the transactions
independently. There is a communication cost for Alice, as
both Bob and Carol updates Alice about the execution of
a transaction. However, it does not stop Bob or Carol from
executing further transactions, hence, the communication can
occur at available time rather than instantly.

D. Discussion of Correctness

We now show that the proposed protocol meets our require-
ments. We show how a failure on the part of Bob will be
detected by our protocols.

Lemma 1: If Bob (or an intruder) maliciously modifies a set
of tuples, mSet, after transaction 7; (with corresponding proof
Proof;), then Proof; 11 will not authenticate the malicious
version of mSet.

Proof: Any tuple value after executing 7; can be authen-
ticated using Proof;, which is declared by Bob after execution
of T;. If the values in the tuple set mSet were modified after
T;, Proof; will not authenticate the updated values in mSet,
i.e., the server will not be able to prove that the new values
in mSet were indeed part of the database after executing T;.
Thus transaction 7;;; will not read those values (if it does,
the server will not be able to authenticate those values). Since
the execution of the transaction depends solely on the data
that it reads, the verifier can generate the updates that the
T;11 generated. Thus the calculation of the new proof will
not include the malicious changes to mSet. Hence, Proof; 1
will not authenticate the changes in mSet. [ ]

Theorem 1: If Bob modifies mSet after transaction T; and
if T}, is the first transaction after 7; that accesses the tuples
in mSet, then verification of 7}, will fail.

Proof: For the verification of T}, the server has to
authenticate the tuples that T}, reads against Proofj_1. Using
lemma 1, we can say that T;;; can not authenticate the
malicious values of mSet. Applying the same lemma again



on T;, ensures that 7;,o will not authenticate mSet either,
and so on. Hence, T;,_; will not authenticate the values in
mSet either. Hence, the verification will fail. [ |

Theorem 1 proves that each transaction reads data from a
consistent state which reflects the updates applied by previ-
ously committed transactions. The proof chain stored at Alice
establishes the order of commitment (serialization order) of the
transactions. We now show different malicious events that may
compromise the trustworthiness of data, and discuss how our
solution ensures that such malicious events will be detected.

If Bob drops a transaction: Consider a transaction sub-
mitted by Carol that Bob pretends to execute (i.e., sends
unauthentic responses to Carol, but does not actually execute
the transaction). Bob has to notify Carol that it executed
the transaction and her transaction modified the proof from
Proof;_1 to Proof; (for some 7). As part of the protocol,
Carol will send this information to Alice (Algorithm 2, Step
6). If Bob drops this transaction, Bob will claim that the
next transaction (sent by the same client or some other client
Carolina) moved the proof from Proof;_1 to Proo fi,. When
Carolina sends this information to Alice, she will detect that
Bob executed two transactions on the same consistent state,
which breaks the consistency of the database.

If Bob executes an unauthorized transaction: Bob can
execute an unauthorized transaction in two ways: 1) Bob could
manufacture a new transaction and pretend that a client sent
it to him; or ii) Bob could replay a transaction that it already
executed. To manufacture a new transaction, Bob has to forge
a client’s signature as the protocol requires Bob to execute
only signed transactions — this is computationally infeasible.

To prevent a replay of an old valid request, the protocol
requires a unique, increasing identifier (SID) as part of the
signed request. Hence an attempt to reuse an old signature will
be caught when Alice receives Scaroi(transaction, SID)
value that does not show an increase in SID for the given
client (Algorithm 2, Step 5).

If Bob does not run the transactions in the claimed
sequence: The chain of proofs maintained by Alice prevents
this from happening. Bob informs Carol of the commit order,
i, for each transaction. The corresponding pair of proofs,
Proof;_1 and Proof; must validate this transaction. If Bob
does not specify these correctly, verification of 7; will fail.

E. Indemnity for Bob

We also require that if Bob is honest and faithfully executes
all transactions submitted by Alice and Carol, then he can
prove his innocence. This is indeed the case for this solution.

We first consider Bob’s indemnity from Carol. In order
to verify a transaction submitted by Carol, Bob needs the
following from Carol: (i) the request for running the trans-
action including the transaction name, its parameters, and a
sequence number, and (ii) Carol’s ability to replay a transac-
tion faithfully. Carol cannot repudiate her request for running
a transaction since she signs the request with all the necessary
information. If Carol does not replay a transaction correctly,
Bob can check that himself by replaying it and implicate Carol.

This is possible because each transaction and parameters are
known to each party, the values read from the database are
known to Bob and he can verify that they are consistent with
the consistent state corresponding to the proof value he sent
to Carol in response to the transaction request. Thus, it is not
possible for Carol to falsely implicate Bob.

Next we consider Bob’s indemnity from Alice. Bob relies
on Alice to maintain the chain of proofs and also to check
that a given SID has not been used earlier for a given client.
Alice cannot modify the chain with impunity. If she adds a
proof that Bob has not provided, she would have to produce a
signed message from Bob containing the old and new proofs.
She cannot manufacture such a signed message. Similarly, she
cannot delete any proof (Proof;) from the chain, as she has to
produce a signed message containing (Proof;_1, Proofii1).
If Alice claims that an SID value for a client is being reused
by Bob, she can once again be challenged to produce the
prior message from Bob containing this SID and Client pair.
If he has never sent her such a message, she will be unable
to produce it.

Thus, Bob is protected from baseless claims of wrongdoing
from either Alice or Carol, as desired.

F. History and Data Provenance

Recall that we assumed above that Bob maintains a copy
of each successive M BT; corresponding to the commit of
each transaction. This is expensive and unnecessary. Instead,
Bob can maintain a base structure and record incremental
updates to the structure after each commit. Alternatively, he
can maintain the latest version of the structure and maintain
enough information to work backwards to an earlier version.

To reduce the storage cost, each tuple in the database and
each node in MB-tree is assigned a unique id. Each tuple in
the relation is also assigned a version number. A history stores
each value that a tuple or a node takes as the database evolves.
At the start, for each tuple and MB-tree node, the history stores
only one value — the value in the database or MB-tree after the
initialization step. Initially each tuple value is assigned version
number 0. When a tuple or a node is modified, the version
number is incremented by one and the new value is added
to the history along with the transaction’s sequence number
which modified the value. As the database evolves, the history
stores all the values that a particular tuple or MB-tree node
takes on consistent states. When a user wants to verify an old
transaction, the database server can use the history to generate
the values that the server read when executing this transaction.

The history also provides a secure provenance of the
data. When a client asks for the provenance of a tuple, the
server responds with a set of provenance records(history).
Each provenance record has three components: the id of the
transaction that created that value; the version of the tuple; and
the value of the tuple. Lemma 2 shows that the existence of
any provenance record returned by the server can be verified.
Further, Lemma 3 establishes that the completeness of the
provenance records for a tuple (i.e., no record that should have
been in the provenance is missing), can be verified. Theorem



2 then proves that the data provenance of a tuple returned by
the server is indeed trustworthy. If not, the client will be able
to detect the error.

Lemma 2: Any provenance record returned is indeed an
authentic record.

Proof: A provenance record includes the transaction that
modified the tuple and the new tuple value. The authenticity
of a provenance record can be ensured by verifying the
transaction that generated that tuple value. ]

Lemma 3: Any provenance record that should have been
returned is indeed in the provenance.

Proof:  Since each tuple value is attached with its
version, when the server returns the provenance of a tuple,
< T31,0,v9 >, < Ti2,1,v1 > ... < Tjj,4,v; >, the version
numbers have to be contiguous, starting with 0. Any missing
version number will mean incompleteness. To ensure that v;
is indeed the last version of the tuple, the client can verify that
by asking the server to verify the authenticity of v; against the
latest proof (and not necessarily T;;). [ |

Theorem 2: The provenance of a tuple given by the server
is correct and complete. If not, the client can detect the error.

G. Efficiency

For ease of exposition, the protocol discussed above inten-
tionally omits several possibilities for gaining efficiency. We
now discuss some of the possible optimizations.

As discussed before, in our solutions, the overhead for Alice
is minimal. Alice just maintains the proof chain and stores
the latest SID used by each client. In practice, the size of
the proof chain will be small compared to the database size.
Alice incurs the cost of verification only if she wants to.
The clients can verify the transactions independently. There
is a communication cost for Alice, as both Bob and Carol
update Alice upon the commitment of a transaction. However,
the proposed solution does not prevent Bob or Carol from
executing further transactions before sending updates to Alice.
Hence, transaction processing does not stall while updates
are sent. Updates can be delayed as long as they arrive
before verification is performed. Similarly, verification can be
performed at any later time, and is not limited to immediately
after transaction execution.

In the above protocol, Bob has to maintain history, which
records the values read and written by all transactions, and
the information necessary to generate the MBT structures for
any transaction in the past. The size of this information can
grow to be very large. If space is a problem, we can introduce
verification checkpoints. A verification checkpoint corresponds
to a statute of limitations for Alice — i.e., we do not allow
Carol or Alice to verify any transaction beyond a certain time
in the past (e.g., a month). Thus they have up to one month to
challenge any transaction. After this point, if the transaction
is not challenged, Bob can assume that Alice accepts it and
he can discard any data necessary to verify that transaction.

H. Analysis

We now analyze some of the overheads introduced by our
protocol. We provide a treatment similar to that in [1] which

introduced the MB-tree and serves as a base case for us
since it provides a solution that meets the requirements of
correctness and completeness, and also allows for centralized
updates through Alice. It does not provide a solution that meets
the Transactional Integrity requirement. In our solution, the
client’s cost of verifying an update or read is the same as
that with an MB-tree, as clients still verify an update or query
against an MB-tree.

Authentication Structure Construction Time: For a
database with n tuples and fanout f, the cost of construction of
our data structures involves calculating hashes for each tuple
and each node in the tree. Also, it requires the cost of writing
those nodes to disk. For a tree of height d, the number of
nodes in the tree will be:

d _ 1
_J —T = O(n) 2
Hence, the cost of construction is :
nCh, + 2mC}, + 2mS,,Cro + nS:Cro 3)

where S,, and S; are the sizes of a tree node and a tuple,
respectively. C}, is the cost of computing a hash value, and
C7o is the 10 cost for one block. Thus, like an MB-tree, the
construction time is O(n) — linear in the size of the database.
This cost exceeds that of an MB-tree by m.S,,Cro +nS:Cro,
which represents the overhead of the history.

Update Time: To insert or delete a tuple from the tree, the
path from the leaf node to the root has to be updated. Also,
the updated values have to be added to the history. Hence, the
cost of an update is

Ch + dCh + 2dS,Cro 4)
This is O(logn).

VO Construction Cost: To construct a VO, the server has
to go through the history and find the values that it read while
executing a transaction. If, C}O is the cost of finding the value
of a tuple or node which the transaction read, then cost of VO
construction is:

2dC7o 5)

Since the height of the tree is d, the server has to find
the rightmost path and the left most path to construct VO.
C’}O will increase as the transaction count increases, since it
increases the history size hence search space.

Storage Overhead: Since our proposed data structure also
stores the history of each tuple and tree node, the server keeps
an extra copy of the tree and the relation. Thus, in the start
we need twice as much disk space as that required by an MB-
Tree. For each update, the server keeps a copy of the updated
data in history. Thus, after & updates, the storage cost is :
Thus the overhead for Bob is O(n + klog(n)) - i.e., linear in
the size of database and updates. On the other hand, Alice has
to store the proof chain (one hash and one transaction ID per
transaction) and the largest SID values for each client. This
requires a disk space of:

(|h| + [tID| + |SID| + |User|)t (7)
Thus the overhead for Alice is minimal and is linear in the
number of transactions and clients.

In the section next, we discuss implementation details and
an empirical evaluation of the proposed solutions.



IV. EXPERIMENTS

To demonstrate the feasibility and evaluate the efficiency
of the proposed solution, we implement our protocols with
the MB-Tree in Oracle. Our implementation is built on top of
Oracle without making any modifications to the internals. Note
that even though Oracle uses “read committed” isolation by
default, it allows strict serializability. All our experiments are
run with strict serializability. The protocols are implemented
in the form of database procedures using PI/SQL. While we
expect that the ability to modify the database internals or to
exploit the index system will lead to a much more efficient
implementation, our current goal is to establish the feasibility
of our approach and to demonstrate the ease with which our
solution can be adopted for any generic DBMS. Clients are
implemented using python.

Setup: We create a synthetic database with one table uTable
containing one million tuples of application data. uTable is
composed of a table with two attributes (Tuplel D and A).
The table is populated with synthetic data with random values
of A between —107 and 107. All necessary structures for the
protocol are maintained using other tables. Table II describes
the different tables and indexes used in our prototype. An
MB-tree is created on attribute A (integer). We consider three
transactions implemented as stored procedures, namely Insert,
Delete, and Select. Insert creates a new tuple with a given
value of attribute A. Delete deletes the tuples which have the
given value of attribute A and Select is a range query over
attribute A. In practice, transactions will be more complex
than a single insert or delete. Our solution can handle complex
transactions as well. However, for simplicity, we consider only
simple transactions. The experiments were run on an Intel
Xeon 2.4GHz machine with 12GB RAM and a 7200RPM disk
with a transfer rate of 3Gb/s, running Oracle 11g on Linux.
We run Oracle with a strict serializable isolation level. We
use a standard block size of 8KB.

Implementation Details: We implement the MB-tree in the
form of a database table. Each tuple in the MB-tree table
represents a node in the tree. A better way to maintain the
MB-Tree would be to use the B+ index trees of the database.
However, that will require internal modifications to the index
system of the database. We leave that for future work. Table
uTableMBT stores the MB-tree for the data in uZable. Each
MB-tree node is identified by a unique id. Each node stores
keys in the range [key_-min,key max). level denotes the
height of the node from the leaf level, i.e., leaf nodes have
level = 0, and the root has the highest level. The keys field
stores the keys of the node, and the children field stores
the corresponding child ids and labels. Finally, Label stores
the label of the node. This table is updated at the time of
transaction commit.

Tables uTableHistory and uTableMBTHistory are used to
store the history of the tables uTable and uTableMBT respec-
tively. When a tuple is modified in uTable or uTableMBT, a
new tuple is inserted in the corresponding history table to store
current values. For example, when a new tuple is created in

uTable by a transaction with transaction ID ¢ID, an entry is
added to uTableHistory with the value of the new tuple and
transactionID as t/D. At the time of a commit, the transaction
modifies the MB-tree to update the proof. The updated node
values are inserted into uZableMBTHistory with transactionID
tID. Updates to the MB-tree are made level by level, beginning
at the leaves and working to the root. Once the root is updated,
the transaction is committed.

A. Results

We now present the results of our experiments. To provide a
base case for comparison, we compare the performance of our
protocol with a regular MB-tree based protocol [1] where all
updates are routed through the data owner. Furthermore, this
solution does not provide indemnity for the server or secure
provenance. We analyze the costs of construction for the
authentication data structures, execution of a transaction, and
verification of a transaction. We also study how our solution
scales with multiple clients concurrently running transactions.

The fanout for the authentication structure is chosen so as
to ensure that each tree node is contained within a single
disk block. In each experiment, time is measured in seconds,
IO is measured as the number of blocks read or written as
reported by Oracle, and storage usage is measured in number
of file blocks. The reported times and 1O are the total time and
IO for the entire workload. Each experiment was executed 3
times to reduce the error — average values are reported. In the
plots, M BT represents the protocol from [1] where updates
are always routed through Alice, and M BT™* represents our
protocol where updates are sent directly from the clients to
the server. In experiments that measure the effect of multiple
clients concurrently running transactions, we keep the total
number of transactions constant. We divide the workload
equally among multiple clients. Figure 6 shows the common
legend for all the result graphs.

Construction Cost: First, we consider the overhead of
constructing (bulk loading) the proposed data structure. For
our solution, there is an extra cost for storing the history of
the database, which increases the storage cost and construction
time. Figures 7(a) and 7(b) show the effect of data size
on construction time and storage overhead, respectively. As
predicted by our analysis (Eqns. 3 and 6), both costs increase
linearly with the size of the database. In addition to the
MB-tree, we maintain an extra copy of the MB-tree and
the database table in the history files. Hence, our solution
incurs a 100% storage overhead. The construction time has
two components; time to compute hashes and time for 10
(Egn. 3). Our protocol needs twice the amount of IO as
compared to MB-tree. However, the 1O cost is superseded by
hash computation. Hence, the construction time is not much
higher than maintaining just an MB-tree.

In past work, the verification of a transaction was only
allowed immediately after the execution of a transaction before
any other transactions are executed. Our work removes this
restriction and enables the verification of past transactions.
This provides much greater flexibility and reduces the need
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to immediately verify transactions. Of course, the added func-
tionality comes at an additional storage cost for the history
tables.

Insert Cost: We now discuss the cost of inserting and
deleting tuples. Since both operations show similar costs, we
only present the results for insertion due to lack of space.
For this experiment no verification is performed. In the first
experiment, we study the performance as the number of Insert
transactions is increased. Figures 8(a), 8(b) and 8(c) show the
results. As expected, with a single client, our protocol incurs
a much higher overhead for storage and IO for maintaining
the history information. These costs increase linearly with
the number of transactions (Eqn. 6) Surprisingly, this does
not translate into a significant increase in the running time.
This represents the computational overhead of hashing and
concatenations which dominate the cost (see Eqn. 4).

A key advantage of our protocol comes to light as we begin
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to increase the number of concurrent clients, as seen in Figure
8(a) where the running time for our protocol drops signifi-
cantly when 5 clients run the same number of transactions
in total, i.e., each client runs one fifth of total number of
transactions. In order to better study the impact of concurrent
clients, we ran another set of experiments where a varying
number of clients ran a total of 1000 Insert transactions.
The results are shown in Figures 9(a) and 9(b). As we can
see, the MB-tree solution which needs to process all updates
through a single node (Alice) sees no gain in performance,
whereas our solution results in improved performance with
greater concurrency (even though it is performing a much
larger amount of 10).

Verification Cost: We now demonstrate the overhead of
transaction verification on the system. We run 1000 Insert
transactions with increasing fractions of transactions that are
verified. The percentage of transactions that are verified re-
flects the data owner’s distrust of the server. Figure 10(a)
and 10(b) show the results. As the verification percentage
increases, we observe that the execution time of the transac-
tions increases. However, disk 10 does not increase as rapidly
since there is little extra IO for verification as compared to
running the transaction itself. Verification also takes advantage
of already cached MB-tree nodes.
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Figure 10(c) shows the effect of the increase in number of
clients on execution time. For this experiment, we run 1000
Insert transactions and each transaction is verified. As before,
our prototype scales much better to the increase in the number
of clients. This is because verification can be done independent
of transaction execution, hence, verification executes while
other transactions are running. Whereas for the case of just
an MB-tree, the verification of a transaction prevents other
transactions from running.

Search Cost: Now we evaluate the performance of our
solution for range queries (Search). This cost is influenced
by both the size of the result (larger results will be more
expensive to verify) and the size of the history that needs
to be searched for generating the proof. We conduct two
experiments to study this behavior. In the first experiment,
we run 1000 Insert transactions on the database to populate
history. Then, we run 100 Search transactions with 100%
verification for different ranges (thereby with different result
set size). Figures 11(a) and 11(b) show the results. As the
result set size increases, execution time and the amount of 10
increase. For verification, the server has to return the right and
left most paths of the range. Along with this, the server also
has to return which tuples belong to which leaf nodes, as that is
crucial information for the client to be able to verify the result
set. Hence, as the result set size increases, the verification
object size increases which results in an increase in verification
time. The performance of our solution is comparable to that
of an MB-tree alone.

In the second experiment, we vary the history size by exe-
cuting varying numbers of Insert transactions before running a
fixed search and verification. Figures 12(a) and 12(b) show the

effect of increase in history size. The z-axis in both graphs rep-
resents number of Insert transactions executed before running
the search transactions. As expected, increase in the history
size increases the verification time for our solution. However,
it does not increase rapidly. Note that the search time without
verification for our solution and MB-tree was the same, hence
we do not report it separately. Overall, we see that the
proposed ideas can be easily implemented on top of an existing
DBMS. Even with this simple implementation, the overhead
for ensuring transactional integrity is reasonable and actually
less than the cost of the state of the art for ensuring only
correctness and completeness. As stated earlier, we believe
there is a lot of room for more efficient implementations. We
will explore optimizations in future work.

V. RELATED WORK

The problem of ensuring the authenticity of query results
from an untrusted (e.g. outsourced) database has been explored
by several researchers [3], [1], [4], [5], [6], [7]. Some of the
earlier work only considered correctness of results [3], [8],
while later work consider both correctness and completeness
[1], [5]. A few of these [1], [5] have considered updates. In
most of these works, it is assumed that a single, central entity
executes the updates. This is an unreasonable assumption for
many applications. Only limited work has been done for the
situation where multiple clients can update the data [5]. To
the best of our knowledge, no work has been done towards
transactional integrity with multiple clients.

[1] offers an example of a single updater solution. It
proposes an embedded Merkle tree (EMB tree) for query
correctness and completeness. An EMB tree is an embedded
B+-tree similar to Merkle Hash tree. The root hash of the tree



is made available to clients. With the help of this root hash,
clients can prove the correctness and completeness of their
query results. Updates are performed only by the data owner
and the updated root label is then distributed to the clients.

[5] proposes a solution for the multi-owner model. It
allows updates from multiple clients using the BGLS [9]
signature scheme, which makes it easy to handle signatures
from multiple clients. Signatures from different clients can be
aggregated together, and can be verified in a single step. For
proving completeness, signature chains are used, where each
tuple is signed together with the tuple just before and after
it in sorted order. This work does not handle transactional
semantics. Furthermore, the approach has been shown to be
orders of magnitude slower than hashing based schemes [1].

Much work has been done towards data provenance and
tamper-proofing of data [10], [11], [12], [13], [14]. While
most works focus on storing and querying provenance [10],
[13], some have considered the problems of privacy and
trustworthiness of data provenance [11], [12].

Researchers have also begun to consider similar problems
with respect to generic data. For example, [15] presents a
solution to the problem of ensuring that large files that have
been outsourced are indeed available for download in their
entirety. The solution provides a means to ensure that if parts
of such files become corrupted or missing, then the client is
able to discover this with high probability. [16] presents a
solution to the problem of ensuring correct execution of a
CVS server. In this work, it has been proved that to prove
the execution of CVS (which includes both read and write),
users have to communicate with each other. The need for
communication arises to ensure the freshness of the data.
[17] uses the notion of fork-consistency to ensure integrity
of revision control systems.

Some work has also been done towards ensuring the in-
tegrity of databases using trusted hardware [18], [19]. In these
systems, trusted hardware (e.g. a secure co-processor) is used
to execute queries correctly and with privacy. Other orthogonal
avenues of research focus include privacy preservation in
outsourced databases [20], [21], [22], [23], and intrusion de-
tection [24], which studied the problem of detecting malicious
modifications of data by an external intruder. This is achieved
through tamper detection of an audit log of the database that
records all changes. This work does not address outsourcing
or privacy concerns and assumes that the database owner is a
trusted entity. Our solutions (with slight modifications) can be
applied to solve the same problem.

VI. CONCLUSION

In this paper we introduced the problem of ensuring the
authenticity and integrity of dynamic transactional database
hosted on an untrusted server where the data owner may not
have any direct control over the database. To the best of our
knowledge, this problem has not been identified in earlier
work. We develop novel solutions for this problem. Our pro-
tocol makes it possible to detect any failures on the part of the
server to faithfully host a transactional database with multiple

independent clients. Furthermore, the solutions also provide
indemnity for the outsourcing server against false claims of
erroneous processing, and provide assured provenance for the
data managed by the untrusted server. These solutions are the
first to address the problem of transactional integrity in an
untrusted database. We demonstrate that the solutions are easy
to implement in an existing database system (Oracle) without
making any changes to the internals of the DBMS. Our results
show that we are able to remove the need to trust the server and
provide support for independent clients at a cost comparable to
earlier work that does not provide either of these guarantees.
We believe that the efficiency of the solutions can be further
improved by modifying the internals and also developing proof
structures that have better disk performance (e.g., using GiST
like indexes). We plan to explore these issues in future work.
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